
A Brief Introduction to Unix
yWith Emphasis on the Unix Philosoph

And How to Apply it to Do Your Work

C

by

orey Satten
u

N
corey@cac.washington.ed

etworks and Distributed Computing, CAC
University of Washington, HG–45

Seattle, Washington 98195

OOvveerrvviieeww

Unlike a traditional introduction to Unix, the emphasis of this one is on philosophy and brevity. When
s

i
you understand how the creators of Unix intended you to use it, you’ll approach Unix on it’s "best side". Thi
ntroduction intends to help a new Unix user get started on the right foot quickly. For more information, readers

f
are referred to the Unix manuals and other listed references. As little detail as possible has been duplicated
rom the manual.

Copyright 1989, University of Washington

CCommercial use of this document requires permission from ND

VVeerrssiioonn 11..2244 -- llaasstt mmooddiififieedd JJuullyy 2277,, 11998899

11.. WWhhyy UUssee UUnniixx??

In some ways, Unix is "old technology" — it was invented in the late 1960’s for a small computer with a

t
64K-byte address space, it is largely character oriented (not graphic). Why is it still here? Why is it spreading
o more and more systems from PC’s to Cray Supercomputers? One answer is that Unix is written in a mostly

.
O
machine independent way (in the high level language "C") and is therefore more easily moved to new machines

nce Unix has moved, a large base of applications also moves easily and your investment in learning Unix con-

a
tinues to pay off. Another answer is that many problems are still character oriented (or at least can be
pproached that way) and for these problems, like a sharp tool in the hands of a skilled user, Unix really helps

r
c
you get your work done. Also, you can use Unix from any kind of terminal and over dial-up phone lines o
omputer network connections.

In the space below, I hope to convey, with a minimum of specific information, the essence of "The Unix
e

w
Philosophy" so that you can use and enjoy Unix at its best. To try to summarize in just two sentences (for thos

ho really believe in such brevity): Unix comes with a rich set of connectable tools which, even if they don’t

i
directly address the problem at hand, can be conveniently composed (using the programmability of the command
nterpreter) into a solution. Unix also imposes relatively few arbitrary limits and assumptions on the user or the

p
problem domain and has thereby proven to be a suitable platform on which to build many useful and highly

ortable research and commercial applications.

22.. EEsssseennttiiaall CCoommmmaannddss aanndd CCoonncceeppttss

Before I can realistically hope to say more about Unix in general, or give meaningful examples, I must
l

s
briefly explain some Unix commands and concepts. These descriptions are intentionally minimal. You wil
oon see how to find more detail in the manuals.

22..11.. LLooggiinn

Unix is a multi-user operating system. This means that several users can share the computer simultane-

i
ously. To protect each user’s data from damage by other users, Unix requires each user "login" to the system to
dentify him/herself (with a login name) and authenticate him/herself (with a password). During the login pro-

-
c
cess, a user’s defaults and "terminal type" are usually established. The mechanism Unix uses to allow con
urrent users also allows each user to have more than one program (also called "process" or "commands") run-

2

ning concurrently. You will see shortly how convenient this is.

2..22.. TThhee SShheellll,, CCoommmmaannddss aanndd AArrgguummeennttss

Once you have logged in, you will be running a program called your "login shell". The shell is a program
s

o
which executes the commands you type in and prompts you when it is ready for input. One of the nice feature
f the Unix shell is that it is a powerful programming language unto itself, however one need not program it to

h
(
use Unix. There are several different "shell" programs in common use: csh (c-shell), sh (bourne-shell), ks
korn-shell), vsh (visual-shell) to name a few. Most people use "csh".

