Earth Science Applications of Space Based Geodesy DES-7355 Tu-Th 9:40-11:05 Seminar Room in 3892 Central Ave. (Long building)

Bob Smalley Office: 3892 Central Ave, Room 103 678-4929 Office Hours – Wed 14:00-16:00 or if I'm in my office.

http://www.ceri.memphis.edu/people/smalley/ESCI7355/ESCI_7355_Applications_of_Space_Based_Geodesy.html

Class 10

One thing to keep in mind about the

phase velocity

is that it is an entirely mathematical construct.

Pure sine waves do not exist, as a monochromatic wave train is infinitely long.

They are merely a tool to construct wave packets, which have a group velocity, and that is what we are measuring in experiments.

In fact, it may very well be that the phase velocity comes out higher than c, (e.g. in wave guides!)

This puzzles people, and some use that fact to claim that the theory of relativity is wrong.

However, even if you had a pure sine wave, you couldn't use it to transmit any information,

because it is unmodulated,

so there is no contradiction.

But it turns out that even the group velocity may be higher than c, namely in the case of anomalous dispersion

http://www.everything2.com: Source: R. U. Sexl and H. K. Urbantke, Relativität, Gruppen, Teilchen, chap. 2, 24, 3rd edn., Springer, Wien (1992)

Now how do we get around this?

Well, this kind of dispersion is so bad that the definition of our wave packet loses its meaning because it just disintegrates, and again we cannot use it to transmit information.

The only way would be to switch the signal on and off these discontinuities propagate with the wavefront velocity

 $v_{\mathcal{F}} = \lim k \to \infty(\omega(k)/k)$

And again, relativity is saved!

http://www.everything2.com: Source: R. U. Sexl and H. K. Urbantke, Relativität, Gruppen, Teilchen, chap. 2, 24, 3rd edn., Springer, Wien (1992), or http://en.wikipedia.org/wiki/Faster-than-light

In terms of our GPS signals we get (we are now mixing – multiplying, not adding. G= GPS signal, R= Reference signal.)

$$R(t) \otimes G(t) = G_0 \sin(2\pi\phi_G(t)) \times R_0 \sin(2\pi\phi_R(t))$$
$$R(t) \otimes G(t) = \frac{G_0 R_0}{2} \Big(\cos\Big(2\pi(\phi_R(t) - \phi_G(t))\Big) \Big) \Big(\cos\Big(2\pi(\phi_R(t) + \phi_G(t))\Big) \Big)$$

Note this is in terms of phase, $\phi(t)$, not frequency ("usual" presentation; ωt , produces phase)

"Filter" to remove high frequency part $\left(\phi_R(t) + \phi_G(t)\right)$ leaving beat <u>signal</u>

$$B(t) = \frac{G_0 R_0}{2} \cos\left(2\pi \left(\phi_R(t) - \phi_G(t)\right)\right)$$
$$B(t) = \frac{G_0 R_0}{2} \cos\left(2\pi \phi_B(t)\right)$$

if you differentiate
$$\phi_B$$

you find the
beat frequency
the difference between the two frequencies
(actually one wants to take the absolute value)
- as we found before

$$\frac{d\phi_B(t)}{dt} = \frac{d\phi_R(t)}{dt} - \frac{d\phi_G(t)}{dt}$$
$$f_B = f_R - f_G$$

If the receiver copy of the signal has the same code applied as the satellite signal -This discussion continues to hold (the -1's cancel) (one might also worry about the Doppler shift effect on the codes, but this effect is second order)

If the receiver copy of the signal does not have the code applied (e.g. – we don't know the P code) then this discussion will not work (at least not simply) There are essentially two means by which the carrier wave can be recovered from the incoming modulated signal:

Reconstruct the carrier wave by removing the ranging code and broadcast message modulations.

Squaring, or otherwise processing the received signal without using a knowledge of the ranging codes.

To reconstruct the signal, the ranging codes (C/A and/ or P code)

must be known.

