
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929
�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 12, 10/3/13

Quotes for the day:

“Software stands between the user and the
machine” - Harlan D. Mills

Software can help the user in their daily
endeavors or stand in the way.

OS’s at CERI

§ Mac OS X (Darwin/UNIX)
UNIX plus Mac GUI

  10 Macs in Student Comptuer Lab in

Long Building
  many faculty offices.

OS’s at CERI

§ Solaris 9 UNIX

Misc SUN computers (not sure how many
workstations left), many faculty offices

CERI compute servers (enigma, ??: all
headless – no screen, have to ssh into

them.)

OS’s at CERI

§ Solaris 9 UNIX

2 Graphical Desktop Environment options:

- Common Desktop Environment
(traditional)

-  - GNOME 2.0 (more PC‐like)

OS’s at CERI

§ Various flavors of Linux

(dialects)

Popular, open source version of UNIX
(often described as “UNIX-like”, but is

UNIX).

Found on a number of machines at CERI,
but not officially supported at CERI.

Why learn Unix/Linux?

Designed to be

� multi-user (from the dark ages when all
computers were shared),�

� interactive (as opposed to “batch”), and

� multi-tasking (sharing again).

Why learn Unix/Linux?

� Invented by and for computer scientists/
system programmers

(not users or scientific programmers,
unfortunately).

UNIX was designed
to run on one of

these!

It was amazing.

Unfortunately it
has not evolved

much.

Why learn Unix/Linux?

� Powerful, flexible, and small

� Hardware independent (myth!)

 (these two points are much more
important to manufacturers and designers

than general users, i.e. us)

Why learn Unix/Linux?

� “Free” (this is why is it still around) from Bell
Labs and Berkley.

� Open source – “free” – applications, including
compilers.

� Most common free applications designed as
part of the GNU Project (GNU’s Not Unix)

The real reason why to learn Unix/Linux?
� Because you have no choice

 (“Resistance is futile”, The Borg, Star Trek).

�  It is what is running in most geophysics (both
university and corporate) departments.

� Most geophysics tools (SAC, GMT, GAMIT/
GLOBK, etc.) only run on Unix (although there is a Windows

version of GMT).
(~89% of the worlds computers run some form of Windows, ~10% run some form of the

Mac OS, and ~1% run some flavor of Unix.)

Why learn Unix/Linux?

� “Free” in the sense you don’t buy it from AT&T
or Berkley

� But there is no such thing as a “Free Lunch”.

Not “Free” in the sense that you must hire a
system programmer/manager otherwise known as

a UNIX Wizard or Guru.

(another UNIX myth shot down)

A bit of history�

§  Originally developed at AT&T in the late 60s/early 70s.

§  Freely given to universities in the 70s.

§  Berkeley scientists continued to develop the OS as BSD Unix
in parallel with AT&T (AT&T eventually licensed it for

commercial use).

§  Much development, branching, and combining has led to the
most common variants of Unix (“flavors” or “distributions” in

Unix speak).

§  See http://www.bell-labs.com/history/unix/

Common flavors
�  Solaris 9 Unix

�  Distributed by Sun Microsystems, runs on Sun Hardware, PC
hardware.

�  Derived from Unix System V release (AT&T) on a Unix kernel.

�  Mac OSX - Darwin
�  Distributed by Apple, runs on Mac Hardware.

�  Derived from BSD Unix OS on a Mach kernel - Darwin.

�  Linux – lots of ‘em
�  Free* and commercial# versions available built on a Linux kernel.
�  Flavors most likely to hear about are RedHat#, Ubuntu*, Fedora*,

Debian*, Suse*,….

Does this matter?
�  No, the differences between the various flavors of the Unix

operating system should not severely affect your work in this
class or even much of your research at CERI.

 BUT

Does this matter?
§  Yes, you need to be aware of OS differences

ú  When file sharing with others (this is more of a hardware, rather

than an OS, issue).

ú  When compiling source code (the executable file is married to
hardware).

ú  If sharing programs, shell scripts, etc. with others.

ú  Or if moving between the different systems at CERI.

Relation to Windows

None.

Windows XP

Built on MS-DOS (which is not really an
operating system, it is a file system), which has

nothing to do with Unix and everything to do with
Microsoft.

Cygwin – unix/linux like environment for windows.

Have to build everything from source.

Relation to Windows

The differences between the Unix Philosophy
and the Windows Philosophy … can be boiled

down into a question of smarts … .

Unix and Windows store the smarts in different
places.

Unix stores the smarts in the user.

Windows stores the smarts in the OS.

Learning curves

Enter the concept of the “Learning Curve”. …

A "steep" learning curve generally refers to
something that requires a lot of initial learning to

do anything, even something very simple.

A "shallow" learning curve is exactly the opposite;
can do simple stuff easily immediately.

Learning curves

Armed with those definitions, it's fairly simple to
then go ahead and say that Unix has an

inherently steep learning curve, and Windows
has a very shallow one.

Windows

Our Microsoft brethren have taken the approach
of making the shallowest possible learning curve.

Windows

To take a cue from the fast food industry,
Windows is the "under-3" toy of the OS world.

 The ultimate goal is to flat-out destroy any

barrier to entry by removing any requirement for
initial knowledge or learning of how and why, and
of making the system simplistic enough that it can

be used without any understanding of how it
works.

