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INTRODUCTION

Using a simple graphical presentation we can visualize the 
integrand of the forward and inverse Fourier transforms as a 
topographic surface. This presentation aids in understanding 
frequency domain and real-space relationships, such as the 
important, but often poorly understood, contributiaon of the 
frequency domain phase spectrum to the real-space shape. The 
Fourier transform integrand visualization method presented 
here can also help develop insights into complex wave behavior, 
such as the relationship between traveling and standing waves 
and the evolution of dispersing wavetrains.

BACKGROUND

Fourier analysis is often introduced with a figure showing how 
to approximate a function by adding together sinusoids (Figure 
1A). I extend this presentation through the introduction of 
Fourier transform integrand visualization (FTIV) and use this 
technique to illustrate the relationship between traveling and 
standing waves, the Fourier shift theorem, and how the phase 
affects the real-space shape of a dispersing wave. 

Figure 1(A) shows a real space, in this case a time-domain 
function, a boxcar symmetric about t = 0, and the first few 
terms of its Fourier series 

 (1)

The weights, c(ωn), and phase shifts, (ϕn), represent u in the fre-
quency domain. The cos (ωnt) terms are known as basis func-
tions and have variables from both domains, i.e., time and 
frequency, in their argument. The set of basis functions must 
meet two important conditions. First, mutual orthogonality, 
which means you cannot make any of them by summing the 
others. Second, “completeness,” which means any arbitrary 
function, with some conditions to ensure convergence, can be 

represented using only this set of functions. The Fourier series 
is also periodic, with period T = 2 1π ω .

The Fourier series can be generalized to the inverse Fourier 
transform

ϕ  (2)

where the amplitude, c(ω), and phase, ϕ(ω), spectra come from 
the Fourier transform

ϕ  (3)

with ϕ(ω) chosen to maximize |c(ω)|. (The function u(t) must 
be absolutely integrable and non-periodic.) The amplitude 
and phase spectra can be interpreted through the mathemati-
cal concept of correlation, which quantifies the similarity of 
functions; the Fourier transform is a correlation between the 
time-domain function and the time-shifted basis functions. 
The functions u(t) and ϕ  are known as a 
Fourier transform pair.

VISUALIZING THE FOURIER INTEGRAND

Relating frequency-domain and time-domain behaviors, espe-
cially those related to ϕ(ω), is difficult with figures such as 
Figure 1(A), which typically use functions with ϕ(ω) = 0. FTIV 
illustrates the relationship between the Fourier transform 
pairs more clearly while naturally including ϕ(ω). Figure 2(A) 
(shown on the back cover) introduces the FTIV technique 
using the basis functions of the forward and inverse Fourier 
transform integrands as a topographic surface. Figure 2(B) 
shows the inverse Fourier transform process; following the 
arrows, multiply the basis functions by c(ω) to make the inverse 
Fourier transform integrand, then integrate to obtain the box-
car. Figure 2(C) shows the process for the Fourier transform.

The ϕ(ω) term in the basis function argument shifts the 
basis function’s position along the real-space axis (step 0, Figure 
2). This is the key to FTIV that allows showing both c(ω) and 
ϕ(ω) in a clearly interpretable form. To examine the relation-
ship between the time-domain shape and ϕ(ω), consider a func-
tion with Fourier transform c(ω) = 1, ϕ(ω) = 0. This makes a 
time-domain delta function at t = 0 (Figure 3). When c(ω) = 1, 
contours of the inverse Fourier transform integrand amplitude 
are the same as contours of constant, or stationary, argument 
(we will hereafter refer to the basis function argument as the 
“phase”), and we will equate them. This relationship makes it 
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easier to see the phase (i.e., argument) behavior in Figures 2–5, 
which display the cosine of the phase and not the phase itself (a 
plot of the phase is not very illuminating).