The extraction of the Navigation Message can then be easily performed by reversing the process by which the bi-phase shift key modulation was carried out in the satellite. In the squaring method no knowledge of the ranging codes is required.

The squaring removes the effects of the -1's (but halves the wavelength and makes the signal noisier)

More complex signal processing is required to make carrier phase measurements on the L2 signal under conditions of Anti-Spoofing (don't know P-code). As mentioned earlier: can arbitrarily add *N(2π)* to phase and get same beat signal

This is because we have no direct measure of the "total" (beat) phase

$$\Phi + N = \phi_R - \phi_G$$

(argument is $2\pi\phi$, so no 2π here)

$$\Phi + N = \phi_R - \phi_G$$

GPS receiver records Φ total number of (beat) cycles since lock on satellite N is fixed (as long as lock on satellite is maintained)

N is called the "ambiguity" (or "integer ambiguity") It is an integer (theoretically) If loose lock – cycle slip, have to estimate new N. Making a few reasonable assumptions we can interpret N geometrically to be the number of <u>carrier wavelengths</u> between the receiver (when it makes the first observation) and the satellite (when it transmitted the signal)

Phase measurements

- When a satellite is locked (at t_o), the GPS receiver starts tracking the incoming phase
- It counts the (real) number of phases as a function of time = Δφ (t)
- But the initial number of phases N at t_o is unknown...
- However, if no loss of lock, N is constant over an orbit arc

How to use (beat) phase to measure distance?

phase -> clock time -> distance

Phase to velocity and position Consider a fixed transmitter and a fixed receiver

Receiver sees constant rate of change of phase (fixed frequency) equal to that of the transmitter

$$\Phi(t) = \phi_0 t + (N)$$

Integrated phase increases linearly with

time

http://www.npwrc.usgs.gov/perm/cranemov/location.htm http://electron9.phys.utk.edu/phys135d/modules/m10/doppler.htm Next consider a transmitter moving on a line through a fixed receiver

Receiver again sees a constant rate of change of phase (frequency) - but it is no longer equal to that of the transmitter

$$\Phi(t) = \phi't + (N)$$

See lower frequency when XTR moving away

See higher frequency when XTR moving towards The change in the rate of phase change (fixed change in frequency) observed at receiver, with respect to stationary transmitter, is proportional to velocity of moving transmitter.

$$f(\vec{x},t) = f_0 - \frac{f_0}{c}v$$

c is speed of waves in medium, v is velocity of transmitter

(this is classical, not relativistic)

If you knew the frequency transmitted by the moving transmitter.

You can use the

beat frequency

produced by combining the received signal with a receiver generated signal that is at the transmitted frequency

to determine the speed.

But we can do more.

We can

count the (beat) cycles or measure the (beat) phase

of the beat signal as a function of time.

This will give us the change in distance. (as will velocity times time)

So we can write

Beat phase (t) = change in distance to transmitter + constant

Beat phase (at t = t_{fixed}) = distance to transmitter + constant

Note the arbitrary constant – can redo measurements from another position (along trajectory of moving transmitter) and get same result (initial phase measurement will be different, but that will not change the frequency or distance estimation) Next - move the receiver off the path of the transmitter (and can also let the transmitter path be arbitrary, now have to deal with vectors.)

$$f(\vec{x},t) = f_0 - \frac{f_0}{c} \vec{v}(t) \bullet \vec{u}(t)$$

www.ws.binghamton.edu/fowler/fowler personal page/EE522_files/CRLB for Dopp_Loc Notes.pdf http://www.cls.fr/html/argos/general/doppler_gps_en.html

Can solve this for

Location of stationary transmitter from a moving receiver (if you know \underline{x} and \underline{v} of receiver – how SARSAT, ELT, EPIRB's [Emergency Position Indicating Radio Beacon] WORK [or used to work - now also transmit location from GPS])

> Location of moving transmitter (solve for <u>x</u> and <u>v</u> of transmitter) from a stationary receiver (if you know <u>x</u> of receiver)

(Doppler shift, change in frequency, more useful for estimating velocity than position. Integrate Doppler phase to get position.)

