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[1] We present preliminary geodetic estimates for vertical bedrock velocity at twelve survey GPS stations
in the West Antarctic GPS Network, an additional survey station in the northern Antarctic Peninsula, and
eleven continuous GPS stations distributed across the continent. The spatial pattern of these velocities is
not consistent with any postglacial rebound (PGR) model known to us. Four leading PGR models appear
to be overpredicting uplift rates in the Transantarctic Mountains and West Antarctica and underpredicting
them in the peninsula north of 65�. This discrepancy cannot be explained in terms of an elastic response to
modern ice loss (except, perhaps, in part of the peninsula). Therefore, our initial geodetic results suggest
that most GRACE ice mass rate estimates, which are critically dependent on a PGR correction, are
systematically biased and are overpredicting ice loss for the continent as a whole.
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1. Introduction

[2] The GRACE satellite mission, which measures
temporal changes in Earth’s gravity field, can infer
near-surface mass changes with unprecedented
precision, but in Antarctica (as in Greenland) these
estimates are unusually ambiguous, because
GRACE cannot distinguish between changes in
ice mass and nearby changes in rock mass associ-
ated with postglacial rebound (PGR) [Le Meur and
Huybrechts, 2001; Velicogna and Wahr, 2002].
Therefore, numerical models of PGR are used
during or after the analysis of GRACE observa-
tions to account for the viscous influx of rock mass
into the study area, and thereby isolate the changes
in ice mass [Velicogna and Wahr, 2006; Chen et
al., 2006; Ramillien et al., 2006, Sasgen et al.,
2007a]. Over much of Antarctica, this ‘‘PGR
correction’’ is larger than the resulting estimate of
ice mass change, sometimes much larger [Velico-
gna and Wahr, 2006]. This vulnerability is worry-
ing because there are many disparate predictions
for contemporary uplift rates in Antarctica, and
little really firm basis for choosing between them.
For example, we contrast the predictions of PGR
models ICE-5G (VM2) [Peltier, 2004] and IJ05
(6A) [Ivins and James, 2005, see Figure 6A] in
Figure 1. These disagreements are not surprising,
since PGR models are based on (1) an ice history
model and (2) a geomechanical model (parameter-
ized in terms of the thickness of the lithosphere, the
underlying mantle viscosity structure, etc.), neither
of which are strongly constrained by observations.
Indeed, because PGR beneath and adjacent to an
actively evolving ice sheet is sensitive to the details
of crustal and mantle rheology, and these details
are not known with the necessary level of accuracy,
many theorists produce suites of PGR predictions
by combining a single ice history model with a set
of geomechanical scenarios [Ivins and James,
2005; Wang et al., 2008]. Predictions of PGR can
be improved by reducing the underlying uncertain-

ties in rock rheology (e.g., using seismology) and
ice history (e.g., using glacial geomorphology and
stratigraphy). They can also be tested and im-
proved by utilizing geodetic observations of crustal
motion [Milne et al., 2004], which is our approach.

2. Geodetic Measurements

[3] Between late 2001 and early 2006, the West
Antarctic GPS Network (WAGN, also known as
Project WAGN) constructed a network of 18 bed-
rock GPS stations (W01–W18) on nunataks across
various parts of West Antarctica and along the
Transantarctic Mountains (TAM) between the Ross
and Weddell seas. It also reoccupied preexisting
survey markers MBL1 [Donnellan and Luyendyk,
2004] (near W12) and HAAG (near W15)
(Figures 2 and 3). We use the term ‘‘WAGN area’’
to describe the extent of this network, i.e., to
indicate the TAM plus West Antarctica minus the
Antarctic Peninsula. Two survey markers were
installed at all WAGN sites, except at sites W06,
W12 and W15, and both monuments (designated A
and B) were observed simultaneously whenever
circumstances allowed. The WAGN survey marker,
a level steel plate bolted into bedrock, serves as an
oriented mounting surface for a custom-designed,
fixed height antenna mast. This design reduces
antenna setup noise to negligible levels, and allows
any WAGN station to be upgraded to a continuous
reference station without changing the position of
the GPS antenna. This upgrade process began dur-
ing the 2007/08 field season as part of the new Polar
Earth Observing Network (POLENET) project. So
far only twelve of the WAGN sites (including
HAAG and MBL1) have been observed over a total
time span of 3 years or more, thereby allowing
useful vertical velocity estimates to be formed.