Unix

The Unix crowd has taken the opposite
approach.

Unix

Unix has a steep learning curve; it doesn't shield
the user from complexity; rather, it revels in the

complexity.

It recognizes that a general-purpose computer is
a fiendishly complicated device capable of doing

an unbelievable assortment of things.

Unix

It recognizes that the computer is a tool of the
user, and so takes a tool-building philosophy.

Make a lot of tools, and make each tool specific,

and let the user select the tool they think
appropriate, and let the user combine the tools

however they want.

It's not aimed at making things easy; it's aimed at
making things possible.

UNIX Philosophy

(Mac) (Unix)

“Dilbert” by, Scott Adams, Sep 30, 1994.

The Shell

�  The UNIX user interface is called the shell.

�  The shell does 4 jobs repeatedly:
display
prompt

execute
command

process
command

read
command the shell

Final Model

We will now take a short detour to examine the
Unix philosophy.

It will keep returning to haunt us, but if you
understand it, it will make the process less

painful.

What is the “Unix Philosophy”?

(can computer operating systems have a
“philosophy”?)

According to Doug McIlroy

(i) Make each program do one thing well.

So, to do a new job, build afresh rather than
complicate old programs by adding new features

(otherwise known as “bells and whistles”).

What is “Unix Philosophy”?

Machine shop vs. appliance

(gives you the tools and you to make appliance)

What is “Unix Philosophy”?

Advantage

-  POWERFUL

What is “Unix Philosophy”?

Disadvantages

-  Lots of reinventing the wheel

-  Requires a more educated user

-  Requires more work from the user rather than
the developer

What is “Unix Philosophy”?

Typical question: can UNIX do this?

Typical answer: NO, but YOU can write a
program!

Unix enthusiasts think this is the answer the
average user wants to hear!

Caricature of UNIX vs Windows

If you need a washing machine

Windows gives you a simple washing machine
(only one 1 setting, you shouldn’t wash your

cashmere sweater, but there are no operating
instructions[its intiutive] so you probably don’t

know that and ruined it.)

UNIX gives you a machine shop [you better know
1) how wash clothes and 2) how to design and

build a machine to do it].

“UNIX Philosophy”

(ii) Expect the output of every program to

become the input to another, as yet unknown,
program.

- Don't clutter the output with extraneous

information useful to the user, but not needed by
the input for next program.

“UNIX Philosophy”

Unfortunately this may make things confusing for
the uninitiated user.

The output is for “next program” (in a “pipe”),

not the user.

“UNIX Philosophy”

Idea of “filter” –

Every program takes its input from Standard-IN
(originally a teletype, now a keyboard),

does something to it (“filters” it) and

sends it to Standard-OUT (originally a teletype,

now a screen)

(notice that the “user” is not part of this model).

“UNIX Philosophy”

It is pretty easy to see these are not good
assumptions (Stnd-IN, Stnd-OUT) for many

tasks and we need a way around it
(in addition, many Unix commands break this

convention).

“UNIX Philosophy”

Idea/use of – redirection (“<“, “<<“ and “>”,
“>>”)

- Take input from a file rather than Standard-IN

-  Send output to a file rather than Standard-

OUT

(Unix treats everything like a “file”, even
hardware)

“UNIX Philosophy”

What happens when you ask for a listing of files in
an empty directory?

$ ls<CR>!
$!

Returns to prompt without any other output.

(there are no files to list, so Unix outputs nothing
[and a new prompt], is that reasonable?).

(Works differently in shell script)

“UNIX Philosophy”

What happens when you enter

$ echo<CR>!

The command echo, “echoes” what you type.

Should do nothing! (what about a new prompt on
same line?)

(i.e. it should just sit there, with the “cursor”,

which was invisible on a teletype after the <CR>,
waiting for input)

“UNIX Philosophy”

What happens when you enter

$ echo<CR>!

Usually goes to next line and prints the prompt
on the screen as in the previous example(break

with philosophy because philosophy too
confusing)

$ echo<CR>!

$
But does what expected, nothing (it follows

philosophy), in a shell script.

“UNIX Philosophy”

This brings up another issue – commands
sometimes behave differently in shell scripts than

they do “interactively”

Typically more “chatty” when interactive.

This kind of stuff can make for confusion when
debugging. Works from screen, does not work in

shell script.

“UNIX Philosophy”

Idea/use of – pipes (“|”)

Sends output to the next program (instead of
“standard out” or a file)

And

Takes input from the previous program (instead
of “standard in” or a file)

“UNIX Philosophy”

Example: we have two files with a name and
student ID on each line.

There are some duplicates (i.e. exact same line,

character for character, in both files).

We want one file, in alphabetical order, with
duplicates removed.

cat file1 file2 | sort –u > file3!

!
(cat does not require input file redirection, it will take a list, redirection does not even

work with more than one file)

Write programs to handle text streams, because
that is a universal interface.

(fine if you’re a system programmer, not always so
useful for scientific data crunching.

Good example of a real problem that does not
follow this model is earthquake location.

You typically have one static text file for station
locations, another static text file for the velocity

model, and

a final text file with station names and arrival times
for an earthquake.

This does not fit the serial, filter model.

Another example, binary seismic, topo, etc.
data.)

“UNIX Philosophy”
Continued

Avoid stringently columnar or binary input formats.