The real-space function in Figure 3 is non-zero only at 
t = 0, where the phase is stationary. At t = 0.49, the phase var-
ies linearly, and the integrand and running sum oscillate and 
remain small (zero). This observation is the basis of the prin-
ciple of stationary phase: for functions that are oscillatory over 
most of their range, non-zero contributions to their integral 
come from integrand regions where the phase is stationary (e.g., 
Udías 1999). We will refer to the contours seen in Figure 3 as 
skirts. Integrating along vertical paths, constructive/destruc-
tive interference occurs where the skirts are vertical/sloping.

EXAMPLES

Traveling Waves to Standing Waves and Back
Combining two sinusoidal waves traveling in opposite direc-
tions produces a standing wave (with k as “spatial frequency”)

u x t kx t kx t
kx t

, cos cos
cos ,

( ) = +( )+ −( )

= ( ) ( )
ω ω

ω2cos
   (k = 2π λ , v k= ω ). (4) 

The right side of the equation shows a stationary wave in space, 
cos (kx), modulated in time by cos(ωt). Now consider two del-

tas propagating at ±v (Figures 4A and 4B). The inverse Fourier 
transform integrands of traveling sinusoidal waves and time-
domain deltas move to positions x1 = ±vt1 at t1. The real-space 
axis is now distance (distance-domain) and the real-space plot 
is a snapshot of the wavefield in space. Adding the wavefields 
of Figures 4(A)-ii and 4(B)-ii produces the wavefield in Figure 
4(C)-ii. Alternately, adding the inverse Fourier transform inte-
grands of traveling waves in Figure 4(A)-i and 4(B)-i produces 
an inverse Fourier transform integrand of standing waves in 
Figure 4(C)-i, which integrates to the traveling deltas in Figure 
4(C)-ii. How do traveling waves arise from the integration 
of standing waves? The right side of Figure 4(C)-i shows the 
inverse Fourier transform integrand decomposed into the two 
standing wave factors, the cos(kx) component, from x = 0 to 
x = 0.1 (the delta’s position), and the cos(ωt) component, from 
x = 0.1 to x = 0.25. At t = t1, the inverse Fourier transform is

u x t t kx dk kx t, cos cos1 1 1( ) = ( ) ( ) ∝ ±( )
−∞

∞

∫ ω δ ω , (5)

giving the traveling deltas at x t k vt1 1 1= ± = ±ω  from the 
orthogonality of the cosine. The cos(ωt1) term selects posi-
tions of cos(kx), which vary with time, having the same 
angular frequency forming a non-oscillatory integrand 
∝ ( ) = ( )cos cos2

1
2

1kx tω . At all other positions the integrand 
oscillates and integrates to zero.

 ▲ Figure 1. (A) Time-domain boxcar approximations using 7 (heavy) and 100 (thin) Fourier series terms. First through sixth basis 
functions (gray dashed) and Fourier series terms (black). Points with stationary argument (circles) connected by vertical dashed lines 
between Fourier series terms become Fourier transform integrand lines of stationary phase. (B) Weights for Fourier series (circles) and 
Fourier transform (dashed line, scaled to match Fourier series).
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 ▲ Figure 2. (A) FTIV 3-D view of the common, basis function part of forward and inverse Fourier transform integrands as a surface. 
Frequency and time domain functions/envelopes (normalized to their maximum) shown by heavy/light plots along axes. Curves of con-
stant amplitude and stationary phase shown on the back cover in blue. (B) Inverse Fourier transform integrand for boxcar after multi-
plying basis functions by c(ω). Sum parallel to f axis produces time-domain curve u(t) along t axis. (C) Forward Fourier transform inte-
grand for a boxcar after multiplying basis functions by u(t). Sum parallel to t axis produces frequency-domain curve C(ω) along f axis.
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Fourier Shift Theorem
Shifting the delta also shifts the inverse Fourier transform inte-
grand along the real-space axis (Figures 4A-i and 4B-i), pro-
viding a graphical view of the shift theorem: a real-space shift 
changes ϕ(k) ∝ (real-space distance travelled/λ) ∝ kx , but does 
not change c(ω).