[4] All WAGN data were incorporated into a much
larger time series of observations from >240 con-
tinuous GPS (CGPS) stations selected from the
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global tracking network of the International GNSS
Service. This global time series extended from
January 1996 through March 2008. We used
GAMIT/GLOBK software [Herring et al., 2006]
to estimate a daily network polyhedron and a
consistent set of GPS satellite orbital solutions,
both expressed in the ITRF 2005 reference frame.
This software incorporates ‘‘absolute’’ models of
phase center variation for each satellite antenna.
We then used a generalized Helmhert transforma-
tion [Kendrick et al., 2001] to shift our station
position time series into a reference frame which
was realized by simultaneously minimizing (1) the
horizontal velocities of a set (HREF) of 11 CGPS
stations located within the Antarctic plate and
(2) the vertical velocities of a set (VREF) of
202 CGPS stations almost entirely located between
60� N and 60� S (Figure 2). After this transforma-

tion is achieved, the RMS horizontal velocity of the
HREF stations is 1.0 mm/yr, and the RMS vertical
velocity of the VREF stations is 0.6 mm/yr.

[5] The vertical reference set VREF was selected
because nearly all global PGR models indicate that
very little net vertical motion occurs in the area (the
‘‘VREF zone’’) sampled by these stations. Even
though northern North America, Greenland, north-
ern Eurasia, southern Patagonia and Antarctica are
all moving upward on average (due to PGR), and
so there must be a net downward movement in the
intervening areas, the total area of continent un-
dergoing moderate or rapid rates of uplift is so
small in relation to that of the rest of the world that
subsidence typically occurs with a velocity which
is small compared to the peak rates of uplift. In
particular, the average vertical velocity predicted

Figure 1. The rates of crustal uplift predicted by the PGR models IJ05 (6A) and ICE-5G (VM2). The red arrows
and boxes depict the geodetic vertical velocity solutions (in mm/yr) and their 95% confidence intervals. The rates of
purely elastic uplift (mm/yr) predicted for each site are shown in brackets. The blue area shows the continent to a
depth of 2000 m. The gray areas indicate floating ice sheets.

Geochemistry
Geophysics
Geosystems G3G3

bevis et al.: vertical crustal velocity in antarctica 10.1029/2009GC002642bevis et al.: vertical crustal velocity in antarctica 10.1029/2009GC002642

3 of 11



for the VREF zone is barely distinguishable from
zero. For example, the average vertical velocity at
201 of the 202 VREF sites is �0.12 ± 0.06 mm/yr
according to the global PGR model ICE5G (VM2).
The corresponding statistic for the global model
RF3S20 (b = 0.2) [Wang et al., 2008] is 0.03 ±
0.03 mm/yr. The mean vertical velocity of the
VREF stations in our GPS solution is 0.01 ±
0.04 mm/yr. Even though we realized our reference
frame in a purely geometrical way, and yet wish
to compare our geodetic velocities with the pre-
dictions of PGR models associated with physically
defined reference frames, the comparison of these
average rates implies that the vertical velocity
biases imposed on our solutions by our choice of

reference frame are of magnitude �0.1 mm/yr,
which we consider to be negligible.

[6] The vertical velocities of the WAGN stations
and many of the Antarctic CGPS stations in our
preferred reference frame are listed in Table 1,
along with their nominal 95% confidence intervals.
The vertical velocities obtained for the CGPS
stations in East Antarctica all lie within the range
�1.5 to +1.3 mm/yr, in reasonable agreement with
the predictions of most modern PGR models
(Figure 1). We did not include these stations in
the group VREF used to impose the vertical
reference frame, but had we done so none of our
vertical velocity solutions in Antarctica would have

Figure 2. (a) A map showing the sets VREF and HREF used to impose our reference frame. Also shown are the
stations of the WAGN network. (b) The vertical velocity distribution for the stations in set VREF.
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changed by more than 0.1 mm/yr. In this sense our
vertical reference frame is robust. It is gratifying, if
somewhat surprising, to note that if we utilized a
local (‘‘cratonic’’) reference frame ‘‘attached’’ to
East Antarctica, our vertical velocity estimates
would remain almost unchanged.

