
Data Analysis in Geophysics

Good Practices for Algorithm Writing
Fall 2013

Demián Gómez

What is an Algorithm?
•  From Wikipedia: A step by step

procedure for calculations, data
processing and automated
reasoning.

•  Algorithms can be applied for any
specific task. Like Sheldon’s
friendship algorithm:
http://www.youtube.com/watch?v=k0xgjUhEG3U

How do you design an algorithm?

•  It is something difficult to teach. There are many
designing techniques, but each person has its
own methods. It’s like riding your bike: you learn
by doing it!

•  One very important thing is how you implement
your algorithm on a computer program.

•  A good implementation of a computer algorithm
is one that is clear and general enough to be
reused if needed.

What do we need to write a
computer algorithm?

•  Variables.
•  Constants.
•  Decision blocks.
•  Loops.
•  Functions or subroutines.

What additional tools do we have to write a good
algorithm?

•  Indirect addressing.
•  Comments and code blocks.
•  (among others)

Variables and Constants
•  Try to use as many parameters as possible.

% read the wav file

corner1 = 80;

corner2 = 980;

[y fs] = wavread('wwv2.wav');

% construct a butter filter

[z100, p100] = butter(2,[corner1/(fs/2) (corner1 + 25)/(fs/2)]);

[z1000, p1000] = butter(2,[corner2/(fs/2) (corner2 + 25)/(fs/2)]);

%filter the data% get 100 Hz subcarrier

d = filtfilt(z100, p100,y);

% get 1000 Hz sync pulse

sync=filtfilt(z1000, p1000,y);

% construct the time

vectort=linspace(0,length(d)/fs,length(d))';

subplot(3,1,1); plot(t,d, t, sync);

Good Code

Variables and Constants Cont.

•  Bad code
% read the wav file

[y] = wavread('wwv2.wav');

% construct a butter filter

[z100, p100] = butter(2,[80/(20050/2) 105/(20050/2)]);

[z1000, p1000] = butter(2,[980/(20050/2) 1005/(20050/2)]);

%filter the data% get 100 Hz subcarrier

d = filtfilt(z100, p100,y);

% get 1000 Hz sync pulse

sync=filtfilt(z1000, p1000,y);

% construct the time

vectort=linspace(0,length(d)/20050,length(d))';

subplot(3,1,1); plot(t,d, t, sync);

Constants

•  If you have values that don’t change
throughout your program, it is better to use
constants to make sure you are not
accidentally changing their values.

•  However, constants in Matlab are not easy
to define.

classdef MyConstants
 properties (Constant = true)
 SECONDS_PER_HOUR = 60*60;
 DISTANCE_TO_MOON_KM = 384403;
 end

end

Constants Cont.

•  A little bit better in other languages:

C, C++:
#define pi 3.1415

Basic:
Const pi = 3.1415

Fortran:
Parameter (pi=3.1415)

Decision blocks

•  To write a decision block, figure out what
you are trying to decide and write the
minimum amount of code inside the IF
block.

•  i.e., don’t repeat code in the IF ELSE
block.

IF block Example: Good Code
if (decision == value)
 var = 1;

else

 var = 0;

end

Result1 = operation(var);

Result2 = operation(Result1, var);

IF block Example: Bad Code
if (decision == value)
 var = 1;

 Result1 = operation(var);

 Result2 = operation(Result1, var);

else

 var = 0;

 Result1 = operation(var);

 Result2 = operation(Result1, var);

end

IF vs Switch Blocks

•  If there are more than two branches in
your IF statement, you might consider
using a switch statement rather than IF
ELSEIF, ELSE.

•  Switch blocks are a little more clear than if
statements (to read), although in Matlab,
switch statements are slower than IFs. In
many languages this is the other way
around.

If vs Switch Example 1
switch index

 case 1

 string=[string '1'];

 data_bit = [one; zeros(length(pulse) - length(one), 1)];

 case 2

 string=[string ‘0'];

 data_bit = [zero; zeros(length(pulse) - length(zero), 1)];

 case 3

 string=[string ‘M'];

 data_bit = [mark; zeros(length(pulse) - length(mark), 1)];

 case 4

 string=[string ‘-'];

 data_bit = [none; zeros(length(pulse) - length(none), 1)];

end

If vs Switch Example 2
if (index == 1)

 string=[string '1'];

 data_bit = [one; zeros(length(pulse) - length(one), 1)];

elseif (index == 2)

 string=[string ‘0'];

 data_bit = [zero; zeros(length(pulse) - length(zero), 1)];

elseif (index == 3)

 string=[string ‘M'];

 data_bit = [mark; zeros(length(pulse) - length(mark), 1)];

else

 string=[string ‘-'];

 data_bit = [none; zeros(length(pulse) - length(none), 1)];

end

Switch Tricks
switch true

 case index == 1

 string=[string '1'];

 data_bit = [one; zeros(length(pulse) - length(one), 1)];

 case index == 2

 string=[string ‘0'];

 data_bit = [zero; zeros(length(pulse) - length(zero), 1)];

 case index == 3

 string=[string ‘M'];

 data_bit = [mark; zeros(length(pulse) - length(mark), 1)];

 case index ~= 1 && index ~= 2 && index ~= 3

 string=[string ‘-'];

 data_bit = [none; zeros(length(pulse) - length(none), 1)];

end

While Loops and For Loops

•  Although these two statements have the
same functionality, FOR loops are meant
to count a predetermined number of
elements.

