
Data Analysis in Geophysics
ESCI 7205

Bob Smalley

Room 103 in 3892 (long building), x-4929

Tu/Th - 13:00-14:30
CERI MAC (or STUDENT) LAB

Lab – 6, 09/12/13

Matlab
Multi-dimensional arrays

Multidimensional Arrays
Arrays with more than two subscripts

>>p = perms(1:4);!
>>A = magic(4);!
>>M = zeros(4,4,24);!
>>for k = 1:24!
M(:,:,k) = A(:,p(k,:));!

Create multidimensional arrays using reshape or
repmat command (we have already seen these)

Use to change the shape of matrices
(does not change order of elements in memory,

only how we refer to them).

>> x=[1 2 3 4 5 6 7 8]!
x =!
 1 2 3 4 5 6 7 8!
>> x3d=reshape(x,2,2,2)!
x3d(:,:,1) =!
 1 3!
 2 4!
x3d(:,:,2) =!
 5 7!
 6 8!
>> x3d(:)!
x =!
 1 2 3 4 5 6 7 8!

reshape command

>> x=[1 2;3 4;5 6; 7 8]!
x =!
 1 2!
 3 4!
 5 6!
 7 8!
>> x3d=reshape(x,2,2,2)!
x3d(:,:,1) =!
 1 5!
 3 7!
x3d(:,:,2) =!
 2 6!
 4 8!
>> x=reshape(x,2,4)!
x =!
 1 5 2 6!
 3 7 4 8!
>> x(:)!
x =!
 1 3 5 7 2 4 6 8!
!

reshape can figure out (one) dimension (of any
of them).

>> x=[1 2;3 4;5 6; 7 8]!
x =!
 1 2!
 3 4!
 5 6!
 7 8!
>> x3d=reshape(x, 2, [],2)!
x3d(:,:,1) =!
 1 5!
 3 7!
x3d(:,:,2) =!
 2 6!
 4 8!
!

The dimensions specified have to be compatible
with the number of elements in the matrix.

Building matrices by repeating parts

repmat command
(we have already seen this command)

!
>> x=[1 2;3 4]!
x =!
 1 2!
 3 4!
>> xr=repmat(x,2,1)!
xr =!
 1 2!
 3 4!
 1 2!
 3 4!
>> xr=repmat(x,1,2)!
xr =!
 1 2 1 2!
 3 4 3 4!
>> !

Create constant matrix
This is something that shows up a lot.

!
>> val=pi!
val =!
 3.1416!
>> siz=[2 2 2]!
siz =!
 2 2 2!
>> x=repmat(val,siz)!
x(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
x(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!
>> !

Other ways (seems more roundabout, showing for completeness)

>> xx(prod(siz))=val!
xx =!
 0 0 0 0 0 0
0 3.1416!
>> xx(:)=xx(end)!
xx =!
 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416
3.1416 3.1416!
>> xx=reshape(xx,siz)!
xx(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
xx(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!

Another way (m, n and o have to be scalar
variables, again for completeness)

!
>> m=2!
m =!
 2!
>> n=2!
n =!
 2!
>> o=2!
o =!
 2!
>> x(1:m,1:n,1:o)=val!
x(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
x(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!
>> x(1:m*n*o)=val!
!

Also works using single dimension addressing!

Another way (actually the most popular, this is
Tony's trick!)(val has to be a scalar variable, this

syntax populates the array with val)!
!
>> x=val(ones(siz))!
x(:,:,1) =!
 3.1416 3.1416!
 3.1416 3.1416!
x(:,:,2) =!
 3.1416 3.1416!
 3.1416 3.1416!
>>

Avoid using
!

X = val * ones(siz);!
!

since it does unnecessary multiplications (versus just

storing, above) and only works for classes for which the
multiplication operator is defined.

How Tony's trick works

What does this do? How does it work?

>> x=val([1 1 1; 1 1 1])!

We know what x=val(1) does.
We know what x=val(1,1) does.
We know (or can find out) that x=val(1,2) does not
work.

What about x=val([1])?
From there easy to generalize a matrix as index.
What about x=val([1 1])?