Apply this to GPS So Far we have

Satellite carrier signal Mixed with copy in receiver After "low pass filter" - left with <u>beat</u> signal

Phase of <u>beat</u> signal equals reference phase minus received phase plus unknown integer number full cycles

From here on we will follow convention and call - Carrier <u>beat</u> phase --Carrier phase -(remember it is <u>NOT</u> the phase of the incoming signal) Consider the observation of satellite S

We can write the observed carrier (beat) phase as

$$\Phi^{S}(T) = \phi(T) - \phi^{S}(T) - N^{S}$$

Receiver replica of signal Incoming signal received from satellite S

Receiver clock time

Now assume that the phase from the satellite received at time T is equal to what it was when it was transmitted from the satellite

(we will eventually need to be able to model the travel time)

$$\phi^{S}(x,y,z,T) = \phi^{S}_{transmit}(x^{S},y^{S},z^{S},T^{S})$$

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

$$\Phi^{S}(T) = \phi(T) - \phi^{S}(T) - N^{S}$$

Use from before for receiver time

$$T(t) = \frac{\left(\phi(t) - \phi_0\right)}{f_0}$$

 $\phi(T) = f_0 T + \phi_0$ $\phi_{transmit}^S \left(T^S\right) = f_0 T_{transmit}^S + \phi_0^S$

So the carrier phase observable becomes

$$\Phi^{S}(T) = f_{0}T + \phi_{0} - f_{0}T^{S}_{transmit} - \phi_{0}^{S} - N^{S}$$
$$\Phi^{S}(T) = f_{0}(T - T^{S}_{transmit}) + \phi_{0} - \phi_{0}^{S} - N^{S}$$

$$\Phi^{S}(T) = f_0(T - T^{S}_{transmit}) + \phi_0 - \phi_0^{S} - N^{S}$$

Terms with S are for each satellite All other terms are equal for all observed satellites

(receiver ϕ_0 should be same for all satellites— no interchannel bias, and receiver should sample all satellites at same time — or interpolate measurements to same time)

T^S and *N^S* will be different for each satellite Last three terms cannot be separated (and will not be an integer) – call them "carrier phase bias"

Now we will convert carrier phase to range

(and let the superscript *S->* satellite number, *j*, to handle more than one satellite, and

add a subscript for multiple receivers, A, to handle more than one receiver.)

$$\Phi_A^j(T_A) = f_0(T_{A,received} - T^{j,transmited}) + \phi_{0_A} - \phi_0^j - N_A^j$$

We will also drop the "received" and "transmitted" reminders.

Times with superscripts will be for the transmission time by the satellite.

Times with subscripts will be for the reception time by the receiver.

$$\Phi_{A}^{j}(T_{A}) = f_{0}(T_{A} - T^{j}) + \phi_{0_{A}} - \phi_{0}^{j} - N_{A}^{j}$$

If we are using multiple receivers, they should all sample at

exactly the same time (same value for receiver clock time).

Values of clock times of sample - epoch.

With multiple receivers the clocks are not perfectly synchronized, so the true measurement times will vary slightly.

Also note – each receiver-satellite pair has its own carrier phase ambiguity.

Carrier phase to range
Multiply phase (in cycles, not radians) by wavelength to
get "distance"

$$L_A^j(T_A) = \lambda_0 \Phi_A^j(T_A)$$

$$L_A^j(T_A) = \lambda_0 (f_0(T_A - T^j) + \phi_{0_A} - \phi_0^j - N_A^j)$$

$$L_A^j(T_k) = c (T_A - T^j) + \lambda_0 (\phi_{0_A} - \phi_0^j - N_A^j)$$

$$L_A^j(T_A) = c (T_A - T^j) + B_A^j$$

$$L_A^j(T_A) = c (T_A - T^j) + B_A^j$$

$$L_A^j(T_A) \text{ is in units of meters}$$

$$B_A^j \text{ is "carrier phase bias" (in meters)}$$
(is not an integer)

$$L_{A}^{j}(T_{A}) = c(T_{A} - T^{j}) + B_{A}^{j}$$

a distance

This equation looks exactly like the equation for
pseudo-range
$$P_R^S = \rho_R^S(t_R, t^S) + (\tau_R - \tau^S) c = \rho_R^S(t_R, t^S) + c\delta t$$