Dispersion
When velocity is a function of frequency, v(k), traveling waves 
change shape. Following Brune et al. (1960) and Nafe and 
Brune (1960), we now relate inverse Fourier transform inte-
grand behavior to dispersion. Figure 5 (on the front cover) shows 
how, starting from the delta at t = 0, at t1 each inverse Fourier 
transform integrand component traveled x k v k t( ) = ( ) 1  to 
produce the inverse Fourier transform integrand (demonstrat-
ing how FTIV displays ϕ) and real-space wavefield shown. The 
vertical line of stationary phase at x = 0, t = 0  is sheared into a 
new shape (Figure 5A, see cyan line on front cover) and initially 
sloping inverse Fourier transform integrand skirts fold and go 
through vertical. The wavefield also evolved into a wide, com-
plex shape in the region v3t1  <  x  <  v1t1, which is wider than 
expected from the fast and slow velocity limits,  v2t1 < x < v1t1. 
Where does the low velocity limit, v3, come from? The answer 
is found by analyzing the skirt pattern.

Left of v1 and right of v3 the skirts slope, the integral is 
zero (Figure 5C-i, vi), and the real-space wave is not found. 
At v1, the skirt is vertical for 0 < k < α, then slopes for α < k. 
As regions with sloping skirts do not contribute to the inte-
gral, we can integrate over only 0 < k < α to obtain u(x, t) ∝ 

sinc(X) cos(k0x – ω0t), X ∝ (x – v1t)δk,  (Udías 1999). This is 
the product of a traveling sinusoidal carrier, cos(k0x – ω0t), and 
a sinc modulation. The x v t−( )1  term shifts the sinc’s location 
by v1t, while δk controls its width. A similar analysis can be 
done at v2 for δ < k. If the sinc is narrower than the sinusoids’ 
wavelength the result looks like a sinc pulse (x ≈ –7.5, Figure 
5B-ii). If it is wider, the result looks like a sinusoidal wave with 
a sinc envelope (x ≈ 3.5, Figure 5B-iv). The sinc envelopes move 
at v v1 2or  respectively, and restrict the wavefield to finite 
regions containing the wave’s energy. The real-space wavefield 
comes from regions where the integrand’s phase is stationary 
(Figure 5 C-ii and iv, gray background).

Between v1 and v2 the skirts fold. Here, waves with an 
observed k in the real-space wavefield, found by integrating the 
inverse Fourier transform integrand, do not travel at the v(k) 
shown by the cyan curve. They are found to travel at a velocity 
defined by the magenta curve (Figure 5A). The magenta curve 
connects the set of points in the inverse Fourier transform 
integrand having stationary phase (vertical skirts) and defines 
a new type of velocity, the group velocity, vg(k), at which waves 
(and energy, etc.) travel in the real-space. The k and v observed 
at position x of the real-space wave (Figure 5B) are the same as 
those associated with the point of stationary phase, x k,( ) , on 
the magenta curve in the inverse Fourier transform integrand 
(Figure 5A). Figure 5 illustrates that phase velocity is easy to 
understand but hard to measure (nothing is physically traveling 
at the phase velocity), and that group velocity is hard to under-
stand but easy to measure (it is the velocity of the physical wave-
field we observe).
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 ▲ Figure 3. FTIV gray scale topographic view of inverse Fourier transform integrand for a delta (top) with real-space function (bottom). 
Plots on right show running sums of the inverse Fourier transform integrand for profiles at two times or positions (gray dashed lines).
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 ▲ Figure 4. Traveling waves in FTIV view of (A-i) and (B-i) combine into standing waves in the left side of (C-i). Solid and dashed curves 
in (A-i) and (B-i) show lines of stationary phase. These lines are also drawn in (C-i), where one sees a resemblance of the skirt patterns. 
Right side of (C-i) shows product form: a fixed spatial delta, cos(kx), modulated by cos(ωx). Real-space traveling deltas from integration 
if inverse Fourier transform integrands are shown in (A-ii), (B-ii) and (C-ii).
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 ▲ Figure 5. Illustration of dispersion, phase and group velocities, and principle of stationary phase. (A) Inverse Fourier transform inte-
grand (cos(kx – ω(k)t), v (k) = ω(k)/k) and (B) plot of dispersed wave. The distance axis, shared by inverse Fourier transform integrand 
and real-space plots, pans with the wave. Rescaling the x axis by 1/t1 changes it to velocity (top) with phase and group velocities shown 
by cyan and magenta curves on the front cover. Yellow ticks on v axis mark fast and slow limits of phase and group velocities. (C) Inverse 
Fourier transform integrand profiles (black, scale ±1) and running sums (red, i through vi, scale labeled). Ticks on k axis (A and C, right 
side) mark frequency bands for classes of real-space behavior associated with regions of stationary phase (gray background).



