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If X is a continuous random variable, then

the probability density function, pdf, of X,

is a function f(x) such that for two numbers, a and b with 
a≤b

€ 

P a ≤ x ≤ b( ) = f
a

b

∫ x( )dx

That is, the probability that X takes on a value in the 
interval [a, b] is the area under the density function from 

a to b.
http://www.weibull.com/LifeDataWeb/the_probability_density_and_cumulative_distribution_functions.htm
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The probability density function for the Gaussian 
distribution is defined as:

From G. Mattioli

€ 

PG x,µ,σ( ) =
1

σ 2π
exp −

1
2
x − µ
σ
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For the Gaussian PDF, the probability for the random 
variable x to be found  between µ±zσ, 

Where z is the dimensionless range z = |x -µ|/σ is:

From G. Mattioli€ 

AG x,µ,σ( ) = PG
µ−zσ

µ +zσ

∫ x,µ,σ( )dx =
1
2π

exp −
1
2
x 2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
dx

−z

z

∫

AG z = ∞( ) =1
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The cumulative distribution function, cdf,

is a function F(x) of a random variable, X, and

is defined for a number x by:

€ 

F x( ) = P X ≤ x( ) = f
0,∞

x

∫ s( )ds

That is, for a given value x, F(x) is the probability that 
the observed value of X will be at most x. (note lower limit 

shows domain of s, integral goes from 0 to x<∞)

http://www.weibull.com/LifeDataWeb/the_probability_density_and_cumulative_distribution_functions.htm



Relationship between PDF and CDF

Density vs. Distribution Functions for Gaussian

-> integral ->

<- derivative <-
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Expected value or mean of sum of two random variables 
is sum of the means.

known as additive law of expectation. 

€ 

E x + y( ) = E x( ) + E y( )

Multiple random variables
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€ 

σxy
2 = COV x,y( ) =

1
n −1( )

xi − E x( )( ) yi − E y( )( )
i=1

n

∑

€ 

σxy
2 = COV x,y( ) = pxyi xi − E x( )( ) yi − E y( )( )

i=1

n

∑

covariance

(variance is covariance of variable with itself)

(more general with) individual probabilities
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€ 

δxi = xi − x                    δyi = yi − y 

C =
σ x
2 σ xy

2

σ xy
2 σ y

2
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⎠ 
⎟ =

1
n −1( )

δxi
2
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n
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n

∑
1

n −1( )
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n

∑ 1
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2
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Covariance matrix
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Covariance matrix defines error ellipse.

Eigenvalues are squares of semimajor and semiminor 
axes (σ1 and σ2)

Eigenvectors give orientation of error ellipse

(or given σx and σy, correlation gives “fatness” and 
“angle”)
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Distance Root Mean Square (DRMS, 2-D extension of 
RMS)

  

€ 

RMS =
1
n

xi
2

i=1

n

∑             ⇒

DRMS = σx
 2 +σy

 2( )
1
2

For a scalar random variable or measurement with a 
Normal (Gaussian) distribution,

the probability of being within the 1-σ ellipse about the 
mean is 68.3%
Etc for 3-D
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common practice to use the reciprocal of the variance as 
the weight 

Use of variance, covariance – in Weighted Least Squares
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The variance of the sum of two random variables is equal 
to the sum of each of their variances only when the 

random variables are independent

(The covariance of two independent random variables is 
zero,  cov(x,y)=0). 

variance of the sum of two random variables

http://www.kaspercpa.com/statisticalreview.htm



14http://www.kaspercpa.com/statisticalreview.htm

Multiplying a random variable by a constant increases 
the variance by the square of the constant. 

  

€ 

σcx
 2 = E cx( ) = c 2E x( )
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Correlation

The more tightly the points are clustered together the 
higher the correlation between the two variables and the 

higher the ability to predict one variable from another 

Ender, http://www.gseis.ucla.edu/courses/ed230bc1/notes1/var1.html

y=mx+b

y=?(x)
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Correlation coefficients are between -1 and +1, 

+ and - 1 represent perfect correlations, 

and zero representing no relationship, between the 
variables. 

Ender, http://www.gseis.ucla.edu/courses/ed230bc1/notes1/var1.html

y=mx+b

y=?(x)
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Correlations are interpreted by squaring the value of the 
correlation coefficient.