That we saw before

pseudo-range constant

$$L_A^j(T_A) = c(T_A - T^j) + B_A^j$$

This equation also holds for both L1 and L2

Clock biases same, but ambiguity different (different wavelengths)
Now that we have things expressed as "distance" (range) Follow pseudo range development $L_A^j(T_A) = c\left(T_A - T^j\right) + B_A^j$ $L_{A}^{j}(T_{A}) = \rho_{A}^{j}(t_{A}, t^{j}) + c\tau_{A} - c\tau^{j} + Z_{A}^{j} - I_{A}^{j} + B_{A}^{j}$ Added a few things related to propagation of waves Delay in signal due to Troposphere – Z_A^j Ionosphere – $-I_A^j$

(ionospheric term has "-" since phase velocity increases)

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

Can include these effects in pseudo range development also

$$P_A^{j}(T_k) = c \left(T_A - T^{j}\right)$$

$$P_A^j(T_A) = \rho_A^j(t_A, t^j) + c\tau_A - c\tau^j + Z_A^j + I_A^j$$

Delay in signal due to

Troposphere + Z_A^j Ionosphere + $-I_A^j$

(ionospheric term now has "+" since group velocity to first order is same magnitude but opposite sign as phase velocity)

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

Now we have to fix the time So far our expression has receiver and satellite clock time -Not true time

Remember that the true time is the clock time adjusted by the clock bias

$$t_A = T_A - \tau_A$$

We know T_A exactly (it is the receiver clock time which is written into the observation file – called a "time tag")

 $t_A = T_A - \tau_A$

But we don't know τ_A (we need it to an accuracy of 1 µsec)

How to estimate au_A

- Use estimate of τ_A from pseudo range point positioning (if have receiver that uses the codes)

- LS iteration of code and phase data simultaneously

If know satellite position and receiver location well enough (300 m for receiver – 1 μsec of distance) can estimate it
 (this is how GPS is used for time transfer, once initialized can get time with only one satellite visible [if don't loose lock])

- Modeling shortcut - linearize (Taylor series)

Eliminating clock biases using differencing

Return to our model for the phase observable

$$L_A^j(T_A) = \rho_A^j(t_A, t^j) + c\tau_A - c\tau^j + Z_A^j - I_A^j + B_A^j$$

clock error - receiver

What do we get if we combine measurements made by two receivers at the same epoch?

Define the single difference

$$L_A^j(T_A) = \rho_A^j(t_A, t^j) + c\tau_A - c\tau^j + Z_A^j - I_A^j + B_A^j$$
$$L_B^j(T_B) = \rho_B^j(t_B, t^j) + c\tau_B - c\tau^j + Z_B^j - I_B^j + B_B^j$$

$$\Delta L_{AB}^{j} = L_{A}^{j}(T_{A}) - L_{B}^{j}(T_{B})$$

Use triangle to remember is
difference between satellite
(top) and two receivers
(bottom)

$$\begin{split} \Delta L_{AB}^{j} &= L_{A}^{j} \left(T_{A} \right) - L_{B}^{j} \left(T_{B} \right) \\ \Delta L_{AB}^{j} &= \rho_{A}^{j} - \rho_{B}^{j} + c\tau_{A} - c\tau_{B} - c\tau^{j} + c\tau^{j} \\ &+ Z_{A}^{j} - Z_{B}^{j} - I_{A}^{j} + I_{B}^{j} + B_{A}^{j} - B_{B}^{j} \end{split}$$

 $\Delta L_{AB}^{j} = \Delta \rho_{AB}^{j} + \Delta c \tau_{AB} + \Delta Z_{AB}^{j} - \Delta I_{AB}^{j} + \Delta B_{AB}^{j}$ Satellite time errors cancel (assume transmission times are same – probably not unless range to both receivers from satellite the same) If the two receivers are close together the tropospheric and ionospheric terms also (approximately) cancel.