Seismological Research Letters Volume 80, Number 4 July/August 2009 657

The inverse Fourier transform integrand skirt pattern, 
real-space shape, and group velocity are related by the principle 
of stationary phase, which applies to integrating the product 
of a slowly varying function and a rapidly oscillating function 
(see Båth 1968). In our case, the slowly varying function is 
c k( ) = 1 , and we only have to consider the oscillatory term, 
cos(kx – ω(k)t), greatly simplifying the discussion without los-
ing insight. When the phase is stationary (constant, vertical 
skirt), 

kx k t k x C
k
x t d k d k U k

x

x

− ( )( ) = ( ) =

∂ ∂ =

= ( ) = ( )

ω

ω

Ψ
Ψ

, ,

,

.

0

 (6)

The contribution to the wavefield from Fourier component 
k arrives at x at velocity v U kg = ( ) . A branch of stationary 
phase is found between v t x v t2 1 1 1< <  in α < k < β, producing 
a sinusoidal wavefield of slowly decreasing wavelength. A run-
ning sum (Figure 5C-iii) shows that the largest contribution 
to the wavefield comes from the small region (x, k) (gray back-
ground) of the skirt pattern fold where the phase is stationary. 
There are two stationary phase branches in v3t1 < x < v2t1, β < 
k < γ and δ < k < ε, and the non-zero contributions come from 
the two stationary phase regions (Figure 5C-v).

Finally, v3 is an inflection point where the second deriva-
tive of the phase is also zero, indicated by the vertical skirt in 
γ < k < δ that does not form a closed fold. Using an extension of 
the principle of stationary phase, we obtain a large amplitude 
pulse known as the Airy phase, associated with an extremum 
(minimum) of the group velocity (Figure 5C-vi).

DISCUSSION AND CONCLUSIONS

We have seen that ϕ(ω) can have significant effects on the real-
space shape. How does this compare to the effects of c(ω)? The 

shape of the boxcar comes from c(ω). We saw that a delta with 
c(ω)  =  1 and ϕ(ω)  =  0 can generate a dispersed seismogram 
through variation of only the phase spectrum. For c(ω) = 1 and 
random phase, the time-domain function is white noise. The 
delta, white noise, and dispersed wavetrain all have c(ω)  =  1, 
but different real-space functions determined by ϕ(ω), which 
shows that the phase spectrum carries important information 
and can be a major contributor to the real-space shape and its 
time evolution. The shape of a wave as it propagates depends on 
changes in both c(ω) and ϕ(ω). Viewing the forward and inverse 
Fourier transform integrands as a topographic surface provides 
insight into a number of real-space wavefield features such as 
the often underappreciated phase spectrum contribution to the 
real-space function, how to make traveling waves from standing 
waves, and the behavior of dispersing wavefields. 
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