•  WHILE loops are meant to count an
unknown number of elements or are
supposed to be used to do something until
a condition is met.

For Loop Example

•  This is an example of a predefined number
of elements in a FOR loop.

for i=2:100

 MyVect(i,1) = MyVect(i-1,1)*2;

end

Stupid way of using a For Loop
•  This is an example of a FOR loop incorrectly

used (although it works).

for i=1:100000000

 if (condition == value)
 % do whatever in here
 break;
 end

End

•  This code is correct.

While condition ~= value

 % do whatever in here
end

Functions and Subroutines
•  When writing a program, you should think about

the future so that stuff like this doesn’t happen:

Functions and Subroutines

•  You also want to make sure that the code
is CLEAR (easy to understand).

•  To do so, write your code using functions
and subroutines that will do common
operations. This will allow you to reutilize
code in the future and will help you to
avoid unexpected problems.

Subroutine Example
clear all
clc

a = 1; b = 2;

Result = suma(a, b);

On a different file you might have:

function [x] = suma(val1, val2)

 x = val1 + val2;

end

The next time you write a program and you need the function “suma”, you just need to copy
this file from one directory to another.

Final word on indirect addressing

•  Indirect addressing can be very helpful to write shorter
and better code.

•  This technique allows you to access data from a vector
table that holds the address of the actual values that you
need.

Indirect addressing

•  Matlab doesn’t really do indirect
addressing, but indexing is similar.

•  You use the index to determine the
location in memory of the data we want to
access.

Structure Indexing example

•  Load a SAC file into memory (use sacread).
•  The returned structure will contain a series of

fields with all the information about that file
(sampling interval, event location, etc).

•  These are 88 fields (approx). If you want to write
a function that returns a specific field using its
ordinal number, you would need a VERY long
switch statement, like this…

Structure Indexing example
function value = return_sac_header(item)

global sacdata;

global is_file_open;

if is_file_open

 switch item

 case 8

 value = sacdata.delta;

 case 9

 value = sacdata.depmin;

 case 10

 value = sacdata.depmax;

 . . .

 . . .

end

end

Structure Indexing example
function value = return_sac_header(item)

global sacdata;

global is_file_open;

if is_file_open

 fields = fieldnames(sacdata);

 if item >= 8

 value = sacdata.(fields{index})

 end

end

end

Other Tricks and Tips

•  ALWAYS, indent and separate your code.
Never write code without separating it into
blocks.

•  If you don’t indent or separate your code
you might end with something like this:

Try to read this code
%close all
% script to plot results
if isunix() slash = '/'; else slash = '\'; end
site_list = []; for j=1:size(SITE_LIST,1) site = SITE_LIST(j,:); if nargin == 5
for h=1:size(plot_sites,1)
if strcmp(plot_sites(h,:), site) == 1
site_list = [site_list; site];
end
end
else
site_list = [site_list; site];
end
end

Now, try this one
 %close all

 % script to plot results

 if isunix()
 slash = '/';
 else
 slash = '\';
 end

 site_list = [];

 for j=1:size(SITE_LIST,1)
 % load each site to make the plot
 site = SITE_LIST(j,:);

 if nargin == 5
 for h=1:size(plot_sites,1)
 if strcmp(plot_sites(h,:), site) == 1
 site_list = [site_list; site];
 end
 end
 else
 site_list = [site_list; site];
 end
 end

Comment your code!

•  It is always a good idea to comment what you
are doing by adding a simple human readable
sentence that explains the purpose of the line
(even if it seems stupid). I guarantee than after 3
weeks without looking at your code, the stupid
comment helps a lot. Make sure the comments
make sense!

•  In Matlab, vectorization of code can make it
pretty unintelligible, so it’s always better to
explain what you did.

Example of unintelligible code

 % make a matrix with the values on the first column
tifb = [-obs(:,12)/K*f2 zeros(n, m)];
index = 1:m*n;
index = reshape(index,n,m);
index = bsxfun(@minus, index, n*(obs(:,15)-1));

Much better

 % make a matrix with the values on the first column
tifb = [-obs(:,12)/K*f2 zeros(n, m)];
 % make a vector of n*m elements
index = 1:m*n;
 % reshape it to be n x m
index = reshape(index,n,m);
 % subtract from each elem the val on matrix obs-1 multiplied by n
 % this will create a matrix with values that are 0 at the position of the
 % receiver.
index = bsxfun(@minus, index, n*(obs(:,15)-1));