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

How about we do this trick again This time using two single differences to two satellites (all at same epoch) Define the double difference $\Delta L_{AB}^{j} = \Delta \rho_{AB}^{j} + \Delta c \tau_{AB} + \Delta Z_{AB}^{j} - \Delta I_{AB}^{j} + \Delta B_{AB}^{j}$ $\Delta L_{AB}^{k} = \Delta \rho_{AB}^{k} + \Delta c \tau_{AB} + \Delta Z_{AB}^{k} - \Delta I_{AB}^{k} + \Delta B_{AB}^{k}$

 $abla \Delta L_{AB}^{jk} = \Delta L_{AB}^{j} - \Delta L_{AB}^{k}$ Use inverted triangle to remember is difference between two satellites (top) and one receiver (bottom)

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

$$\nabla \Delta L_{AB}^{jk} = \Delta \rho_{AB}^{j} - \Delta \rho_{AB}^{k} + \Delta c \tau_{AB} - \Delta c \tau_{AB}$$
$$+ \Delta Z_{AB}^{j} - \Delta Z_{AB}^{k} + \Delta I_{AB}^{j} - \Delta I_{AB}^{k} + \Delta B_{AB}^{j} - \Delta B_{AB}^{k}$$

$$\nabla \Delta L_{AB}^{jk} = \nabla \Delta \rho_{AB}^{jk} + \nabla \Delta Z_{AB}^{jk} - \nabla \Delta I_{AB}^{jk} + \nabla \Delta B_{AB}^{jk}$$

Now we have gotten rid of the receiver clock bias terms (again to first order - and results better for short baselines)

Double differencing - removes (large) clock bias errors -approximately doubles (smaller) random errors due to atmosphere, ionosphere, etc. (no free lunch) - have to be able to see satellite from both receivers. Next - what is the ambiguity term after double difference (remembering definition of B_A^j) $\nabla \Delta B_{AB}^{jk} = \Delta B_{AB}^{j} - \Delta B_{AB}^{k}$ $\nabla \Delta B_{AB}^{jk} = \left(B_A^{j} - B_B^{j} \right) - \left(B_A^{k} - B_A^{k} \right)$ $\nabla \Delta B_{AB}^{jk} = \lambda_0 \left(\phi_{0_A} - \phi_0^{j} - N_A^{j} \right) - \lambda_0 \left(\phi_{0_B} - \phi_0^{j} - N_B^{j} \right) +$ $-\lambda_0 \left(\phi_{0_A} - \phi_0^k - N_A^k\right) + \lambda_0 \left(\phi_{0_B} - \phi_0^k - N_B^k\right)$

 $\nabla \Delta B_{AB}^{jk} = -\lambda_0 \left(N_A^{j} - N_B^{j} - N_A^{k} + N_B^{k} \right)$ $\nabla \Delta B_{AB}^{jk} = -\lambda_0 N_{AB}^{jk}$ The ambiguity term reduces to an integer

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

So our final Double difference observation

is

 $\nabla \Delta L_{AB}^{jk} = \nabla \Delta \rho_{AB}^{jk} + \nabla \Delta Z_{AB}^{jk} - \nabla \Delta I_{AB}^{jk} - \lambda_0 \nabla \Delta N_{AB}^{jk}$

One can do the differencing in either order The sign on the ambiguity term is arbitrary