How Tony's trick works

What does this do? How does it work?

>> x=val([1 1 1; 1 1 1])!
x =!
 3.141592653589793 3.141592653589793 3.141592653589793!
 3.141592653589793 3.141592653589793 3.141592653589793!

Tony's trick just replaces the matrix definition

above
 !
>> x=val(ones(2,3))!
x =!
 3.141592653589793 3.141592653589793 3.141592653589793!
 3.141592653589793 3.141592653589793 3.141592653589793!

Tony's trick does not work for NaN's (since NaN is
not a variable or array, it is the same as a number,

so Tony's trick does not work directly with it)
!

Below does not work (NaN not scalar variable, same with Inf)
!
x = NaN(ones(siz));!
!

But the following do work (back to repmat)
(also works for scalar variable or function)

!
>> X = repmat(NaN, siz)!
X(:,:,1) =!
 NaN NaN!
 NaN NaN!
X(:,:,2) =!
 NaN NaN!
 NaN NaN!

>> val=NaN!
val =!
 NaN!
>> x=val(ones(2,2))!
x =!
 NaN NaN!
 NaN NaN!
>> !

Tony's
trick
version

Object on right does not have to be scalar

>> a=[1:3;3:5].^2!
a =!
 1 4 9!
 9 16 25!
>> b=a([1:2 1])!
b =!
 1 9 1!
>> b=a([1:2 5 6])!
b =!
 1 9 9 25!
>> b=a([1:2;5:6])!
b =!
 1 9!
 9 25!
>> !

!

Can write very obscure, compact code that
nobody can figure out (including you 6 mos

later).
!

For lots more of this – see Peter Acklam’s tutorial
(on class web site)

Flipping vectors or matrices (not the same as the
transpose).

>> a=[1 2;3 4]!
a =!
 1 2!
 3 4!
>> fliplr(a)!
ans =!
 2 1!
 4 3!
>> flipud(a)!
ans =!
 3 4!
 1 2!
>> a=[1:3;4:6]!
a =!
 1 2 3!
 4 5 6!

>> rot90(a)!
ans =!
 3 6!
 2 5!
 1 4!
>> a’!
ans =!
 1 4!
 2 5!
 3 6!
>> flipdim(a,1)!
ans =!
 4 5 6!
 1 2 3!

How to represent “nothing”

Empty array or string

Array = []!
String = ‘’!

Useful for defining a name to be used on LHS.

Size and length are zero.

Beyond simple array variables

Structures are variables that contain other
variables, called fields. They are a very powerful

way to organize data in your program.

The different fields of a structure can contain
variables of different types, so if one gives the

fields a meaningful name this becomes a great way
to keep track of the data.

In MATLAB one can define a structure (as any
other variable) as one goes, it adds memory as it

needs it.

Structures

Like nawk, Matlab allows you create structures
so that you may refer to elements of an array

using textual field designators

The format is structure_name.field_name!
!

S.name = 'Ed Plum';!
S.score = 83;!
S.grade = 'B+'!
!

creates a scalar structure with three fields:
!
S =!
name: 'Ed Plum'!
score: 83!
grade: 'B+'!

Fields can be added one at a time
(producing a vector of the structure elements, note where the array indexing – the

parens with the index - is right after the structure name and before the ".")

S(2).name = 'Toni Miller';!
S(2).score = 91;!
S(2).grade = 'A-';!
!

Or an entire element added in single statement
!
>> S(3) = struct('name','Jerry Garcia','score',70,'grade','C')!
S =!
1x3 struct array with fields:!
name!
score!
grade!
>> scores = [S.score]!
scores =!
83 91 70!
>> avg_score = sum(scores)/length(scores)!
avg_score =!
81.3333!
!

Unfortunately structure arrays don’t behave as
one might expect (hope?)

The following does not work (produces an error message).
!
>> avg_score = sum(S.score)/length(S.score)!
!

You have to pull the vector you want to process
out of the structure to use it (and make it a vector with the []).