(Avoid, but sometimes necessary. Not closely followed by many programs. Stupid

restriction – especially given UNIX “you can write a program to do that” philosophy)

Don't insist on interactive input.

([User} Does not fit in with use of pipes.)

Instead, control is implemented by use of “command line

switches”

“UNIX Philosophy”

Put lots of (simple, easy to write) single minded
programs in a row (with pipes) to do what you

need.

(Don’t use temporary/intermediate files – use a
pipe).

“UNIX Philosophy”

New concept

use of – command substitution (`…`)
(uses “backwards” or French grave accent)

Use the output of a command as ‘some sort of
input’ to another command.

command substitution example.

echo `pwd`!

Executes the command pwd and then uses the

output as the input to echo.

(this is not how you would actaully do this – it is a ginned up example. If you
wanted to know this you would just use pwd.)

(you cannot nest them - `echo `pwd`` - does not work)

REVIEW

Write programs that do one thing and do it well.

(lean and mean)

Write programs to work together.

(pipes)

“the UNIX operating system, a unique computer
operating system in the category of help, rather

than hindrance.”
Introducing the UNIX System
McGilton and Morgan, 1983.

or

The trouble with UNIX: The user interface is
horrid

Norman, D. A. Datamation, 27, No. 12, 139-150.

"Two of the most
famous products
of Berkeley are
LSD and Unix. I
don't think that
this is a
coincidence.”

Anonymous

Before looking at more Unix commands, we will
first look at the FILE STRUCTURE (how files
[called documents on Mac and Windows] are

stored/organized).

Unix uses a hierarchical file system (as does Mac
and Windows/DOS).

Looks like an upside down tree.

Starts at top with “/”, called “root”.

Unix uses the “/” to separate directories (known
as folders on Mac or Windows)

Top Level
Directories

Levels of sub
Directories

File names – the “separator is “/”.
 root (first slash) then path and filename

/usr/lib/libc.a!

This is the full name from root (works from anywhere –
i.e. any directory), if you were in the directory usr, you

only need
!

lib/libc.a!

(no leading slash)

And if you were in the directory lib, you only need

libc.a!

(no leading slash)

The “/” (slash or forward slash) in Unix is roughly

equivalent to the “\” (backslash) in Windows/
DOS.

Some commands:

pwd – print working directory – tells us where we
are in the directory tree.

$ pwd<CR>!
/usr!
$

How to move between directories – going up and
down the directory tree–

To go down to the directory doc we use the

“change directory” = “cd” command

$ cd doc<CR>!
$!

Now

$ pwd<CR>!
/usr/doc!
$

Some details of the prompt

you can control all this - the prompt has been
programmed to tell us a bunch of stuff! (power of

unix.)

Machine
Directory name (in this case without full path)

User name
Text string

smalleys-imac-2:usr smalley$!

Aside:

Unix sub philosophy –

Minimize typing (on teletype) – so use short (2, in
extreme cases 3 character) command names

constructed from description of the command.

e.g. “cd” for “change directory”

(Unix fans claim this is a “feature” of Unix,
compared to other O/Ses)

We can also go up the directory structure.

To return to usr from doc.

doc$ cd ..<CR>!
usr$!

This is a little strange ---

The double dot (“..”) signifies the directory
directly above you (up) in the directory structure

(tree).

We can also go directly to anywhere in the
directory structure using the full path.

To go to usr (from doc or anywhere, such as pub)

doc$ cd /usr<CR>!
usr$!

Notice that you have to know where you are in the
tree and what subdirectories are contained there

to navigate down.

Unix does not provide a display of the picture
below. You need to have it in your head.

How do we go from doc to lib?

We could do this using the full path.
!
doc$ cd /usr/lib<CR>!
lib$!

How do we go from doc to lib?

But here’s an easier (?) way – we have to go up
one level; then down one level. This can be done

with the command.

doc$ cd ../lib<CR>!
lib$!

Say we want to go to “pub”
!
!
lib$ cd ../../home/ftp/pub<CR>!
!

We went up two, then down three. !

Say we want to go to “pub”

We could also have done (and is simpler) this with
the full path.
!
pub$ cd /home/ftp/pub<CR>!

Go directly to “root” directory (“/”)
!
lib$ cd /<CR>!
/$!

Go from anywhere directly to your “home”
directory (assume I’m “lisa”).

CS171$ cd ~<CR>!
lisa$!

uses tilde “~”

Go from anywhere directly to someone else's
home directory (assume I’m lisa)

lisa lisa$ cd ~joe<CR>!
/home/joe lisa$!

also uses tilde “~”

The tilde character “~”

- refers to your home directory when by itself,

-  or that of another user when used with their
home directory name (the same as their user

name).

(The shell expands the “~” into the appropriate
character string for the full path - “/home/joe”

or “/home/lisa”)

The single dot “.”

- refers to the current directory

ls ./somefile!

Review - specifying file names

full path
 /usr/lib/libc.a!

relative path

(if in directory lib) libc.a!
(if in another directory next to it, e.g. doc

 ../lib/libc.a!

Review - specifying file names
abbreviations

(if I am joe) ~/CS171/hello.cc !

(if I am not joe) ~joe/CS171/hello.cc!

You have to keep track of the file structure in
your head

or have a way to find out what files are in the

working directory.