We seem to be on a roll here, so let's do it again. This time (take the difference of double differences) between two epochs

$$\nabla \Delta L_{AB}^{jk}(i) = \nabla \Delta \rho_{AB}^{jk}(i) + \nabla \Delta Z_{AB}^{jk}(i) - \nabla \Delta I_{AB}^{jk}(i) - \nabla \Delta N_{AB}^{jk}(i)$$
$$\nabla \Delta L_{AB}^{jk}(i+1) = \nabla \Delta \rho_{AB}^{jk}(i+1) + \nabla \Delta Z_{AB}^{jk}(i+1) -$$
$$\nabla \Delta I_{AB}^{jk}(i+1) - \nabla \Delta N_{AB}^{jk}(i+1)$$

$$\delta(i,i+1)\nabla\Delta L_{AB}^{jk} = \nabla\Delta L_{AB}^{jk}(i+1) - \nabla\Delta L_{AB}^{jk}(i)$$

Equal if no loss of lock (no cycle

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

Phase measurements

phases N at t_o is unknown...
However, if no loss of

 However, if no loss of lock, N is constant over an orbit arc So now we have gotten rid of the integer ambiguity

$$\begin{split} \delta(i,i+1)\Delta L_{AB}^{jk} &= \nabla \Delta L_{AB}^{jk}(i+1) - \nabla \Delta L_{AB}^{jk}(i) \\ \delta(i,i+1)\Delta L_{AB}^{jk} &= \delta(i,i+1)\nabla \Delta \rho_{AB}^{jk}(i) + \\ \delta(i,i+1)\nabla \Delta Z_{AB}^{jk}(i) - \delta(i,i+1)\nabla \Delta I_{AB}^{jk}(i) \end{split}$$

If no cycle slip – ambiguities removed. If there is a cycle slip – get a spike in the triple difference.

Raw Data from RINEX file: RANGE Plot of C1 (range in meters) For all satellites for full day of data

From Ben Brooks

52

Raw Data from RINEX file: RANGE Plot of P1 (range in meters) For one satellite for full day of data

Raw Data from RINEX file: PHASE

From Ben Brooks

Raw Data from RINEX file: RANGE DIFFERENCE

From Ben Brooks

Raw Data from RINEX file: PHASE DIFFERENCE

From Ben Brooks

Zoom in on phase observable Without an (L1) and with an (L2) cycle slip

Cycle slip shows up as spike in triple difference (so can identify and fix)

Have to do this for "all" pairs of receiver-satellite pairs.

Effects of triple differences on estimation

Further increase in noise Additional effect – introduces correlation between observations in time

This effect substantial

So triple differences limited to identifying and fixing cycle slips.

Using double difference phase observations for relative positioning

First notice that if we make all double differences - even ignoring the obvious duplications

$$\nabla \Delta L_{AB}^{jk} = \nabla \Delta L_{AB}^{kj} = \nabla \Delta L_{BA}^{kj} = \nabla \Delta L_{BA}^{jk}$$

We get a lot more double differences than original data. This can't be (can't create information).

Consider the case of 3 satellites observed by 2 receivers.

Form the (non trivial) double differences

$$L_{AB}^{jk} = \left(L_A^j - L_B^j\right) - \left(L_A^k - L_B^k\right)$$
$$L_{AB}^{jl} = \left(L_A^j - L_B^j\right) - \left(L_A^l - L_B^l\right)$$
$$L_{AB}^{lk} = \left(L_A^l - L_B^l\right) - \left(L_A^k - L_B^k\right)$$

Note that we can form any one from a linear combination of the other two

$$L_{AB}^{jk} = L_{AB}^{jl} - L_{AB}^{lk}$$
$$L_{AB}^{jl} = L_{AB}^{jk} - L_{AB}^{lk}$$
$$L_{AB}^{lk} = L_{AB}^{jk} - L_{AB}^{jl}$$

(línearly dependent) We need a línearly independent set for Least Squares.

