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(incomplete)

look at

Applications of GPS

in Earth Sciences

carpincho
or 

capybara
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Use the Global Positioning System (GPS) to 
determine accurate positions (order mm) of “high 
stability” geodetic benchmarks over time to determine 
changes in relative positions (order mm/year).
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Principal tenet/Central assumption of

plate tectonics:

plate (interiors) are rigid
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- Observation –

Plates move with respect to one another

- Secondary tenet/assumption –

Interaction limited to (narrow) plate boundary zones

where deformation is allowed
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Plate motions ---  NUVEL vs GPS

NUVEL – geologic

Spreading rate and orientation (Myr ave)
Transform fault orientation (no rate info, Myr ave)

Earthquake Focal mechanism (problem with slip 
partitioning, 30 yr ave - actual)

GPS – non-geologic

Measures relative movement (20 yr ave – actual)
Can’t test (yet) plate stability assumption
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THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions
Richard G. Gordon
Annual Review of Earth and Planetary Sciences 
Vol. 26: 615-642 (Volume publication date May 1998)  
(doi:10.1146/annurev.earth.26.1.615) 

Strain rates in

stable plate interiors -

bounded between

10-12 -10-11 year and 10-10 year. 



8Unpublished 2003 compilation provided by R.D. Müller 
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http://owlnet.rice.edu/~esci101, looks like NUVEL

NUVEL picture

Relative velocities across boundaries



10

NUVEL picture

A number of plates missing (e.g. Scotia) because don’t 
have spreading boundaries
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First big contribution of space based geodesy

Motion of plates

(note –

plates 

- have to be “pre-defined”

– are not part of how velocities of sites are computed,

- selected based on “rigidity” at level of GPS precision

Also VLBI, SLR, DORIS – space based, not limited to 
GPS - results)
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GPS picture – now motion with respect to some 
“absolute reference frame (ITRF), does not know about 

“plates”
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two distinct reference systems:

1.  space-fixed (quasi) inertial system
(Conventional Inertial System CIS)
(Astronomy, VLBI in this system)

ITRF

2. Earth-fixed terrestrial system
(Conventional Terrestrial System CTS)

-----------------
Both systems use center of earth and earth rotation in 

definition and realization



14Velocities of IGS global tracking GPS sites in ITRF.



15Small “circles” for European and N. American poles. 



16Velocities are tangent to small circles (look like windshield wiper streaks).
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Gridded view of plate velocities in ITRF
(approximates NUVEL, but does not “look like” NUVEL because NUVEL shows relative motions)
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Rotation of 
N. America 

about Euler 
pole.
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€ 

 
V =
 
R ×
 
X 

Solving for Euler poles

Forward problem

Given rotation pole, R, for movement of spherical shell 
on surface of sphere

We can find the velocity of a point, X, on that shell from

(review)
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€ 

 
V =Ω

 
X 

  

€ 

 
V =
 
R ×
 
X 

€ 

Ω =

0 −rz ry
rz 0 −rx
−ry rx 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

We can write this in matrix form

(in Cartesian coordinates)

as

Where Ω is the rotation matrix

(note – this is for infinitesimal, not finite rotations)
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So – now we solve this

Hopefully with more data than is absolutely necessary 
using Least Squares

  

€ 

 
V =Ω

 
X 

(this is the remark you find in most papers –

Now we solve this by Least Squares)
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€ 

 
V =Ω

 
X 

But

known known
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€ 

 
V =Ω

 
X 

And

we want to find

This is how we would set the problem up

if we know V and Ω and wanted to find X
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Vz
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⎟ 
⎟ 
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Y
Z

⎛ 
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⎜ 

⎞ 

⎠ 
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⎟ 
⎟ 

€ 

Vx = −rzY + ryZ
Vy = rzX − rxZ
VZ = −ryX + rxY

So we have to recast the expression to put the knowns 
and unknowns into the correct functional relationship.