What files are in working directory?

Use the “list” command, which is actually “ls”.

(Compare this to VAX-VMS, a professional O/S with 100 man-
years of development, which uses “directory” – much longer)

(but Unix supporters forget to tell you that it can be shortened,
using “smart abbreviating”, by dropping letters off the back, to

“director”, “directo”, “direct”, “direc”, “dire”, or “dir”

at which point continued shortening stops as “di” is non-unique as

another command (differences) also begins with the letters “di”.
This means you can write “com” files – same as shell scripts or

batch files – to be readable using “directory” or cryptically using
“dir”.)

Listing working directory (where we are) contents
with “ls” command.

$ ls<CR>!
Adobe SVG 3.0 Installer vel.dat!
Desktop ! ! ! ! ! ! ! ! !heflen_web.dat!
Documents ! ! ! ! ! ! ! !isc0463.dat!
Downloads ! ! ! ! ! ! ! !nuvel-1a.dat!
gpsplot.dat!
$!

Note the file

Adobe SVG 3.0 Installer

has spaces in the name.

On Unix this is somewhat of a problem.

Spaces are allowed in filenames in Unix (all
characters but the “/”, which we have seen means

something special in a filename, are allowed in
filenames!) , but spaces, and special characters

-!@#$%^&*()_+|?><`[]{}\’”:;!

 are not handled nicely as most of them also mean
something special (not related to file name) to the

shell.

The problem with spaces is that the command
interpreter of the shell parses (breaks) the

command line up into tokens (individual items)
based on the spaces.

So our file name gets broken into 4 small distinct

character strings (“Adobe”, “SVG”, “3.0”, and
“Installer”) which causes confusion since there

are no files by those names.

So we have to “protect” the spaces from the
interpreter.

This is done with quotes.

We refer to this file using

“ Adobe SVG 3.0 Installer ”!

or
‘ Adobe SVG 3.0 Installer ‘!

(We will see the difference between single, ‘, and

double, “, quotes later.)

ls: lists files and subdirectories of the specified
path.

%ls /gaia/home/rsmalley<CR>!
bin!src usr world.dat!
!
%ls<CR>!
lists everything in the current directory
!
%ls ~/bin<CR>!
lists everything in your bin directory (not the
system bin directory /bin).

ls: getting more information than just file name.

Use a “flag” to give the “ls” command control
inputs.

Use “-F” to obtain kind of file – list directories
with ‘/’ and executables with ‘*’ following them.

$ ls -F<CR>!
Adobe SVG 3.0 Installer vel.dat!
Desktop/! ! ! ! ! ! ! heflen_web.dat!
Documents !/! ! ! ! ! ! !isc0463.dat!
mymap.sh* ! ! ! ! ! ! ! !a.out*!
Downloads/! ! ! ! ! ! !nnr-nuvel-1a.dat!
gpsplot.dat!
$!

This example introduces the switch, or flag, “-F”,
which modifies the output.

The output now identifies if the file is a

“regular file” (nothing appended), a

“directory” (slash appended), or an

“executable file” (asterisk appended, = program,

application).

More switches

list entries beginning with the character dot, ‘.’,
which are normally hidden or invisible, using the

‘–a’ flag, and show the listing in long format using
the –l flag (plus the –F).

$ls -alF<CR>!
drwxr-xr-x+ 92 rsmalley staff 3128 Aug 31 12:48 .!
drwxr-xr-x 5 root admin 170 May 25 14:14 ..!
-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 !bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 !world.dat!

In this case can combine flags as above (-alF) or
put individually (-a –l –F).

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

What is the extra information

First character, “d” for directory, “-” for regular
file, plus about 10 other things for other types of
files.

The next 9 characters show read/write/execute
privileges for owner, group, and all (or world or
other).

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

If have read, write or execute privileges has “r”,
“w”, or “x” respectively. If not, has a “-”.

So the owner has read and write privileges on all
the files or directories, and execute privileges on
the executable file (indicated by the “*”), .cshrc,
and the directory bin (although one cannot
execute a directory – if a directory is not
executable other users can’t cd or see into it).

Group and world or other have no privileges.

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

Privileges can also be specified or displayed in
OCTAL (base 8) with each bit of the octal value
representing the permission/privilege.

rwx=111=7!
rw-=110=6!
r--=100=4!
--x=001=1!

etc. for owner, group, world.

-700 1 rsmalley rsmalley 1201 Jul 10 15:03 !.cshrc*!
d700 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-600 1 rsmalle yrsmalley 186668405 Jul 31 2007 world.dat!

This is “much better” (on a teletype) as it uses
fewer characters (and requires being “in the

know” to understand).

-rwx------ 1 rsmalle yrsmalley 1201 Jul 10 15:03 ! .cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

Temporarily skipping the next 3 columns, we then
have the file size in bytes, the date the file was last

modified, and the file name.

Switches/flags and manual pages:

Most Unix commands have switches/flags that
can be specified to modify the default behavior of

the command.

How do we find what switches are available and
what they do?

The developers of Unix (being so smart) thought
of this and provided documentation through the
manual command – “man”. To read the man page

for the list command.

160:> man ls!
Reformatting page. Please Wait... done!
!
User Commands ls(1)!
!
NAME!
ls - list contents of directory!
!
SYNOPSIS!
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
DESCRIPTION!
 For each file that is a directory, ls lists the contents of!
 the directory. For each file that is an ordinary file, ls!
 repeats its name and any other information requested. The!