Blewitt, Basics of GPS in "Geodetic Applications of GPS"

From the linearly dependent set

$$\left\{L_{AB}^{jk}, L_{AB}^{jl}, L_{AB}^{lk}\right\}$$

We can form a number of linearly independent subsets

$$\left\{ L_{AB}^{jk}, L_{AB}^{jl} \right\} = \Lambda^{j} = \left\{ L_{AB}^{ab} \middle| a = j; b \neq j \right\}$$
$$\left\{ L_{AB}^{kj}, L_{AB}^{kl} \right\} = \Lambda^{k} = \left\{ L_{AB}^{ab} \middle| a = k; b \neq k \right\}$$
$$\left\{ L_{AB}^{lj}, L_{AB}^{lk} \right\} = \Lambda^{l} = \left\{ L_{AB}^{ab} \middle| a = l; b \neq l \right\}$$

Which we can then use for our Least Squares estimation.

How to pick the basis? All linearly independent sets are "equally" valid and should produce identical solutions. Pick *A*¹ such that <u>reference satellite</u> / has data at every

Better approach is to select the reference satellite epoch by epoch

epoch

(if you have 24 hour data file, cannot pick one satellite and use all day - no satellite is visible all day)

For a single baseline (2 receivers) that observe *s* satellites, the number of linearly independent double difference observations is

5-1

Next suppose we have more than 2 receivers. We have the same situation -all the double differences are not linearly independent. As we just did for multiple satellites, we can pick a reference station that is common to all the double differences.

For a network of *r* receivers, the number of linearly independent double difference observations is

r-1

So all together we have a total of (s-1)(r-1)Línearly independent double differences

So our linearly independent set of double differences is

$$\Lambda_{C}^{j} = \left\{ L_{AB}^{ab} \middle| a = j; b \neq j; A = C, B \neq C \right\}$$

Reference station method has problems when all receivers can't see all satellites at the same time.

Choose receiver close to center of network.

Even this might not work when the stations are very far apart.

For large networks may have to pick short baselines that connect the entire network.

Idea is to not have any closed polygons (which give multiple paths and therefore be linearly dependent) in the network.

Can also pick reference station epoch per epoch.

If all the receivers see the same satellites at each epoch,

and data weighting is done properly,

then it does not matter which receiver and satellite we pick for the reference.

In practice, however, the solution depends on our choices of reference receiver and satellite.

(although the solutions should be similar)

(could process all undifferenced phase observatons and estimate clocks at each epoch - ideally gives "better" estimates)

Double difference observation equations Start with

 $\nabla \Delta L_{AB}^{jk} = \nabla \Delta \rho_{AB}^{jk} + \nabla \Delta Z_{AB}^{jk} - \nabla \Delta I_{AB}^{jk} - \nabla \Delta N_{AB}^{jk}$

Simplify to $L_{AB}^{jk} = \rho_{AB}^{jk} - \lambda_0 N_{AB}^{jk}$

By dropping the $\nabla \Delta$ And assuming $\nabla \Delta Z_{AB}^{jk} \& \nabla \Delta I_{AB}^{jk}$ are negligible
Processing double differences between two receivers results in a

Baseline solution

The estimated parameters include the vector between the two receivers (actually antenna phase centers). May also include estimates of parameters to model troposphere (statistical) and ionosphere (measured – dispersion).

Also have to estimate the

Integer Ambiguities

For each set of satellite-receiver double differences

We are faced with the same task we had before when we used

pseudo range

We have to línearíze

the problem in terms of the parameters we want to estimate

A significant difference between using the pseudo range, which is a stand alone method, and using the Phase, is that the phase is a <u>differential</u> method (similar to VLBI).

So far we have cast the problem in terms of the distances to the satellites, but we could recast it in terms of the relative distances between stations.

So now we will need multiple receivers. We will also have to use (at least one) as a reference station.

In addition to knowing where the satellites are, We need to know the position of the refrence station(s) to the same level of precision as we wish to estimate the position of the other stations.

fiducial positioning

Fiducial

Regarded or employed as a standard of reference, as in surveying.

So now we have to assign the location of our fiducial station(s)

Can do this with

RINEX header position

VLBI position

Other GPS processing

etc.

So we have to

Write down the equations Linearize Solve