!
>> scores = [S.score]!
scores =!
83 91 70!
>> avg_score = sum(scores)/length(scores)!
avg_score =!
81.3333!
>> avg_score = mean([S.score])!
avg_score =!
81.3333!

Example of structure and its use.

image.data=[1 2 3; 4 5 6; 7 8 9];!
image.date=’13-Jan-2008’;!
image.blank=NaN;!
image.ra=13.3212;!
image.dec=43.3455;!

Address element of structure using structure
name, decimal point, and element name.

image.date!

Operate on the fields as you would with any
variable of that particular type. Ex., to invert the
data matrix (reference works with out [] since is scalar structure, problem is

when a vector)

inv(image.data).

Example of structure and its use.

>> image(1).data=rand(3)!
>> image.date=’13-Jan-2008’;!
>> image.blank=NaN;!
>> image.ra=13.3212;!
>> image.dec=43.3455;!
>> image(2).data=2*image.data!
image = !
1x2 struct array with fields:!
 data!
 blank!
 dec!
 date!
>> image.data!
ans =!
 0.3922 0.7060 0.0462!
 0.6555 0.0318 0.0971!
 0.1712 0.2769 0.8235!
ans =!
 0.7845 1.4121 0.0923!
 1.3110 0.0637 0.1943!
 0.3424 0.5538 1.6469!
>> image(1).data!
ans =!
 0.3922 0.7060 0.0462!
 0.6555 0.0318 0.0971!
 0.1712 0.2769 0.8235!
>> image(2).data!
ans =!
 0.7845 1.4121 0.0923!
 1.3110 0.0637 0.1943!
 0.3424 0.5538 1.6469!

>> whos!
 Name Size Bytes Class Attributes!
!
 image 1x2 1022 struct !
>> inv(image(1).data)!
ans =!
 0.0019 1.5730 -0.1856!
 1.4471 -0.8716 0.0217!
 -0.4871 -0.0339 1.2457!
>> inv(image(2).data)!
ans =!
 -0.4740 3.7530 -3.3939!
 -1.3356 0.8875 0.3148!
 2.0968 -4.4272 3.9447!
>> sum(image(1).data)!
ans =!
 1.2189 1.0148 0.9668!
>> sum(image(2).data)!
ans =!
 2.4378 2.0296 1.9335!
>> sum(image.data)!
Error using sum!
Dimension argument must be a positive integer scalar within
indexing range.!
>> sum([image.data])!
ans =!
 1.2189 1.0148 0.9668 2.4378 2.0296 1.9335!
>> !

Example for earthquake data

stn.name=‘mem’;!
stn.lat=34.5’!
stn.lon=-89.5!
stn.elev=70;!
stn.inst=‘guralp cmg3’!
stn.p=15.673!

Pass structure by name of structure. Sends it all
along as a package.

some_fun(stn)!

etc.

array of structures (and structure elements can
be arrays – lots of parentheses).

Can be multidimensional.

stn(1).name=‘mem’;!
stn(1).lat=34.5’!
stn(1).lon=-89.5!
stn(1).elev=70;!
stn(1).inst=‘guralp cmg3’!
stn(1).arrival(1)=15.673!
stn(1).arrival(2)=17.274
stn(2).name=‘ceri’;!
stn(2).lat=34.53’!
stn(2).lon=-89.57!
stn(2).elev=79;!
stn(2).inst=‘guralp cmg3’!
stn(2).arrival(1)=16.189!
stn(2).arrival(2)=19.923!
. . .

>> siz=[2 2 2];!
>> s.x=1!
s = !
 x: 1!
>> s.n='ceri’!
s = !
 x: 1!
 n: 'ceri’!
>> x=s(ones(siz))!
x = !
2x2x2 struct array with fields:!
 x!
 n!
>> x!
x = !
2x2x2 struct array with fields:!
 x!
 n!

>> x.x!
ans =!
 1!
1!
. . . 7 more times . . .!
>> x.n!
ans =!
ceri!
. . . 7 more times . . .!
>> x(2,2,2)!
ans = !
 x: 1!
 n: 'ceri’!
!
!
!
!

Example - Create constant matrix with non-
numeric data.