This goes on for quite a while. Note the
--More-- (9%) at the bottom – says we are 9% done

(oh joy on a teletype!)
 output is sorted alphabetically by default. When no argument!
 is given, the current directory is listed. When several!
 arguments are given, the arguments are first sorted!
 appropriately, but file arguments appear before directories!
 and their contents.!
!
 There are three major listing formats. The default format!
 for output directed to a terminal is multi-column with!
 entries sorted down the columns. The -1 option allows single!
 column output and -m enables stream output format. In order!
 to determine output formats for the -C, -x, and -m options,!
 ls uses an environment variable, COLUMNS, to determine the!
 number of character positions available on one output line.!
 If this variable is not set, the terminfo(4) database is!
 used to determine the number of columns, based on the!
 environment variable, TERM. If this information cannot be!
 obtained, 80 columns are assumed.!
!
 The mode printed under the -l option consists of ten charac-!
 ters. The first character may be one of the following:!
!
--More--(9%)!

continuing
 d The entry is a directory.!
!
 D The entry is a door.!
!
 l The entry is a symbolic link.!
!
 b The entry is a block special file.!
!
 c The entry is a character special file.!
!
 p The entry is a FIFO (or "named pipe") special file.!
!
 s The entry is an AF_UNIX address family socket.!
!
 - The entry is an ordinary file.!
!
 The next 9 characters are interpreted as three sets of three!
 bits each. The first set refers to the owner's permissions;!
 the next to permissions of others in the user-group of the!
!
SunOS 5.9 Last change: 19 Nov 2001 1!
!
User Commands ls(1)!
!
 file; and the last to all others. Within each set, the three!
 characters indicate permission to read, to write, and to!
 execute the file as a program, respectively. For a direc-!
 tory, ``execute'' permission is interpreted to mean permis-!
 sion to search the directory for a specified file. The char-!
 acter after permissions is ACL indication. A plus sign is!
 displayed if there is an ACL associated with the file. Noth-!
 ing is displayed if there are just permissions.!
!
 ls -l (the long list) prints its output as follows for the!
 POSIX locale:!
!
--More--(16%)!

This goes on for several pages.

Try the manual command on a number of
commands

(including the man command with “man man”).
!

Man pages are pretty opaque.

They follow a fixed format giving you the name of
the command and the list of switches.

Most do not have examples

(like math books that don’t use figures since
figures can’t truly represent the math).

!

Removing files and directories

rm<CR> : remove files or directories

A very straightforward and potentially dangerous
command.

There is no trash can on a unix machine.

Once you hit the <CR> it is .

Now for some more commands.

(from here on, will drop the <CR> at end).

!

Removing files

rm: remove files or directories

CERI accounts are set up so that rm is aliased to
rm –i (more on aliases later), which means the

computer will ask you if you really want to
remove the file(s) one at a time

% which rm!
rm: aliased to /bin/rm –i!

and another new command “which” that tells
you if an executable exists and where it “lives”.

Removing files

%rm f1!
remove f1? !

Valid answers.

Yes, yes, Y, y – to accept and erase.

No, no, N, n – to not erase.

<CR> - does not erase, default.

Removing files

rm: remove files or directories

%rm f1!
remove f1? yes<CR>!
%!

and bye-bye file.

Removing files

Remember that Unix is lean and mean.

It is a multi-user system and once the disk space
associated with your file is released, the system

can write somebody else’s file into it
immediately.

There is NO RECOVERING removed files.

(You have been told. Sufficient for Unix users.)

Removing files

Without the –i option set – this is what we would
get.

%rm f1!
%!

and bye-bye file.
So if you made a typo –

tough.

Removing files

If the –i option was not set – you can get it by
typing –i yourself (you can find this out on

the man page)
(but sooner or later you will mess up on one if

you reset it back to normal operation!).

%rm –i f1!
remove f1? y!
%! and bye-bye file.

So if you made a typo –
tough.

Removing files

Say you are 100% sure and don’t want to have to
answer the question and the pesky system

manager has set an alias to protect you from
yourself (very non Unix philisophy). You can

return to the original definition of rm using the
“\”.

%\rm f1!
%!

and bye-bye file without prompting.
So if you made a typo – tough.

General Unix behavior.

The “\” before a command undoes an alias and
gives you the default Unix version of the

command.

Removing files

We will see more potential rm disasters when we
get to wildcards.

(If you have sufficient privilages, it is possible to
accidently erase the whole operating system!!!)

Making & removing directories

mkdir: make directory

% mkdir bin src Projects Classes<CR>!

Makes 4 directories: bin, src, Projects, and

Classes in the working directory.

Making & removing directories

rmdir: remove directory - only works with empty
directories so is safe (very uncharacteristic of

Unix).

% rmdir bin src Projects Classes!

Removes the 4 directories bin, src, Projects, and
Classes in the working directory -- IF they are

EMPTY.

Making & removing files and directories

rm –d: to use rm to remove directories

rm –r: removes directories recursively (i.e. all
subdirectories and files in them); implies –d!

can be very dangerous… one typo could remove
months of work (will probably also need the \)

% \rm -r Classes!
!

So if you made a typo – tough.
!