[7] The horizontal velocities observed at the
WAGN stations, HAAG, and MBL1 are every-
where small (their RMS value is just 1.6 mm/yr)
supporting previous suggestions that almost the
entire Antarctic continent constitutes part of a
single tectonic plate [Donnellan and Luyendyk,
2004; Dietrich et al., 2004]. We shall discuss these

modest horizontal movements elsewhere. We note
that all nearly collocated (‘‘A’’ and ‘‘B’’) stations
have no significant relative horizontal velocities,
implying that the rocks into which these monu-
ments were set are not locally unstable. The A and
B monuments are typically 5–15 m apart.

[8] Redundant determinations of vertical velocity
were made at sites W01–W05, and W07, and these
all agree well except for the pair at W02 (Pecora
Escarpment). The stations MBL1 and W12A are
nearly colocated, and only slightly discrepant. We
suspect that the velocity estimate at W02B was
biased downward because the second (and last)

Figure 3. The vertical velocity solutions (mm/yr) presently available for WAGN survey stations (filled green
circles) and two nearly collocated CGPS stations MCM4 and SCTB (red square). The open green circles indicate
WAGN stations that must be reoccupied before they can deliver a useful velocity estimate. The contours indicate the
model predictions shown in Figure 1. Predicted elastic uplift rates (mm/yr) are shown in brackets. Yellow triangles
indicate volcanoes. Other symbols are as in Figure 1.
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occupation of this station occurred much earlier in
the summer than did the first occupation, and so
the annual oscillation in station height driven by
seasonal snow and ice loads ‘‘leaked’’ into the
secular velocity estimate. This aliasing problem
can be significant when the station has been
occupied only twice, the total observational time
span is 4 years or less, and the phase shifts between

occupation dates are appreciable (�1 month). This
combination of factors has occurred at two addi-
tional stations (W09A and W012) though the
seasonal phase shifts there were considerably
smaller. If our aliasing hypothesis is correct, then
the velocity at W12A and W09A could be biased
by as much as +1.5 and �1.0 mm/yr, respectively.
We will get further insights into this process as

Table 1. Geodetic Solution for the WAGN Stations and Various CGPS Stations in Antarcticaa

Stnm Latitude Longitude Tspan Epochs vu su vel Station Name

East Antarctic Stations
DAV1 –68.58 77.97 11.5 2361 –1.4 0.2 –1.1 Davis
DAVR –68.58 77.97 5.0 623 –0.9 0.7 –1.1 Davis (same antenna as DAV1)
DUM1 –66.67 140.00 9.4 2515 –1.5 0.2 –0.6 Dumont d’Urville
MAW1 –67.60 62.87 12.2 2489 –0.8 0.2 –0.4 Mawson
SYOG –69.01 39.58 12.2 2638 0.6 0.2 0.3 Syowa
VESL –71.67 –2.84 9.4 1898 1.3 0.3 –0.5 Vesleskarvet
CAS1 –66.28 110.52 12.2 2489 0.5 0.2 –0.8 Casey Base

Antarctic Peninsula Stations and Frei Base
OHIG –63.32 –57.90 6.1 629 7.6 1.0 0.9 O’Higgins
OHI2 –63.32 –57.90 6.1 1600 7.0 0.7 0.9 O’Higgins
OHI3 –63.32 –57.90 5.1 1208 6.5 0.8 0.9 O’Higgins
PALM –64.78 –64.05 9.3 2563 4.8 0.3 4.1 Palmer Station
SPPT –64.29 –61.05 4.0 5 7.5 1.8 4.5 Spring Point (survey station)
FREI –62.19 –58.98 4.8 744 –2.9 0.7 0.6 Frei (not in Antarctic plate)