Start by multiplying it out
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€ 

Vx = −rzY + ryZ
Vy = rzX − rxZ
VZ = −ryX + rxY

€ 

Vx

Vy

Vz
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⎜ 
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⎞ 
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⎟ 
⎟ 
⎟ 

Now rearrange into the form

  

€ 

 
b = A x 

Where b and A are known

obtaining the following
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€ 

 
V = X

 
R 

So now we have a form that expresses the relationship 
between the two vectors

V and R

With the “funny” matrix X.
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We have

3 equations and
3 unknowns

So we should be able to solve this
(unfortunately not!)

€ 
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Vz
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V = X

 
R 
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You can see this two ways

1 - The matrix is singular (the determinant is zero)

2 - Geometrically, the velocity vector is tangent to a small 
circle about the rotation pole –

There are an infinite number of small circles (defined by 
a rotation pole) to which a single vector is tangent

€ 
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Vz
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⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

rx
ry
rz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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€ 

 
V = X

 
R 
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So there are an infinite number of solutions to this 
expression.

Can we fix this by adding a second data point?
(another X , where V is known)

€ 
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Vz
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R 
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Yes – or we would not have asked!
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€ 

 
V = X

 
R 
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⎜ 
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⎟ 

Following the lead from before in terms of the 
relationship between V and R we can write

Where V is now the “funny” thing on the left.
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Geometrically

Given two points we now have

Two tangents to the same small circle

And

(assuming they are not incompatible – i.e contradictory 
resulting in no solution.)

we can find a single (actually there is a 180° ambiguity)

Euler pole
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For n data points we obtain

Which we can solve by Least Squares
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b
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        y =Gm

We actually saw this earlier when we developed the Least 
Squares method and wrote y=mx+b as

Where
y is the data vector (known)

m is the model vector (unknown parameters, what we 
want)

G is the “model” (known)
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Pretend leftmost thing is “regular” vector and solve same 
way as linear least squares
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 m = GTG( )−1GT
 
d 

  

€ 

 y = G  m 

  

€ 

 
R = XT X( )−1XT  V 
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Example: Nazca-South America Euler pole

Data plotted in South America reference frame
(points on South America plate have zero – or near zero 

– velocities.)
Kendrick et al, 2003
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Example: Nazca-South America Euler pole (relative)

Also plotted in
Oblique Mercator projection

about Nazca-South America Euler pole
Kendrick et al, 2003



39Kendrick et al, 2003

Question – is Easter Island on “stable” Nazca Plate

We think not.

Only 4 points total on Nazca 
Plate (no other islands!)

Galapagos and Easter Island 
part of IGS (continuous)

FLIX and RBSN campaign



40

Complications to simple model in plate interiors

Horizontal deformations associated with post glacial 
rebound

(problem for N. America and Eurasia)

  

€ 

 
V =Ω

 
X +γ

 
V pgr
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Other effects

Other causes horizontal movement/deformation 
(tectonics, changes in EOP?)

Most vertical movements – tidal, atmospheric, etc. , as in 
case of PGR - have some “cross talk” to horizontal

    

€ 

 
V =Ω

 
X +

 
V i

geologic effects

i
∑
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Predicted horizontal velocities in northern Eurasia from 
PGR

(No velocity scale! Largest are order 3 mm/yr away from center of ice load, figure does not seem to agree 

with discussion in paper)
http://www.epncb.oma.be/papers/euref02/platerotation.pdf International Association of Geodesy / Section I – Positioning; Subcommission for Europe (EUREF) , 
Publication No. 12 , Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Ponta Delgada 5-8 June 2002. 
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Results for Eurasia

Site velocities plotted in oblique Mercator projection

(should be horizontal)

http://www.epncb.oma.be/papers/euref02/platerotation.pdf International Association of Geodesy / Section I – Positioning; Subcommission for Europe (EUREF) , 
Publication No. 12 , Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Ponta Delgada 5-8 June 2002. 
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For North America

Stable North America Reference Frame (SNARF)

Over 300 continuous GPS sites available in Central and 
Eastern US (and N. America)

(unfortunately most are garbage)



45Gan and Prescott, GRL, 2001

Analysis of CORS plus other continuous GPS data for 
intraplate deformation



46Gan and Prescott, GRL, 2001

Contoured (interpolated) velocity field
(ready for tectonic interpretation!)
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•  What are PBO reference frame needs?
•  How can we meet those needs?