Making & removing files and directories

% rm -r Classes!

With the CERI alias for rm to rm –i, this
command will prompt you for each file!

Gets tedious – and makes you want to do

% \rm -r Classes!

Which is VERY DANGEROUS (but I’ve told you,

so I’m off the hook).

Manipulating files

cat: concatenate files, sends files or Standard-IN
to Standard-OUT.

 If you want the concatenated files in another file

– you have to redirect the output from Standard-
OUT to the file.

Manipulating files

cat: Since it dumps the entire file contents to the
screen

– we can use it to “print out” or ”type out” a file.

Manipulating files

Another Unix philosophy issue –
use of side effects.

We don’t need another command to print or type
the contents of a file to the screen as it is a side
effect of the cat command and the Standard-

OUT operation of commands.

So feature it!
There is no “print” command, it is un-needed (lean
and mean, emphasis on mean. The sooner you begin to think like

this the sooner you will be able to use Unix.).

Manipulating files

cat: make one file out of file1, file2 and file3 and
call it alltogether.

%cat file1 file2 file3 > alltogether!

This command (does not need input redirection,
exception to regular rule that input only comes

from Standard IN – but it will also take input from
Standard IN) takes files file1, file2, and file3 and

puts them into file alltogether.

Manipulating files

OK, what does this do?

%cat > myfile!

Manipulating files

OK, what does this do?

%cat > myfile!

(Put on your Unix thinking cap)

Manipulating files

OK, what does this do?

%cat > myfile!

(Put on your Unix thinking cap)

It takes Standard-IN (the keyboard) and puts it
into the file myfile.

Looking at files

OK, what does this do?

%cat > myfile!

How does one get it to stop?
i.e. how do you let it know you are done entering

stuff?

Enter “^d” or “^z”, where “^” is the control (ctrl)
key and you hold it down and then press the d or

z.

Notice the logic associated with the input, output,
and use of the command.

This type of thinking, or (il)logic, permeates Unix.

When you cat a long file it flies by on the screen
(and off the top).

On newer GUIs there are scroll bars and you can

scroll up and down.

On the older interactive terminals the text
disappeared off the top.

Not good.

Aside:

UUOC - "Useless Use of cat”

cat filename | command arg1 arg2 argn!

But “better” to use redirection (common)

command arg1 arg2 argn < filename!

Uncommon, but legal and works
!

<filename command arg1 arg2 argn!

From the Jargon File (glossary of UNIX computer
slang)

CAT

To spew an entire file to the screen or some other
output sink without pause (syn. blast).

By extension, to dump large amounts of data at

an unprepared target or with no intention of
browsing it carefully.

Usage: considered silly. Rare outside Unix sites.

See also dd, BLT.

Among Unix fans, cat(1) is considered an
excellent example of user-interface design,

because it delivers the file contents without such
verbosity as spacing or headers between the files,

and because it does not require the files to
consist of lines of text, but works with any sort of

data.

Among Unix critics, cat(1) is considered the
canonical example of bad user-interface design,

because of its woefully unobvious name.

It is far more often used to blast a single file to
standard output than to concatenate two or more
files. The name cat for the former operation is just

as unintuitive as, say, LISP's cdr.

UUOC - "Useless Use of cat”

"The purpose of cat is to concatenate (or
catenate) files.

If it is only one file, concatenating it with nothing

at all is a waste of time, and costs you a process.”

This is also referred to as "Cat abuse."

This problem was fixed by another Unix program
that takes Standard IN and puts it to Standard
OUT a screenful at a time. (has to know about

screens=hardware, a sub-optimal situation).

(This way, following the Unix philosophy, the cat
program could be lean and mean. It did not have
to figure out if it was going to the screen, how big
it was, etc., it just sends stuff to Standard OUT.)

So we pipe the output into another program that
handles the screen display.

This program is called more.

%cat myfile | more!

The program more puts up a screens worth of
text and then waits for you to tell it to continue

(using the space bar for a new page worth and
<CR> for a new lines worth of the file. ^z to quit

more.)

So we pipe the output into another program that
handles the screen display.

This program is called more.

%cat myfile | more!

The program more has to know about the

screen/hardware. But the unix command cat is
standard.

Looking at files

more can also be used directly

% more myfile!

Or

% more < myfile!

(more was written outside the Unix club and
borrowed by Unix, so it does not strictly follow

Unix philosophy.)

Looking at files

less: same as more but allows forward and
backward paging.

(in OSX, more is aliased to less because less

is more with additional features.)

(We will discuss aliases later.)

UNIX is a four letter word

''Unix is user friendly –

It's just picky about who it's friends are...'’

-- Unknown, seen in .sigs around the world

Manipulating files

paste:
concatenate files with each file a new column; (when

used on a single file, it dumps the entire file contents to the screen).

(cat sticks the files together one after the other
– sequentially – to Standard-OUT.

paste puts them together a line at a time to

Standard-OUT.
Each line N of the output file from paste is made

up of the lines N of the M input files.)

Looking at files

head –nX
head –X

prints the first X number of lines to the screen;
default is 10 lines if -n is not specified.

tail –nX
tail –X

prints the last X number of lines to the screen;
default is 10 lines if -n is not specified.

(don’t need the n)

Piping and Redirect

Input and output on the command line are
controlled by the |, >, <, and !Symbols.

| : pipe function; sends the output from
command on left side as input to the command

on the right side.