The squared value represents the proportion of variance 
of one variable that is shared with the other variable,

in other words, the proportion of the variance of one 
variable that can be predicted from the other variable. 

Ender, http://www.gseis.ucla.edu/courses/ed230bc1/notes1/var1.html



18

Sources of misleading correlation

(and problems with least squares inversion)

outliers

Bimodal 
distribution

No 
relation
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Sources of misleading correlation

(and problems with least squares inversion)

Restriction of range

Combining 
groups

curvelinearity
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rule of thumb for interpreting correlation coefficients: 

Corr  Interpretation 

0 to .1  trivial 
.1 to .3  small 

.3 to .5  moderate 
.5 to .7  large 

.7 to .9  very large

Ender, http://www.gseis.ucla.edu/courses/ed230bc1/notes1/var1.html
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Correlations express the inter-dependence between 
variables.

For two variables x and y in a linear relationship, the 
correlation between them is defined as 

€ 

χxy =
σ xy

σ xσ y

http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap7/725.htm
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High correlation does not mean that the variations of 
one are caused by the variations of the others, although 

it may be the case.

two types of correlation

In many cases, external influences may be affecting both 
variables in a similar fashion.

physical correlation and mathematical correlation

http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap7/725.htm
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Physical correlation refers to the correlations between 
the actual field observations.

It arises from the nature of the observations as well as 
their method of collection.

If different observations or sets of observation are 
affected by common external influences, they are said to 

be physically correlated.

Hence all observations made at the same time at a site 
may be considered physically correlated because similar 

atmospheric conditions and clock errors influence the 
measurements. 
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Mathematical correlation is related to the parameters in 
the mathematical model.

It can therefore be partitioned into two further classes 
which correspond to the two components of the 

mathematical adjustment model:

Functional correlation

Stochastic correlation
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Functional Correlation:

The physical correlations can be taken into account by 
introducing appropriate terms into the functional model 

of the observations.

That is, functionally correlated quantities share the same 
parameter in the observation model.

An example is the clock error parameter in the one-way 
GPS observation model, used to account for the 

physical correlation introduced into the measurements 
by the receiver clock and/or satellite clock errors.
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Stochastic Correlation:

Stochastic correlation (or statistical correlation) occurs 
between observations when non-zero off-diagonal 

elements are present in the variance-covariance (VCV) 
matrix of the observations.

Also appears when functions of the observations are 
considered (eg. differencing), due to the

Law of Propagation of Variances.

However, even if the VCV matrix of the observations is 
diagonal (no stochastic correlation), the VCV matrix of 

the resultant LS estimates of the parameters will 
generally be full matrices, and therefore exhibit 

stochastic correlation. 
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Covariance and Cofactor matrix in GPS

If observations had no errors and the model was perfect 
then the estimations from

  

€ 

ˆ x = AT A( )−1
AT
 
b 

Would be perfect



28

Errors, ν, in the original observations b will map into 
errors νx in the estimates of x and this mapping will take 

the same form as the estimation

  

€ 

νx = AT A( )−1AT  ν 

  

€ 

ˆ x +νx( ) = AT A( )−1
AT
 
b +  ν ( )



29

If we have an expected (a priori) value for the error in the 
data, σ, we can compute the expected error in the 

parameters

Consider the covariance matrix

and for this discussion suppose that the observations 
are uncorrelated (covariance matrix is therefore 

diagonal)

€ 

Cii = E ν i
2( ) =σ i

2

C = E ννT( )
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€ 

Cii =σ  2I

Assume further that we can characterize the error in the 
observations by a single number, σ.

  

€ 

Cx = E νxνx
T( ) = E AT A( )−1AT  ν ( ) AT A( )−1AT  ν ( )

T⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Cx = E AT A( )−1AT  ν νT A AT A( )−1( )
Cx = AT A( )−1AT E  ν νT( )A AT A( )−1

Cx = AT A( )−1ATσ 2IA AT A( )−1

Cx =σ 2 AT A( )−1 AT A( ) AT A( )−1

Cx =σ 2 AT A( )−1

then
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€ 

Cx =σ  2 AT A( )−1

 
ν x = AT A( )−1

AT  ν 

ˆ x = AT A( )−1
AT
 
b 

Expected covariance is σ 2 (a number) times cofactor 
matrix, same form as

Covariance or cofactor matrix

€ 

AT A( )−1
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Interpretation of covariance

  

€ 

Cx =σ  2 AT A( )−1

Variance of measurements

We saw before that A is 
dependent on the 

“direction” from antenna to 
satellite – so it is a function 

of the geometry

Measurement errors may 
be independent (our 
assumption – why we 

could factor out constant 
σ 2 )

But total effect, after Least Squares, can be non-
diagonal.
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€ 

AT A( )−1

Since A is function of geometry only, the cofactor matrix 
is also a function of geometry only.