PBO Needs
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NUVEL-1A & GPS differences

Rotation rates of

- India, Arabian and Nubian plates wrt Eurasia are

30, 13 and 50% slower

- Nazca-South America 17% slower

- Caribbean-North America 76% faster

than NUVEL-1A
Kreemer, 2003
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GPS picture – Scotia Plate missing (also missing from 
NUVEL-1, “included, but not constrained in NUVEL-1A)
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More things to do with GPS

Deformation in plate boundary zones
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( other main assumption of plate tectonics) 

Narrowness of plate boundaries

contradicted by many observations,

in both continents and oceans.

Some diffuse plate boundaries exceed dimensions of 
1000 km on a side.

Diffuse plate boundaries cover  15% of Earth's surface.

THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions
Richard G. Gordon
Annual Review of Earth and Planetary Sciences 
Vol. 26: 615-642 (Volume publication date May 1998)  
(doi:10.1146/annurev.earth.26.1.615) 
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Diffuse plate boundaries

Maximum speed (relative) across diffuse plate 
boundaries 

2 to  15 mm/year

Strain rates in diffuse plate boundaries 
as high as  10-8 year

25 times higher than upper bound on strain rates of 
stable plate interiors

600 times lower than lowest strain rates across typical 
narrow plate boundaries. 

THE PLATE TECTONIC APPROXIMATION: Plate Nonrigidity, Diffuse Plate Boundaries, and Global Plate Reconstructions
Richard G. Gordon
Annual Review of Earth and Planetary Sciences, Vol. 26: 615-642 (Volume publication date May 1998) (doi:10.1146/annurev.earth.26.1.615) 
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“Color topographic” plot of second invariant of strain 
rate tensor. Quantified version of previous figure.

Shows how fast the deforming regions are straining. 
(Red fastest, blue slowest)
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56€ 

ui = ti +
∂ui
∂X j

X j = ti +DijX j = ti + Eij +Wij( )X j

Eij =
1
2
Dij +Dji( )

Wij =
1
2
Dij −Dji( )

Determining

Strain or strain rate from

Displacement or velocity field

Strain (symmetric) and 
Rotation (anti-symmetris) 

tensors

Deformation tensor
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⎜ 

⎞ 

⎠ 
⎟ 
x
y
⎛ 

⎝ 
⎜ 
⎞ 
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Write it out

Again – this is “wrong way around”

We know
u and x

and want
t and dij.

Deformation tensor not symmetric, have to keep dxy and 
dyx.
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So rearrange it

Now we have 6 unknowns and 2 equations
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So we need at least 3 data points
That will give us 6 data

And again – the more the merrier – do least squares.
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For strain rate

Take time derivative of all terms.

But be careful

Strain rate tensor

is NOT

time derivative of strain tensor.
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Spatial (Eulerian) and Material (Lagrangian) 
Coordinates

and the 

Material Derivative

Spatial description picks out a particular location in 
space, x.

Material description picks out a particular piece of 
continuum material, X.
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€ 

x = x A,t( )                        x A,0( ) = A

  

€ 

A = A x, t( )                        A A,0( ) = A

So we can write

x is the position now (at time t) of the section that was 
initially (at time zero) located at A.