(We have seen these actions already.)

Piping and Redirect

Example pipe

% ls | head -5!
29-sadvf1!
29-sadvf2!
2meas.sh.out.txt!
3132.dat!
31all32new.trk!
%!

Piping and Redirect
“>” redirects standard output (screen) to a

specific file*
% ls | head -5 > directory.list!
% more directory.list!
29-sadvf1!
29-sadvf2!
2meas.sh.out.txt!
3132.dat!
31all32new.trk!

•  In tcsh, this will not overwrite (clobber) a pre-existing file with the same

name – it will warn you.
•  In the bash shell, the > overwrites (clobbers) any pre-existing file with no

warning!

Piping and Redirect

>! (csh) or >| (bash): redirects standard output
(screen output) to a specific file and overwrites

(clobber) the file if it already exists *
% ls | head –n5 >| directory.list!
% more directory.list!
29-sadvf1!
29-sadvf2!
2meas.sh.out.txt!
3132.dat!
31all32new.trk!

*make sure you use the correct one – else you will get files named “!” or “|”!

Use the command “set –o noclobber” in bash to turn noclobber on. To turn noclobber
off use “set +o noclobber”.

Piping and Redirect

>> : redirects and concatenates standard output
(screen output) to the end of a specific

(existing) file

% ls | head -n2 >! directory.list!
% ls | tail -n2 >> directory.list!
% more directory.list!
29-sadvf1!
29-sadvf2!
zonda.dat!
zz.tmp!
!

Piping and Redirect

< : redirects input from Standard input to the file
on right of the less-than sign to be used as

input to command on the left

% head –n1 < suma1.hrdpicks!
51995 31410273254 30870 958490!

Copying files & directories

cp:

copy files

cp –r:

copy directory and all files & subdirectories
within it (recursive copy)

Copying files & directories

% cp file1 ESCI7205/homework/HW1!

Makes a copy with a new name – “HW1” in the
directory “ESCI7205/homework”

% cp file1 ESCI7205/homework/.!

Makes a copy with the same name (file1), which is

specified by the dot “.” (period) to save typing,
in the new directory.

Some jargon

% cp file1 ESCI7205/homework/.!

Input file referred to as “source”

Output file referred to as “destination” or

“target”

Moving files & directories
mv: move files or directories

% mv file1 file2 ESCI7205/HW/.!

Moves file1 and file2 to new directory (relative)
ESCI7205/HW with same names (indicated by

the “.”).

Move differs from copy in that it removes the
original file, you only have 1 copy of it when

done.

Moving files & directories

mv: move files or directories

% mv file1 ESCI7205/HW/HW1!
% mv file2 ESCI7205/HW/HW2!

If you want to change the names when you move

them, you have to specify each new file
name(do them one at a time)

Renaming files & directories
(you should have been able to figure this out after the last two slides)

Uses a side-effect of move!!!

% mv file1 HW1!
% mv file2 HW2!

There is NO RENAME command.
(We consistently see this kind of inconsistent

[il]logic in Unix.)

Linking files & directories

ln –s:

creates a symbolic link between two files.

This makes the file show up somewhere(the
target, can be a new name in the same directory
or the same name in another directory), but the

file really only exists in the original place.

(equivalent to a file alias in OSX or shortcut in
Windows).

Try reading the man page –

LN(1) BSD General Commands Manual LN(1)!
!
NAME!
 link, ln -- make links!
!
SYNOPSIS!
 ln [-Ffhinsv] source_file [target_file]!
 ln [-Ffhinsv] source_file ... target_dir!
 link source_file target_file!
!
DESCRIPTION!
 The ln utility creates a new directory entry (linked file)
which has the same modes as the original file. It is useful for
maintaining multiple copies of a file in many places at once
without using up storage for the ``copies''; instead, a link
``points'' to the original copy. There are two types of links;
hard links and symbolic links. How a link ``points'' to a file
is one of the differences between a hard and symbolic link.!

Linking files & directories

Two kinds of link - symbolic and hard. Only root
can make hard links so don’t worry about them.

% ln –s in inlink

“real”/actual file

 linked file

Linking files & directories

Doing an ls command in the directory with the
alias produces the following

$ ls -l in*!
-rw-r--r--@ 1 smalley staff 69 Apr 26 2010 in!
lrwxr-xr-x 1 smalley staff 2 Sep 2 22:10 inlink -> in!

The leading “l” (the letter l, not the nubmer 1) in

the long ls output says the file/filename in that line
is a link.

It shows which file it is linked to.

Linking files & directories

This allows us to “have” the file in more than one
place.

We can therefore access it locally from the
directory where it is a symbolic link.

Introduction to wildcards.

Wildcards are essential when
dealing with almost anything
in terms of text processing.
(Looking for/Managing files from
the command line is text processing.)

They are a subset of regular expressions, an
essential (i.e. powerful = esoteric and difficult)

Unix feature.

Wildcards

Wildcards allow you to match multiple instances of
characters/numbers in file or directory names

They can be used in combination with almost all

Unix commands

Wildcards are essential when dealing with large
amounts of geophysical data

Introduction to wildcards.

Example

Say I want to find all the files in the working
directory that begin with the letter “a”.

(lower case only since Unix is case sensitive.)