West Antarctica and the Transantarctic Mountains
MCM4 –77.84 166.67 12.2 2694 –2.1 0.4 –0.0 McMurdo CGPS
SCTB –77.85 166.76 3.3 1167 1.1 1.0 –0.0 Scott Base CGPS
W01A –87.42 –149.43 4.0 16 –4.3 0.8 0.0 Mount Howe
W01B –87.42 –149.44 4.0 18 –3.4 0.7 0.0 Mount Howe
W02A –85.61 –68.56 6.0 17 0.5 1.5 0.0 Pecora Escarpment
W02B –85.61 –68.56 3.9 7 –3.2 1.2 0.0 Pecora Escarpment
W03A –81.58 –28.40 3.9 7 –1.9 1.4 0.0 Whichaway Nunataks
W03B –81.58 –28.40 3.9 7 –1.1 1.2 0.0 Whichaway Nunataks
W04A –82.86 –53.20 3.0 13 1.6 1.8 0.0 Cordiner Peaks
W04B –82.86 –53.20 5.1 18 3.9 0.8 0.0 Cordiner Peaks
W05A –80.04 –80.56 5.1 54 4.0 1.0 –0.6 Wilson Nunataks
W05B –80.04 –80.56 3.0 32 3.9 1.8 –0.6 Wilson Nunataks
W06A –79.63 –91.28 3.0 10 –4.1 2.3 –0.4 Mount Johns
W07A –80.32 –81.43 5.1 50 5.6 1.4 –0.7 Patriot Hills
W07B –80.32 –81.54 5.0 18 5.7 1.5 –0.7 Patriot Hills
W08A –75.28 –72.18 5.0 23 4.5 1.5 –0.1 Mount Suggs aka Behrendt Mountains
W09A –82.68 –104.40 3.0 25 6.3 1.3 –0.2 Whitmore Mountains
W12A –78.03 –155.02 4.1 17 7.2 0.8 0.4 Mount Paterson
MBL1 –78.03 –155.02 7.1 39 4.9 1.0 0.4 Mount Paterson (JPL), near W12A
HAAG –77.04 –78.29 12.0 18 7.8 0.5 –0.9 Haag Nunatak (BAS), near W15

WAGN Sites Presently Without Velocity Solutions
W10 –74.55 –111.88 6.6 Bear Peninsula
W11 –74.78 –136.79 1.0 Cape Burks
W13 –83.13 159.51 –0.0 Moody Nunatak
W14 –77.52 –86.77 –0.8 Howard Nunataks
W15 –77.04 –78.29 –0.9 Haag Nunatak
W16 –73.11 –90.30 2.0 Lepley Nunatak
W17 –72.53 –97.56 0.7 Thurston Island
W18 –74.43 –102.48 2.1 Backer Islands

a
Listed are the station code, its latitude and longitude, the time span between the first and last station occupations, the number of measurement

epochs, the vertical velocity in mm/yr (positive upward), and its uncertainty (the half-width of the nominal 95% confidence level). Also listed is the
estimated rate of purely elastic rebound (vel) in mm/yr. Stnm, four-letter station code.
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more WAGN stations are converted to CPGS
stations. Because strong seasonal (elastic) signals
are often driven by local environmental load cycles
[e.g., Bevis et al., 2005], it is not practical to use
remote CGPS stations (i.e., the IGS stations) to
assess the potential impact of seasonal signal
aliasing at WAGN stations occupied only in survey
mode.

[9] The CGPS stations at Scott Base (SCTB) and
McMurdo Station (MCM4) are both located on the
volcanically active Ross Island. Although they are
only �2.4 km apart, their vertical velocities are
significantly different. We infer that MCM4, built
on a mound of basaltic gravel, which appears to be
engineering fill, is subject to local subsidence.
Since SCTB was constructed on bedrock, we prefer
this solution despite its shorter observational time
span.