A was the initial position of the particle now at x

  

€ 

x A x, t( ),t[ ] = x                       A x A,t( ),t[ ] = A

This gives by definition
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We can therefore write

  

€ 

f x A,t( ),t[ ] = F A,t( )                      f x, t( ) = F A x, t( ),t[ ]

€ 

∂
∂A

F A,t( ) = f x A,t( ),t[ ] =
∂f
∂x A

∂x
∂A

∂
∂t
F A,t( ) = f x A,t( ),t[ ] =

∂f
∂x A

∂x
∂t

+
∂f
∂t A

Next consider the derivative (use chain rule)
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Define Material Derivative

  

€ 

∂
∂t

F A,t( ) = f x A,t( ),t[ ] =
∂f
∂x A

∂x
∂t

+
∂f
∂t A

DF A,t( )
Dt

=
∂F A,t( )
∂t A =A x,t( )

Df A,t( )
Dt

=
∂f x,t( )
∂t

+ v x,t( ) ∂f x,t( )
∂x

D
 
f 

Dt
=
∂
 
f x,t( )
∂t

+
 v x,t( ) •∇

 
f x,t( )

Vector version
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Example

Consider bar steadily 
moving through a roller 

that thins it

Examine velocity as a function of time of cross section A

A
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Velocity will be 
constant until it 

reaches the roller

At which point it will 
speed up (and get a 

little fatter, but ignore 
that as second order)

After passing through 
the roller, its velocity 
will again be constant

A(t=t1) A(t=t2)
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If one looks at a 
particular position, x, 

however the velocity is 
constant in time.

So for any fixed point 
in space

A(t=t1) A(t=t2)

v(x1) v(x2)

€ 

∂v x, t( )
∂t

= 0

So the acceleration seems 
to be zero

(which we know it is not)
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The problem is that we 
need to compute the 

time rate of change of 
the

material

which is moving 
through space

and deforming

(not rigid body)

A(t=t1) A(t=t2)

v(x1) v(x2)
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A(t=t1) A(t=t2)

v(x1) v(x2)

€ 

Df A,t( )
Dt

=
∂f x,t( )
∂t

+ v x,t( ) ∂f x,t( )
∂x

We know acceleration is 
not zero.

Term gives acceleration 
as one

follows the material

through space

(have to consider same 
material at t1 and t2)
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Various names for this derivative

Substantive derivative

Lagrangian derivative

Material derivative

Advective derivative

Total derivative
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GPS and deformation

Now we examine relative movement between sites



72
From Rick Allmendinger
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http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html

Strain-rate sensitivity thresholds (schematic) as 
functions of period

GPS and INSAR detection thresholds for 10-km 
baselines, assuming 2-mm and 2-cm displacement 

resolution for GPS and INSAR, respectively (horizontal 
only).
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Strain-rate sensitivity thresholds (schematic) as 
functions of period

Post-seismic deformation (triangles),
slow earthquakes (squares),

long-term aseismic deformation (diamonds),
preseismic transients (circles),

and volcanic strain transients (stars).
http://www.iris.iris.edu/USArray/EllenMaterial/assets/es_proj_plan_lo.pdf, http://www.iris.edu/news/IRISnewsletter/EE.Fall98.web/plate.html
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Study deformation at two levels
-------------

- Kinematics –
describe motions

(Have to do this first)

----------------

- Dynamics –
 relate motions (kinematics) to forces (physics)

(Do through rheology/constitutive relationship/model.
Phenomenological, no first principle prediction)



76http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

€ 

σ = Kε

Simple rheological models

elastic

ε (σ) 
ε	


σ	




77http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

Simple rheological models

σ1

σ2

t

ε2 (t)

t

ε1 (t)

ta tb

σ	
 ε	


viscous

€ 

σ = µ
dε
dt

= µ ˙ ε 

Apply constant stress, σ, to a viscoelastic material
recorded deformation (strain, ε) as a function of time.

ε increases with time.



78http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

Simple rheological models

viscous

€ 

σ = µ
dε
dt

= µ ˙ ε 

Maintain constant strain, record load stress needed.
Decreases with time.

Called relaxation.