Start out with the ls command

How do we specify we want all combinations of all

characters following the “a”?
We use a wildcard.

% ls a*!

The asterisk “*” wildcard means match a string

with any number of any character (including
none, so will match a file “a”).

Try it ---!
> ls a*!
a.out antex.sh!
antarctic sun panorama 3x.ai atantest.f!
antarctic sun panorama.125.jpg awk!
antarctic sun panorama.25.jpg az_map!
antarctic sun panorama.ai az_map.ps!
antarctic sun panorama.jpg!
!
adelitst:!
aadeli.ini adelitst.sh jessai pessai!
ADELI.MESSAGES eessai kcnusc.pal PLOT1!
ADELI.MINMAX iessai oessai tempi!
!
arc2gmtstuff:!
arcgmt.README arcgmt.tar arcgmt_ai arcgmt_av!
> !

Probably not what you wanted though – it lists
files starting with “a” and then goes recursively

through all directories that start w/ “a”.

Try it ---!
> ls –d a*!
a.out antex.sh!
antarctic sun panorama 3x.ai atantest.f!
antarctic sun panorama.125.jpg awk!
antarctic sun panorama.25.jpg az_map!
antarctic sun panorama.ai az_map.ps!
antarctic sun panorama.jpg!
> !

Flag –d says do not go recursively through all

directories (that start w/ “a”).

Use man page to figure this out.

(As part of the regular expression feature of
Unix) wildcards can be used in combination with

almost all Unix commands.

Wildcards

“*” – asterisk - matches zero or more characters
or numbers.

Combining/multiple use of wildcards.

Find all files in local subdirectory SEIS that begin

with the letter “f” and also have the string
“.BHZ.” in their file name.

!

%ls SEIS/f*.BHZ.*!
SEIS/filt.HIA.BHZ.SAC !SEIS/filt.WMQ.BHZ.SAC!

“?” – question mark - matches a single character
or number.

Find all files in local subdirectory SEIS that have

the name “HIA.BH” plus some single letter
(the ?) plus a “.” and then plus anything (the *).

!
% ls SEIS/HIA.BH?.*!
SEIS/HIA.BHE.SAC ! !SEIS/HIA.BHN.SAC !
SEIS/HIA.BHZ.SAC!

Wildcards

“[]” – brackets - used to specify a set or range
of characters or numbers rather than all possible

characters or numbers.

Find all files in local subdirectory SEIS that have
the name “HIA.BH” plus one of E, N or Z (the

stuff in brackets) plus a “.” and then plus
anything (the *).

% ls SEIS/HIA.BH[E,N,Z].*!
SEIS/HIA.BHE.SAC ! !SEIS/HIA.BHZ.SAC !
SEIS/HIA.BHN.SAC!

Wildcards

“[]” – brackets - used to specify a set or range
of characters or numbers rather than all possible

characters or numbers.

Find all files in local subdirectory SEIS that have
the name “HIA.BH” plus one of E, N or Z (the

stuff in brackets) plus a “.” and then plus
anything (the *).

% ls SEIS/HIA.BH[ENZ].*!
SEIS/HIA.BHE.SAC ! !SEIS/HIA.BHZ.SAC !
SEIS/HIA.BHN.SAC!

Wildcards

Find all files in all local subdirectories (the first *)
that have the string “HIA” in the name plus

anything (the second *) plus the characters
“198” plus a single character in the range 0-9

then plus anything (the third and last *).

% ls */HIA*198[0-9]*!
795/HIA.BHZ.D.1988.041:07.18.30 !
799/HIA.BHZ.D.1988:14:35:27.00 !
812/HIA.BHZ.D.1988:03:43:49.00!
813/HIA.BHZ.D.1988.362:13.58.59 !
814/HIA.BHZ.D.1989.041:17.07.43!

Some random stuff
Control-characters(CTRL-characters)

ctrl-s freezes the screen and stops any display

on the screen from continuing (equivalent to a
no-scroll key) (sometimes takes a moment to

work)

 ctrl-q un-freezes the screen and lets screen
display

Some random stuff
Control-characters(CTRL-characters)

continue ctrl-c interrupts a running program

ctrl-\ same as ctrl-c but stronger (used
when terminal doesn't respond)!

Some random stuff
Control-characters(CTRL-characters)

ctrl-z suspends a running program (use the fg

command to continue the program)

ctrl-h deletes last character typed

ctrl-w deletes last word typed

ctrl-u deletes last line typed!

Some random stuff
Control-characters(CTRL-characters)

ctrl-r redraws last line typed

ctrl-d ends text input for many UNIX programs,

including mail and write.

(http://web.cecs.pdx.edu/~rootd/catdoc/guide/TheGuide_38.html)

Some random stuff

Everything “looks like” a file to UNIX.

Some random stuff

Everything “looks like” a file to UNIX.

What does this mean?

cd!
pwd!
ls!

mkdir!
rmdir!
rm!

more!
less!
cat!

paste!
head!
tail!
cp!
mv!
ln!

echo!
man!

What we have seen so far

Commands

See this link for a list and description of many
Unix commands

http://pcsplace.com/tech-list/ultimate-list-of-linux-and-unix-commands/

What we have seen so far

Redirection

Pipes

Switches

Some special characters (~ \ . ..)

Wildcards (* ?)