Tony's trick

Cell Arrays

multidimensional arrays whose elements are
copies of other arrays.

cell arrays are created by enclosing a

miscellaneous collection of things in curly
braces, {}.

The curly braces are also used with subscripts to
access the contents of various cell elements.

!
>>C = {A sum(A) prod(prod(A)) }!
[4x4 double] [1x4 double] [20922789888000]!

to retrieve a cell from a cell array

C{1} -> A, the magic square!
C{2} -> row vector of the sum of the columns of A !
C{3} -> prod(prod(A)) (same as prod(A(:) – probably better)!

Important distinction with respect to other
programming languages –

cell arrays contain copies of other arrays, not

pointers to those arrays.

Cell Arrays vs Multidimensional Arrays

You can use three-dimensional arrays to store a
sequence of matrices of the same size.

Cell arrays can be used to store a sequence of

matrices of different sizes.

Characters and Text

Matlab treats text like a character vector

Enter text into MATLAB using single quotes.

>> s = 'Hello'!

essentially, s is now a 1 x 5 array with each
element equal to a character: H,e,l,l,o!

Characters are stored as numbers using ASCII

coding with the type char

a = double(s)!
a =!
72! 101 !108 !108! 111!

Because characters are stored as numbers, you
can convert numeric vectors to their ASCII

characters, if the character exists

s=char(a)!

Printable ASCII characters go from 32 to 127

Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex!
---!
(nul) 0 0000 0x00 | (sp) 32 0040 0x20 | @ 64 0100 0x40 | ` 96 0140 0x60!
(soh) 1 0001 0x01 | ! 33 0041 0x21 | A 65 0101 0x41 | a 97 0141 0x61!
(stx) 2 0002 0x02 | " 34 0042 0x22 | B 66 0102 0x42 | b 98 0142 0x62!
(etx) 3 0003 0x03 | # 35 0043 0x23 | C 67 0103 0x43 | c 99 0143 0x63!
(eot) 4 0004 0x04 | $ 36 0044 0x24 | D 68 0104 0x44 | d 100 0144 0x64!
(enq) 5 0005 0x05 | % 37 0045 0x25 | E 69 0105 0x45 | e 101 0145 0x65!
(ack) 6 0006 0x06 | & 38 0046 0x26 | F 70 0106 0x46 | f 102 0146 0x66!
(bel) 7 0007 0x07 | ' 39 0047 0x27 | G 71 0107 0x47 | g 103 0147 0x67!
(bs) 8 0010 0x08 | (40 0050 0x28 | H 72 0110 0x48 | h 104 0150 0x68!
(ht) 9 0011 0x09 |) 41 0051 0x29 | I 73 0111 0x49 | i 105 0151 0x69!
(nl) 10 0012 0x0a | * 42 0052 0x2a | J 74 0112 0x4a | j 106 0152 0x6a!
(vt) 11 0013 0x0b | + 43 0053 0x2b | K 75 0113 0x4b | k 107 0153 0x6b!
(np) 12 0014 0x0c | , 44 0054 0x2c | L 76 0114 0x4c | l 108 0154 0x6c!
(cr) 13 0015 0x0d | - 45 0055 0x2d | M 77 0115 0x4d | m 109 0155 0x6d!
(so) 14 0016 0x0e | . 46 0056 0x2e | N 78 0116 0x4e | n 110 0156 0x6e!
(si) 15 0017 0x0f | / 47 0057 0x2f | O 79 0117 0x4f | o 111 0157 0x6f!
(dle) 16 0020 0x10 | 0 48 0060 0x30 | P 80 0120 0x50 | p 112 0160 0x70!
(dc1) 17 0021 0x11 | 1 49 0061 0x31 | Q 81 0121 0x51 | q 113 0161 0x71!
(dc2) 18 0022 0x12 | 2 50 0062 0x32 | R 82 0122 0x52 | r 114 0162 0x72!
(dc3) 19 0023 0x13 | 3 51 0063 0x33 | S 83 0123 0x53 | s 115 0163 0x73!
(dc4) 20 0024 0x14 | 4 52 0064 0x34 | T 84 0124 0x54 | t 116 0164 0x74!
(nak) 21 0025 0x15 | 5 53 0065 0x35 | U 85 0125 0x55 | u 117 0165 0x75!
(syn) 22 0026 0x16 | 6 54 0066 0x36 | V 86 0126 0x56 | v 118 0166 0x76!
(etb) 23 0027 0x17 | 7 55 0067 0x37 | W 87 0127 0x57 | w 119 0167 0x77!
(can) 24 0030 0x18 | 8 56 0070 0x38 | X 88 0130 0x58 | x 120 0170 0x78!
(em) 25 0031 0x19 | 9 57 0071 0x39 | Y 89 0131 0x59 | y 121 0171 0x79!
(sub) 26 0032 0x1a | : 58 0072 0x3a | Z 90 0132 0x5a | z 122 0172 0x7a!
(esc) 27 0033 0x1b | ; 59 0073 0x3b | [91 0133 0x5b | { 123 0173 0x7b!
(fs) 28 0034 0x1c | < 60 0074 0x3c | \ 92 0134 0x5c | | 124 0174 0x7c!
(gs) 29 0035 0x1d | = 61 0075 0x3d |] 93 0135 0x5d | } 125 0175 0x7d!
(rs) 30 0036 0x1e | > 62 0076 0x3e | ^ 94 0136 0x5e | ~ 126 0176 0x7e!
(us) 31 0037 0x1f | ? 63 0077 0x3f | _ 95 0137 0x5f | (del) 127 0177 0x7f!