Can use cofactor matrix to quantify the relative strength 
of the geometry.

Also relates measurement errors to expected errors in 
position estimations
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In the old days,

before the full constellation of satellites was flying,

one had to plan – design – the GPS surveying sessions 
based on the (changing) geometry.

A is therefore called the “design” matrix

Don’t have to worry about this anymore

(most of the time).
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Look at full covariance matrix

  

€ 

            Cx =σ  2 AT A( )−1

Cx =σ  2

σx
 2 σxy σxz σxτ

σyx σy
 2 σyz σyτ

σzx σzy σz
 2  σzτ

στx στy στz στ
 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

                    σij =σ ji

Off diagonal elements indicate degree of correlation 
between parameters.
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Correlation coefficient

€ 

ρij =
σ ij

σ i
2σ j

2

Depends only on cofactor matrix

Independent of observation variance (the σ 2 ’s cancel 
out)

+1 perfect correlation – what does it mean – the two 
parameters behave practically identically (and not 

independent?!).

0 – no correlation, independent

-1 perfect anti-correlation – practically opposites (and 
not independent)
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So far all well and good –

but Cartesian coordinates are not the most useful.

We usually need estimates of horizontal and vertical 
positions on earth (ellipsoid?).

We also need error estimates on the position.

Since the errors are a function of the geometry only, one 
might expect that the vertical errors are larger than the 

horizontal errors.
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How do we find the covariance / cofactor matrices in the 
local (north, east, up) coordinate system?

Have to transform the matrix

from its representation in one coordinate system

to its representation in another

using the rules of error propagation.
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First how do we transform a small relative vector in 

Cartesian coordinates (u,v,w) 

to local topocentric coordinates (n,e,u)?

    

€ 

                            Δ 
 
L = GΔ 

 
X 

Δ n
Δ e
Δ u

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

−sinϕcosλ −sinϕsinλ cosϕ
−sinλ cosλ 0

cosϕcosλ cosϕsinλ sinϕ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 
Δ x
Δ y
Δ z

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Where φ and λ are the lat and long of the location 
(usually on the surface of the earth) respectively
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Errors (small magnitude vectors) transform the same way

    

€ 

 
ν L =G  ν x

Why?

  

€ 

Δ
 
L = GΔ

 
X 

A(Δ
 
X +  ν x ) = GΔ

 
X + G  ν x = Δ

 
L + G  ν x = Δ

 
L +  ν L

linearity
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Errors (small magnitude vectors) transform the same way

    

€ 

 
ν L =G  ν x

Now – how does the covariance

  

€ 

C = E  ν 
 
ν T( )

Transform?

Plug in – get

“law of propagation of errors”
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€ 

CL = E  ν L
 
ν L
T( )

CL = E G  ν x G
 
ν x( )T( )

CL = E G  ν x
 
ν x
TGT( )

CL =GE  ν x
 
ν x
T( )GT

CL =GCxG
T

law of propagation of errors

(does this look familiar?)
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€ 

CL = E  ν L
 
ν L
T( )

CL = E G  ν x G
 
ν x( )T( )

CL = E G  ν x
 
ν x
TGT( )

CL =GE  ν x
 
ν x
T( )GT

CL =GCxG
T

law of propagation of errors

This is a general result for affine transformations 
(multiplication of a column vector by any rectangular 

matrix)

(does this look familiar?)

(transforming tensors!!)
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An affine transformation is any transformation that 
preserves 

collinearity
(i.e., all points lying on a line initially still lie on a line after 

transformation)

and ratios of distances
(e.g., the midpoint of a line segment remains the midpoint 

after transformation). 

http://mathworld.wolfram.com/AffineTransformation.html



45http://mathworld.wolfram.com/AffineTransformation.html

Geometric contraction, expansion, dilation, reflection, 
rotation, shear, similarity transformations, spiral 

similarities, and translation

are all affine transformations, 
as are their combinations.