[10] The vertical velocity solutions obtained within
the WAGN area (Figure 3) are rather surprising.
Four stations (W01, W02, W03 and W06) appear
to be subsiding in areas where nearly all PGR
models predict uplift or no appreciable movement,
and the uplift rates observed at W04, though
positive, are substantially lower than most model
predictions for this location. The same situation
occurs at CGPS station SCTB at Scott Base. In
contrast, two stations (W12/MBL1 and W09) are
uplifting at rates that substantially exceed nearly all
model predictions. No PGR model known to us
matches our geodetic results. For example, ICE-5G
(VM2) greatly overpredicts the uplift rate observed
at W04, and IJ05 (6A) greatly overpredicts the
uplift rate observed at stations W08 and HAAG.

[11] We present several velocity solutions for sta-
tions located in the northern Antarctic Peninsula,
including the CGPS station PALM at Palmer
Station, and several CGPS stations (OHIG, OHI2,
OHI3) at O’Higgins Base. We have obtained an
additional result for the survey station SPPT at
Spring Point, and for the CGPS station FREI that is
not part of the peninsula nor the Antarctic plate
[Dietrich et al., 2004; Taylor et al., 2008]. All PGR
models known to us underestimate the geodetic
uplift rates at O’Higgins, SPPT, and FREI, and
some of them also underestimate the uplift rate at
PALM (Figure 4).

3. Comparing the GPS Results
With PGR Model Predictions

[12] We have compared our initial vertical velocity
estimates with the predictions of four numerical
models for PGR: ICE-5G (VM2), IJ05 (6A),
RF3S20 (b = 0.2) and HUY09m [Sasgen et al.,
2007a]. The first two model predictions are
depicted in Figures 1, 3, and 4. We have computed
the differences between all four predictions and our
geodetic estimates for each WAGN station listed in
Table 1 (including all nearly colocated measure-
ments). We have computed the empirical cumula-
tive distribution functions (CDFs), for the predicted
minus observed (P-O) uplift rates for each of the
PGR models, and we have computed an ensemble
CDF by combining the (P-O) residuals for all four
models (Figure 5). The ensemble or composite
CDF curve has been color coded so as to indicate
the contributions of (1) the East Antarctic stations,
(2) the WAGN stations, (3) the northern peninsula
stations, and (4) station FREI, which lies just
outside the Antarctic plate. We see that all PGR
models tend to overpredict the rebound rates in the

Figure 4. Vertical velocity solutions (mm/yr) available
at CGPS stations (red squares) and the survey station
SPPT (green circle) in the northern Antarctic Peninsula,
together with the model predictions (contours) from
Figure 1. Note that three separate solutions are available
for Base O’Higgins. Predicted elastic uplift rates (mm/yr)
are shown in brackets. Other symbols are as in Figure 1.
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WAGN area, and underpredict them in the northern
peninsula (a much smaller area).

4. Elastic Rebound

[13] We now make the case that the discrepancy
between the measured uplift velocities and PGR
predictions cannot be accounted for by the Earth’s
instantaneous elastic response to contemporary
changes in ice mass, except, possibly, in parts of
the northern peninsula. Estimates of the elastic
response to modern changes in ice loading are
imprecise because near-field elastic responses are
sensitive to the details of shallow elastic structure
[Bevis et al., 2005], which are not well known, and,
even more importantly, because all published esti-
mates of recent ice mass rates of change involve
large uncertainties [e.g., Rignot et al., 2008; Helsen
et al., 2008; Wingham et al., 2006]. For example, a
recent and highly regarded study [Rignot et al.,
2008] divided Antarctica into 19 sectors, each
consisting of one or more drainage basins, and
estimated the annual rate of change of ice mass
( _M) in each sector, nominally for the year 2000. The
associated formal error estimates, s, for _M are
sufficiently large that for 14 of the 19 sectors j _Mj
� s, and of the remaining 5 sectors in only two

cases is j _Mj > 2 s. Nevertheless, we can estimate the
probable magnitude of elastic rebound rates and
assess their potential impact. While the net mass
rate _M per sector is of interest, it is also relevant to
consider the spatial intensity of this loading, i.e.,
each sector’s average value of ice mass change per
unit area. If we express this rate in terms of an
equivalent change in water depth, _D, then 3 sectors
have +8 < _D < +40 mm/yr, 10 sectors have �16 <
_D < 0mm/yr, 5 sectors have�190 < _D <�71mm/yr,
and one (Ferrigno-Abbot) has _D = �628 mm/yr,
though this last sector represents just 0.6% of
Antarctica’s total area. As a result, pronounced
elastic uplift rates are expected only over limited
parts of the continent, and these areas are all located
near the coast of West Antarctica (Amundsen Sea),
where we have no geodetic velocity solutions as
yet, or in the northern peninsula [Rignot et al.,
2008].