To manipulate a body of text with lines of
different lengths, you have two choices

- a padded character array
- a cell array of strings.

When creating a character array, each row of the
array must be the same length.

The char function pads with spaces to create
equal rows

!
S = char('A','rolling','stone','gathers','momentum.’)!

produces a 5-by-9 character array:
S =!
A_______!
rolling__!
stone____!
gathers__!
momentum.!

You don’t have to worry about this with a cell
array

!
C = {'A';'rolling';'stone';'gathers';'momentum.’}!

You can convert a padded character array to a

cell array of strings with
!

C = cellstr(S)!

and reverse the process with

!
S = char(C)!

To create a character array from one of the text
fields in a structure (name, for example), call the
char function on the comma-separated list

produced by S.name:

>>names = char(S.name)!
names =!
Ed Plum!
Toni Miller!
Jerry Garcia!

Look at formatted input and output and
characters using examples from mathworks web

pages.

Checking for special elements (NaN, Inf)

isnan(a) Returns 1 for every NaN in array a.

isinf(a) Returns 1 for every Inf in array a.

isfinite(a) Returns 1 for every finite number
(not a (Nan or Inf)) in array a.

isreal(a) Returns 1 for every non-complex
number array a.

Using special elements to your advantage.

Since NaNs propagate through calculations
(answer is NaN if there is a NaN somewhere in the
calculation), it is sometimes useful to throw NaNs

out of operations like taking the mean.
(A handy trick to ignore stuff you don’t want while you continue calculating.)

Example of NaNs propagating through calculation
(answer is NaN if there is a NaN somewhere in the

calculation)
>> a=1:4!
a =!
 1 2 3 4!
>> b=10:-1:7!
b =!
 10 9 8 7!
>> a(2)=NaN!
a =!
 1 NaN 3 4!
>> a+b!
ans =!
 11 NaN 11 11!
>> !

It is sometimes useful to be able to throw NaNs
out of operations like taking the mean.

(A handy trick to ignore stuff you don’t want while you continue calculating.)
So the function that identifies NaNs can be very

useful:!
>> a!
a =!
 1 NaN 3 4!
>> ix=find(~isnan(a))!
ix =!
 1 3 4!
>> m=mean(a(ix))!
m =!
 2.6667!
>>!

finds all values of a that are not NaNs and
averages them (denominator is number of elements averaged, not total

number of elements).