In general, an affine transformation is a composition of

rotations, translations, dilations, and shears.

While an affine transformation preserves proportions on 
lines, it does not necessarily preserve angles or lengths. 
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Look at full covariance matrix

(actually only the spatial part)

  

€ 

       Cx =σ  2 AT A( )−1

CL =σ  2

σn
 2 σne σnh

σen σe
 2 σeh

σhn σhe σh
 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Can use this to plot error ellipses on a map (horizontal 
plane).
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Error estimators –

Remember the expression for the RMS in 2-D from 
before

  

€ 

DRMS = σx
 2 +σy

 2( )
1
2

We can now apply this to the covariance matrix
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Error estimates called “dilution of Precision” – DOP – 
are defined in terms of the diagonal elements of the 

covariance matrix

  

€ 

GDOP = σn
 2 +σe

 2 +σh
 2 +στ

 2( )
1
2

PDOP = σn
 2 +σe

 2 +σh
 2( )

1
2

HDOP = σn
 2 +σe

 2( )
1
2

VDOP =σh

TDOP =στ

G – geometric, P – position, H – horizontal, V – vertical,

T - time
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The DOPs map the errors of the observations
(represented/quantified statistically by the 

standard deviations)

Into the parameter estimate errors

  

€ 

σ GDOP =σ σn
 2 +σe

 2 +σh
 2 +στ

 2( )
1
2

σ PDOP =σ σn
 2 +σe

 2 +σh
 2( )

1
2

σ HDOP =σ σn
 2 +σe

 2( )
1
2

σ VDOP =σ σh

σ TDOP =σ στ
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So for a σ of 1 m and an χDOP of 5, for example,

errors in the position χ	


(where χ is one of G, P, H, V, T)

Would be 5σ=5 m

“Good” geometry gives ‘small’ DOP

“Bad” geometry gives ‘large’ DOP

(it is relative, but PDOP>5 is considered poor)



52www.eng.auburn.edu/department/an/Teaching/BSEN_6220/GPS/Lecture%20Notes/Carrier_Phase_GPS.pdf
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In 2-D

There is a 40% chance of being inside the 1-σ error 
ellipse (compared to 68% in 1-D)

Normally show 95% confidence ellipses, is 2.54 s in 2-D

(is only 2σ in 1-D)
Can extend to 3-D
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Another method of estimating location

Phase comparison/Interferometer

- VLBI

- GPS-Carrier Phase Observable
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VLBI 

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

Uses techniques/physics similar to GPS but with natural 
sources

(in same frequency band and suffers from similar errors)
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Correlate signal at two (or more) sites to find time shift

Need more than 1 receiver.

Differential (difference) method

(similar to PRN correlation with GPS codes

or

Aligning two seismograms that are almost same but have 
time shift)
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Assume you are receiving a plane wave from a distant 
quasar 

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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Two radio antennas observe signal from quasar 
simultaneously. 

The signal arrives at the two antennae at different times
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The distance or baseline length b between the two 
antennas can be defined as: 

b * cos (θ) = c * ΔT 
where θ is the angle between the baseline and the quasar 

θ	


http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

ΔT
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Baseline length

Massachusetts to Germany

What is this variation?
Seasonal variation, geophysical phenomena, modeling 

problems?
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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Short period (hours/days) variations in LOD

Mostly from ocean tides and currents

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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Correlation of Atmospheric Angular Momentum with 
(longer period – weeks/months) variations in LOD.

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

(longer term – months/years/…) changes in LOD and 
EOP

Exchange angular momentum between large earth 
structures (eg. core!) and Moon, Sun.



64

Plate velocities

http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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VLBI

Not the most portable or inexpensive system –

But best definition of inertial reference frame external to 
earth.

Use to measure changes in LOD and EOP due to 
gravitational forces and redistribution of angular 

momentum.
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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vertical cut - spectral decomposition LOD at that 
instant.

horizontal cut - how strength of component varies with 
time.