[14] We have computed estimates of the elastic
uplift rates using a loading grid, with a resolution
of 0.25�, based on an analysis [Helsen et al., 2008]
which attributes observed ice sheet elevation
changes in the period 1995–2003 to a combination
of ice mass changes and ice density changes. The
latter are due to changes in firn depth caused by
space-time variations in accumulation and temper-

Figure 5. The four gray curves are empirical CDFs for the predicted minus observed values for uplift rate for the
PGR models IJ05 (6A), ICE-5G (VM2), RF3S20 (b = 0.2), and HUY09m (see the top inset key). The colored curve
indicates the ensemble CDF for all four models, color coded according to the spatial location of the GPS stations (see
bottom inset key). All geodetic velocity solutions (Table 1) are represented, including the three separate solutions
available at O’Higgins Base and both the A and B solutions available at six of the WAGN stations.
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ature [Helsen et al., 2008]. We modified this
loading field in the northern peninsula by substituting
the mass rates estimated by Rignot et al. [2004].
Using this loading grid, designated H08+, the Earth’s
elastic response was computed using the spectral
method of Sasgen et al. [2007b]. For this study we
used a spherical harmonic expansion truncated at
degree and order 512, and we adopted the purely
radial structure of PREM [Dziewonski and Anderson,
1981] to represent Earth’s elastic structure.

[15] The predicted rates of elastic rebound are
indicated for each GPS station in Figures 1, 3, and
4. The elastic rebound rates predicted for the East
Antarctic stations fall in the range�1.1 to +0.3 mm/
yr. For the WAGN stations with geodetic velocity
estimates the predicted elastic rates fall between
extremes of �0.9 mm/yr at HAAG and +0.4 mm/
yr at station MBL1 (+0.4 mm/yr), though more than
half of the predictions fall in the range �0.17 to
+0.03 mm/yr. Clearly our elastic rebound predic-
tions cannot account for the several mm/yr bias
between the geodetic velocities and the PGR pre-
dictions for East Antarctica and the WAGN area
(Figure 5), even if we assume that average rebound
rates increased by a factor of two or three between
the period 1995–2003, for which our loading grid
applies, and for 2002–2005/7 when the observed
displacements accumulated. Elastic reboundmay be
a much more important component of vertical
crustal velocity in parts of the northern peninsula.
We predict elastic uplift rates of 4.1 mm/yr at PALM
and 4.5 mm/yr at SPPT, though only 0.9 mm/yr at
O’Higgins Base near the tip of the peninsula.

[16] It is difficult to assess how elastic rebound rates
have varied since 1995. Net ice mass loss in the
peninsula accelerated from�25 ± 45 Gt/yr in 1996,
to �28 ± 45 Gt/yr in 2000 and �60 ± 46 Gt/yr in
2006 [Rignot et al., 2008]. However, the individual
formal errors are so large that the implied rate of
acceleration (�3.6 ± 6.4 Gt/yr) is not significantly
different from zero. We note that our geodetic
measurements at O’Higgins Base imply no signifi-
cant increase in its vertical velocity, since the
estimate of 7.6 ± 1.0 mm/yr for OHIG was obtained
in 1996.3–2002.1, whereas the velocity estimates of
7.0 ± 0.7 mm/yr for OHI2 and 6.5 ± 0.8 mm/yr for
OHI3 represent the time periods 2002.1–2008.3
and 2003.2–2008.3, respectively.

5. Discussion

[17] The most uncertain element in most geodetic
solutions is the formal estimate of its uncertainty.