How to find values in matrix - you will need this for the hw:!
>> a=magic(3)!
a =!
 8 1 6!
 3 5 7!
 4 9 2!
>> b=find(a>5)!
b =!
 1!
 6!
 7!
 8!
>> [c d]=find(a>5)!
c =!
 1!
 3!
 1!
 2!
d =!
 1!
 2!
 3!
 3!
>>

 index value
linearly - 2-d
 1 1,1 8
 6 3,2 9
 7 1,3 6
 8 2,3 7

But no way I can see to use
the 2-d result to index
directly into matrix as a 2-d
matrix – stuck with linear
indexing.

For 2-d indexing you have to do this

>> A = [1 3 5 2 7;6 0 1 16 12; 8 11 2 3 6];!
[value, index] = min(abs(A(:)-10))!
[row, col] = ind2sub(size(A), index)!
A(index)!
A(row, col)!
value =!
 1!
index =!
 6!
row =!
 3!
col =!
 2!
ans =!
 11!
ans =!
 11!
>> !

Can go other way also – 2-d index to linear index

>> rng(0,'twister'); % Initialize random number generator.!
>> A = rand(3, 4, 2) !
A(:,:,1) = !
0.8147 0.9134 0.2785 0.9649 !
0.9058 0.6324 0.5469 0.1576 !
0.1270 0.0975 0.9575 0.9706 !
A(:,:,2) = !
0.9572 0.1419 0.7922 0.0357 !
0.4854 0.4218 0.9595 0.8491 !
0.8003 0.9157 0.6557 0.9340Find the linear index !
!
%corresponding to (2, 1, 2):!
!
>> linearInd = sub2ind(size(A), 2, 1, 2) !
linearInd = !

14

help!

Built into matlab

help “command”!

To get help on the command “command”

Problem when you don’t know the name of the
command

Just type “help”

>> help!
HELP topics:!
!
Documents/MATLAB - (No table of contents file)!
matlab/general - General purpose commands.!
matlab/ops - Operators and special characters.!
matlab/lang - Programming language constructs.!
matlab/elmat - Elementary matrices and matrix

! ! ! ! ! ! ! ! ! ! ! ! ! !manipulation.!
matlab/randfun - Random matrices and random streams.!
!

Lists topics of help available

Then to get contents of topics type
help “topic”

>> help elmat!
 Elementary matrices and matrix manipulation.!
 !
 Elementary matrices.!
 zeros - Zeros array.!
 ones - Ones array.!
 eye - Identity matrix.!
 repmat - Replicate and tile array.!
 linspace - Linearly spaced vector.!
 logspace - Logarithmically spaced vector.!
 freqspace - Frequency spacing for frequency response.!
 meshgrid - X and Y arrays for 3-D plots.!
 accumarray - Construct an array with accumulation.!
 : - Regularly spaced vector and index into matrix.!
 !
 Basic array information.!
 size - Size of array.!

Help on individual command
!
>> help zeros!
 ZEROS Zeros array.!
 ZEROS(N) is an N-by-N matrix of zeros.!
 ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.!
 ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-P-
by-... array of!
 zeros.!
 ZEROS(SIZE(A)) is the same size as A and all zeros.!
 ZEROS with no arguments is the scalar 0.!
 ZEROS(M,N,...,CLASSNAME) or ZEROS([M,N,...],CLASSNAME) is an!
 M-by-N-by-... array of zeros of class CLASSNAME.!
 Note: The size inputs M, N, and P... should be nonnegative
integers. !
 Negative integers are treated as 0.!
 Example:!
 x = zeros(2,3,'int8');!
 See also eye, ones.!
 Reference page in Help browser!
 doc zeros !

Matlab file exchange!

!
http://www.mathworks.com/matlabcentral/fileexchange/

Or

Google on what you want/need.

Some unix commands (pwd, ls, ???) “work” in
matlab (they are actually matlab commands)

a=pwd;!
b=ls;!

Some Matlab commands have the same names as
UNIX commands, but are not the same

“cat” is a matlab command that concatenates
matrices (not files)

Matlab does not pass things it does not
understand to the OS to see if they are OS

commands.

Temporarily done with Matlab.

Move on to SAC.