Combining both – 2-D view dynamic nature of LOD.
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html
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dominant features 

monthly and half-monthly lunar tides, the ~800-day 
quasi-biennial oscillation, and the ~1600-day El Nino 

(dark red structure in 1983). Yearly and half-yearly 
seasonal excitations caused by meteorological variations 

have been removed for clarity.
http://www.colorado.edu/engineering/ASEN/asen5090/asen5090.html

dark red – 
peaks

dark blue -  
troughs.
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Factors affecting EOP

lambeck-verheijen
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Great book –

Longitude, by Dava Sobel,

describes one of the first great scientific competitions--
to provide ship captains with their position at sea.

This was after the loss of two thousand men in 1707, 
when British warships ran aground entering the English 

Channel.

The competition was between the Astronomers Royal, 
using distance to the moon and its angle with the stars, 

and a man named John Harrison, who made clocks. 
Strang, http://www.siam.org/siamnews/general/gps.htm
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The accuracy demanded in the 18th century was a 
modest 1/2 degree in longitude.

The earth rotates that much in two minutes.

For a six-week voyage this allows a clock error of three 
seconds per day.

Newton recommended the moon, and a German named 
Mayer won 3000 English pounds for his lunar tables. 
Even Euler got 300 for providing the right equations.

But lunar angles had to be measured, on a rolling ship at 
sea, within 1.5 minutes of arc. 

Strang, http://www.siam.org/siamnews/general/gps.htm
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The big prize was practically in sight, when Harrison 
came from nowhere and built clocks that could do better.

(You can see the clocks at Greenwich

 Competing in the long trip to Jamaica, Harrison’s clock 
lost only five seconds and eventually won the prize.

Strang, http://www.siam.org/siamnews/general/gps.htm
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The modern version of this same competition was 
between VLBI and GPS.

Very Long Baseline Interferometry uses “God’s 
satellites,” the distant quasars.

The clock at the receiver has to be very accurate and 
expensive.

The equipment can be moved on a flatbed, but it is 
certainly not handheld.

Strang, http://www.siam.org/siamnews/general/gps.htm
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There are valuable applications of VLBI, but it is GPS 
that will appear everywhere.

GPS is perhaps the second most important military 
contribution to civilian science, after the Internet.

The key is the atomic clock in the satellite, designed by 
university physicists to confirm Einstein’s prediction of 

the gravitational red shift. 

Strang, http://www.siam.org/siamnews/general/gps.htm
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Using pseudo-range, the receiver solves a nonlinear 
problem in geometry.

What it knows is the difference dij between its distances to 
satellite i and to satellite j.

Strang, http://www.siam.org/siamnews/general/gps.htm
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In a plane (2-D), when we know the difference d12 
between the distances to two points, the receiver is 

located on a hyperbola.

In space (3-D) this becomes a hyperboloid.

Strang, http://www.siam.org/siamnews/general/gps.htm GPS Concepts -- 3DSoftware.com_files
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Then the receiver lies at the intersection of three 
hyperboloids, determined by d12, d13, and d14.

Two hyperboloids are likely to intersect in a simple closed 
curve.

The third probably cuts that curve at two points. But 
again, one point is near the earth and the other is far 

away. 

Strang, http://www.siam.org/siamnews/general/gps.htm



77http://www.space.com/scienceastronomy/astronomy/interferometry_101.html

Interferometer

Based on interference of waves



78http://www.space.com/scienceastronomy/astronomy/interferometry_101.html

How to make principle of interference useful?

i.e. how does one get relative phase difference to vary, 
so the interference varies?



79http://badger.physics.wisc.edu/lab/manual2/node17.html

As move across screen get phase difference from 
different lengths of paths through slits

Makes “fringes”
As phase goes through change of 2π	


Interference from single slit



80http://badger.physics.wisc.edu/lab/manual2/node17.html

Similar for multi-slits, but now interference is between the 
waves leaving each slit

Light going through slits has to be “coherent”
(does not work with “white” light)

Interference from double (multiple) slit
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The phase change comes from

the change in geometric length

between the two “rays”

(change in length of 1/2 wavelength causes π change in 
phase – and destructive interference)



82http://www.physics.nmt.edu/~raymond/classes/ph13xbook/node13.html

Michelson Interferometer
Make two paths from same source

(for coherence, can’t do with white light)

Can change geometric path length with movable mirror.
Get interference fringes when recombine.