Could our measurement errors at the WAGN sta-
tions be larger than our formal error estimates
(Table 1) by say �1 mm/yr, and perhaps by
�2 mm/yr at a small number of stations? Certainly
that is possible. But it is extremely unlikely that
errors in our geodetic solutions can account for
systematic biases with absolute magnitudes of
>4 mm/yr in the northern peninsula and >7 mm/yr
in the WAGN area (Figure 5). We have been using
survey GPS to measure the vertical crustal velocity
field at about two dozen stations in southern
Patagonia for many years, and we have noticed that
our latest velocity solution, which is based on total
observational time spans of 6–12 years at most
stations, does not differ by more than�2 mm/yr from
our first vertical velocity solution, which was obtained
using time spans of 4–5 years at most stations.

[18] We conclude that all four PGR models con-
sidered here tend to underpredict geodetic uplift
rates in the northern peninsula, and overpredict
them in the WAGN area. Elastic rebound signals
can account for part of the discrepancy in the
peninsula, but cannot explain the PGR prediction
bias detected elsewhere. Significant elastic signals
are expected for stations W10, W11, and W16–
W18, which we are still waiting to reobserve. Since
the PGR models are positively biased outside of
the peninsula, the suggestion is that most recent
GRACE-based studies of ice mass balance in
Antarctica have overestimated recent rates of ice
loss. This systematic bias would be amplified in
studies that used a spatial averaging filter that
deemphasizes the northern peninsula.

[19] We can estimate the potential magnitude of the
ice mass biases by noting that if the average
velocity prediction bias of �5 mm/yr evident in
Figure 5 is developed over �2 � 106 km2, an area
somewhat smaller than that of West Antarctica, this
would cause an apparent but spurious ice loss of
�33 Gt yr�1, which is a significant fraction of all
published ice mass rates derived from GRACE
[Velicogna and Wahr, 2006; Chen et al., 2006;
Ramillien et al., 2006; Sasgen et al., 2007a].
However, it is not possible to arrive at an accurate
numerical estimate of the impact of our geodetic
measurements on GRACE ice mass change solu-
tions without finding a reliable means to interpolate
between our point measurements of vertical crustal
velocity. Clearly, the most reasonable basis for
doing this is to assimilate our geodetic results into
the leading classes of PGR models, and allow these
sophisticated models to perform the interpolation
based on their model physics.
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[20] As POLENET fieldwork proceeds our geo-
detic solutions will improve, and become more
numerous. Given continuous time series at most
of these stations, we will obtain deeper insights
into elastic loading by observing the bedrock
response to seasonal loading cycles. We expect
that the substantial differences between Antarctica
ice mass rate estimates already derived from
GRACE observations [Velicogna and Wahr,
2006; Chen et al., 2006; Ramillien et al., 2006;
Sasgen et al., 2007a] will steadily diminish as
these analyses are repeated using later generations
of PGR models that are better constrained by
direct crustal velocity measurements.

[21] At present, inadequate knowledge of the PGR
fields in Antarctica limits our ability to gauge
linear (in time) trends in ice mass using GRACE.
However, any sudden increase in the rate of ice
loss will be resolved unambiguously by GRACE
since the mass rates associated with PGR do not
change significantly over several years. Rapidly
accelerating changes in ice mass can also be
detected, completely independently of GRACE,
by growing networks of GPS stations. In effect,
Earth’s instantaneous elastic response to surface
loading changes will allow us to ‘‘weigh’’ the ice
sheets using GPS [Hager, 1991; Khan et al., 2007].
While observed vertical velocities are a mixture of
PGR and the elastic response to modern load
changes, any sudden increase in vertical crustal
velocity will unambiguously reveal an increase in
the rate of ice loss.

[22] Higher than expected rates of PGR in the
peninsula, and lower than expected rates in the
WAGN area, can be explained, in part, by imper-
fections in our ice history models [e.g., Bentley,
2009]. But we suspect that the influence that neo-
tectonic setting has on isostatic response times,
already demonstrated in Patagonia [Ivins and
James, 2004], is also a key factor in Antarctica.
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