(Seismic Analysis Code)

Seismic analysis code (sac)

Basic Data Manipulation

SAC (Seismic Analysis Code)

General purpose interactive program designed
for the study of sequential signals, especially

seismic timeseries data (seismograms).

Emphasis has been placed on analysis tools used
by research seismologists in the detailed study of

seismic events.

SAC (Seismic Analysis Code)
Analysis capabilities include:

- General arithmetic operations

- Fourier transforms
-  integration/differentiation

- spectral estimation/processing techniques
- IIR and FIR filtering

- Signal stacking
-  Decimation and Interpolation,

-  Correlation,
-  seismic phase (time and amplitude) picking

-  Instrument correction
-  Particle motion rotation

-  Trace envelopes
-  Linear regressions

-  Frequency-wavenumber analysis
-  various types of plotting.

SAC (Seismic Analysis Code)

SAC also contains an extensive (for the early 1980’s)

 graphics capability.

SAC

Seismic Analysis Code was developed at
Lawrence Livermore National Laboratory (LLNL)

and University of California in the early 1980's.

LLNL is one of the 3 US Nuclear weapons
laboratories.

Seismology is one of the principle tools in Nuclear

Test Ban treaty verification.

SAC

SAC was developed using PRIME
Microcomputers under the PRIMEOS.

It was written in FORTRAN.

SAC

It is a command-driven, as opposed to a menu or
GUI driven, program.

It took advantage of several features of the
PRIMEOS (the OS from the computer company
PRIME), such as its command line processor that

passes commands that are not part of the
program to the OS.

(This means, that if one is running SAC and you need to get a directory listing, you just
enter the “ls” command. Since this is not a SAC command, the command line processor

will pass the command to the OS and you will get a directory listing. You don’t have to
leave SAC, do the “ls”, write down/remember the file name, and restart SAC. This was

very important in the pre –GUI days.)

SAC

Although it can run in batch mode, it was
principally designed to be interactive and have

interactive graphics.

It was designed to use the “state-of-the-art”
Tektronix 401X “storage tube” line of graphics

terminals.

Tektronix 4010 Specifications
Data Transfer Rate: 150 to 9600 baud
Screen Size: 8 1/4 by 6 3/8 inches
Character Set : UPPER CASE ONLY 63 total 5x7 matrix
Format : 74 characters per line 35 lines per screen (2590 characters)
Character Draw Time:1200 per second
Vector Resolution: 1024 by 780
Vector Draw Time: 2.6 milliseconds maximum
Usable Storage Time: Up to one hour without permanent damage
Operating Environment: 10 to 40 C (50-104F)
Power: 192 watts maximum
Weight: 78 pounds

Notice the blistering speed -

Data Transfer Rate: 150 to 9600 baud.

This will come back to haunt us.

SAC

After the demise of PRIME in the early 90’s, SAC
was beaten into submission to run under the UNIX

operating system, specifically, SOLARIS, the
SUN (which has followed PRIME into oblivion) OS.

(as with UNIX, SAC dragged along many of the idiosyncrasies of its birth associated with

the PRIMEOS and the hardware limitations of the time – such as the TEK401X. The
UNIX implementation was the simplest “make it run” under UNIX effort – amounted to

writing a graphics translator from tektronix graphics commands to the current ones – no
rethinking, etc. due to new hardware and capabilities – just translate line by line.)

It now runs on most UNIX/LINUX systems and

has become one of the standard data
manipulation tools in seismology.

SAC

SAC’s data format, especially for binary data, is
one of the principle data formats used today in

storing, transferring, and manipulating
(earthquake) seismological time series data.

SAC’s competitors (data format) include

ah (ad-hoc, used by IRIS/PASSCAL program, born about the same time as SUN)

SEED (Standard for the Exchange of Earthquake Data, native format IRIS-DMC)

CSS (Center for Seismic Studies, associated with treaty verification)

SUDS (Seismic Unified Data System, from Willie Lee PC based system/USGS)

SEG-Y (the standard for seismic reflection data)

Others (Panda,…)
(new ones crop up every 5-10 years to address the chaotic state of affairs.)