ε2

t

σ2 (t)

t
σ1 (t)

ta tb

ε1

ε	
 σ	




79http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

Kelvin rheology

€ 

σ =σ1 +σ2

ε = ε1 = ε 2

σ = Kε + µ ˙ ε 

Handles creep and recovery 
fairly well

Does not account for relaxation

viscoelastic



80http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

€ 

σ =σ1 =σ2

ε = ε1 +ε 2

˙ ε = σ
µ

+
˙ σ 
k

Maxwell rheology

Handles creep badly 
(unbounded)

Handles recovery badly (elastic 
only, instantaneous)

Accounts for relaxation fairly 
well

viscoelastic
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 

Standard linear/Zener
(not unique)

Stress – equal among components in series

Total strain – sum all components in series

Strain – equal among components in parallel

Total stress – total of all components in parallel

viscoelastic

Spring in series 
with Kelvin

Spring in parallel 
with Maxwell
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 

Standard linear/Zener
viscoelastic

Instantaneous elastic strain when stress applied
Strain creeps towards limit under constant stress
Stress relaxes towards limit under constant strain

Instantaneous elastic recovery when strain removed
Followed by gradual recovery to zero strain
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http://hcgl.eng.ohio-state.edu/~ce552/3rdMat06_handout.pdf

www.mse.mtu.edu/~wangh/my4600/chapter4.ppt 

Standard linear/Zener
viscoelastic

Two time constants

- Creep/recovery under 
constant stress

- Relaxation under constant 
strain



84http://www.dow.com/styron/design/guide/modeling.htm

Can make arbitrarily 
complicated to match 

many deformation/
strain/time

relationships
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Three types faults and plate boundaries
-----------------------

- Faults  -

Strike-slip
Thrust
Normal

---------------------------

- Plate Boundary -

Strike-slip
Convergent
Divergent
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How to model

-------------------

Elastic

Viscoelastic

----------------------

Half space

Layers

Inhomogeneous
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2-D model for strain across strike-slip fault in elastic half 
space.

 Fault is locked from surface to depth D, then free to 
infinity. 

Far-field displacement, V, applied. 
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w(x) is the equilibrium displacement parallel to y at 
position x.

|w| is 50% max at x/D=.93; 63% at x/D=1.47 & 90% at x/
D=6.3
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Effect of fault dip.

The fault is locked 
from the surface to 

a depth D (not a 
down dip length of 

D). 

The fault is free 
from this depth to 

infinity.
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Surface 
deformation pattern 

is SAME as for 
vertical fault, but 

centered over down 
dip end of dipping 

fault.

Dip estimation from 
center of 

deformation pattern 
to surface trace and 

locking depth.
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92



93Meade and Hager, 2005

Interseismic velocities in southern California from GPS
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Fault parallel velocities for northern and southern 
“swaths”.

Total change in velocity ~42mm/yr on both.
Meade and Hager, 2005



95Meade and Hager, 2005

Residual (observed-model) velocities for block fault 
model (faults in grey)



96Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.

  

€ 

 
V  r ( ) =Ω

 r ( ) ×  r + G • sf
f =1

F

∑

Ω  is the angular velocity vector

effect of interseismic strain accumulation is given by an 
elastic Green's function G

response to backslip distribution, s, on each of, f, faults.

Modeling velocities in California



97Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.

In general, the model can accommodate zones of 
distributed horizontal deformation if Ω varies within the 

zones

latter terms can account both for the Earth's sphericity 
and viscoelastic response of the lower crust and upper 

mantle.

  

€ 

 
V  r ( ) =Ω

 r ( ) ×  r + G • sf
f =1

F

∑



98Modeling Broadscale Deformation From Plate Motions and Elastic Strain Accumulation, Murray and Segall, USGS NEHRP report.

€ 

G • sf
f =1

F

∑ →−
a
π

Δω f sinφ f
f =1

F

∑ tan−1
d f

a φ − φ f( )
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

Where
a is the Earth radius

distance from each fault located at φf is a(φ-φf).

Each fault has deep-slip rate
aΔωfsinφf, 

where Δωf is the difference in angular velocity rates on 
either side of the fault. 