SAC’s competitors (analysis) include

- IRIS/PASSCAL ah (ad-hoc) system

- Various versions (with various names) of DATASCOPE
(now Antelope)

- XPICK!

- Seismic UNIX!

-  MATSEIS!

-  others

SAC is used for a range of seismic analysis tasks
from quick preliminary analyses to

routine processing and testing new techniques
creating publication quality graphics, etc.

Luckily for us we are protected from the power of
UNIX and all the UNIX setup details for running
SAC (and GMT and MATLAB, etc.) have been

set up for us in the global .cshrc file.

To run sac, simply type “sac” at the prompt.

ceri% sac!
SEISMIC ANALYSIS CODE [8/8/2001 (Version 00.59.44)]!
Copyright 1995 Regents of the University of California!
SAC> !
!

SAC is now ready to start accepting commands.

Commands

SAC commands fall into 3 main categories

Parameter-setting: change values of internal SAC
parameters.

Action-producing: perform some operation on
the signals currently in selected memory based

upon the values of these parameters.

Data-set: determine which files are in active
(selected) memory and therefore will be acted

upon.

Commands

help calls up a list of all commands.

help command shows the manual page for the
command.

Defaults

Based on typical use at CERI, default values for
all operational parameters are set when you start

SAC.

Almost all of these parameters are under direct
user control.

SAC can be reinitialized to the default state at

any time by executing the INICM command.

Data File Command Module

This module is used to read, write, and access
SAC data files.

read (can be shortened to “r”): reads data files

from disk into memory

sac> r *.SAC!

Uses standard UNIX wildcards: reads all files
whose filenames end in “.SAC”

Data File Command Module

write (“w”): writes the data currently in memory
to disk

You can write the data into a range of file formats
and file names or simply overwrite the current set

of files.
(so be careful, you’ve been warned)

Let’s try it (and also jump ahead to graphics
action module to plot (“p”) it) –

alpaca.ceri.memphis.edu504:> sac!
 SEISMIC ANALYSIS CODE [8/8/2001 (Version 00.59.44)]!
 Copyright 1995 Regents of the University of California!
!
SAC> read ccm_sumatra_.bhz!
SAC> plot!

Which produces the following plot.

This plot shows the heritage of the SAC program.

The plot is a straight “port” of the TEK 401X
graphics over to an X-Window display.

(It looks exactly the same as it did on the TEK 401X.)

This seismogram is 20,000 seconds long, with
samples 20 times per second.

It has over 3,890,000 points and would take

almost an hour to draw at 9600 baud.

Enter QDP (Quick and Dirty Plot mode) to
the rescue.

Look at the lower right corner. There is a box

there with the number 779.
This tells us that SAC is displaying every 779th

point (that’s one point every 39 seconds!).

SAC automatically cuts down the amount of data
it shows when the number of input points is

>1000 (the resolution of the TEK401X series of devices is 1024) so that it
only takes a few seconds to draw it at 9600 baud.

Unfortunately, about the only thing this plot tells
us is that something was recorded.

The wiggles you see are absolutely completely
useless for analysis (the data in memory is OK

however)
(you will learn the technical reasons for this – known as aliasing - in signal analysis).

Since we are on a modern computer we can afford
to plot all the data (although it is still sub-optimal to do so. Our plot will

now legally represent the seismic signal).

So we turn the QDP “feature” off
(you can guess how to turn it back on.)

SAC> qdp off!
SAC> plot!
!

This plot is now “good” (compare to previous slide).

qdp is the correct idea (don’t waste time displaying stuff that you can’t

see due to screen resolution), but it is very badly implemented.

qdp should have taken the max and min of each
of the sections of N points (instead of each Nth point) and

plotted a vertical line between them at each time (it

would have taken twice as long to display, but the qdp display was relatively quick).

The display would be identical to the full display
on the last slide (and look like a paper record).

(this would have cost some computer time to calculate what to display, but that is minimal
compared to the data transfer time to the TEK401X. As it is now it takes the decimation
factor longer to calculate what gets drawn on the screen – you don't notice it, but the

drawing is instantaneous).