.
O

Unix commands consist of a program name followed by options (or arguments) to that program (if any)
ne or more spaces follow the program name and separate arguments. Each program examines its argument list

o
and modifies its behavior accordingly. By convention, arguments which begin with a dash are called "switches"
r "flags" and they are used to request various non-default program behavior or to introduce other arguments. It

shell which does filename expansion (such as turning "*.old"l
i
is occasionally important to remember that it is the shel
nto "a.old list.old program.old"). Programs normally don’t ever see un-expanded argument lists. Many Unix

-
m
programs can also take implicit arguments. These are available (to every program you run) via the "environ

ent". Your "terminal type", stored in an environment variable called TERM, is an example of this. The
r

s
manual for each program you use should list the environment variables it examines and the manual for you
hell explains environment variables in detail.

22..33.. OOnn--lliinnee MMaannuuaallss

Before getting into any specific commands and examples, note that most Unix systems have both on-line

t
and printed manuals. Many commands will be mentioned below in passing without explanation. It is assumed
hat the interested reader will look them up in the manual.

The on-line manuals generally contain only the numbered sections of the printed manuals. The tutorials
and in-depth articles are usually only in printed form. This introduction intends to reproduce as little of the

-- 11 --

e
"
information contained in the Unix manuals as possible. For more information on any Unix command, typ
man command" ("man man", for example gets you "the man-page" for the on-line manual command: man).

t
(Note: if you are prompted with the word "more", you are interacting with the "more" program. Three quick
hings to know: you may type a space to get the next screenful, the letter "q" to quit, or "?" for a help screen.)

e
s

Among other things, the man-page for the "man" command points out that "man -k word" will list th
ummary line of all on-line man-pages in which the keyword: word is present. For example, "man -k sort", will

c

produce something like this:

omm (1) - select or reject lines common to two sorted files

q
look (1) - find lines in a sorted list
sort (3) - quicker sort

s
qsort (3F) - quick sort
candir, alphasort (3) - scan a directory

s
s
sort (1) - sort or merge file
ortbib (1) - sort bibliographic database

T

tsort (1) - topological sort

his tells you that section 1 (user commands) of the manual has man-pages for comm, look, sort, sortbib, tsort.

s
Use the man command on any of these to learn more. The other numbered sections of the Unix manual are for
ystem calls, subroutines, file formats, etc. You can find out about each section of the manual by saying, for

2

example, "man 2 intro". Enough about manuals.

2..44.. II//OO rree--ddiirreeccttiioonn:: ssttddiinn,, ssttddoouutt,, ssttddeerrrr,, ppiippeess

By convention, whenever possible, Unix programs don’t explicitly specify from-where to read input or to-
-

d
where to write output. Instead, programs usually read from "standard input" (stdin for short) and write to "stan

ard output" (stdout). By default, standard input is the keyboard you logged in on and standard output is the
a

"
associated display, however, the shell allows you to re-direct the standard output of one program either to
file" or to the standard input of another. Standard input can be similarly redirected. Perhaps Unix’s greatest

f
success comes from the ability to combine programs easily (by joining their standard inputs and outputs together
orming a pipeline) to solve potentially complex problems.

"Standard error" (stderr) is not usually re-directed, hence programs which write warnings, prompts, errors,

t
etc. to stderr will write them to the display even when normal input and output is usefully re-directed. (Note
hat since I/O devices are implemented as files on Unix, I/O re-direction also works to and from physical dev-

ices.) The syntax for I/O re-direction is fully described in the manual for the shell you are using (probably csh).

The following are some simple examples of I/O re-direction. For clarity, the shell’s ready-for-input-

t
prompt has been shown as "Ready%" and explanations have been inserted in italics. Everything the user would
ype is shown in slightly bold type after the Ready% prompt.

tRunning the "date" command prints today’s date and time on standard outpu
Ready% ddaattee
Wed Mar 22 13:06:30 PST 1989

P
Ready%

ut the standard output from the date command in a file called "myfile"

R
Ready% ddaattee >> mmyyfifillee

eady%
Use the word-count program to count the number of lines, words, characters in "myfile"

Ready% wwcc << mmyyfifillee
1 6 29

P
Ready%

ipe the output of the date command directly into the word count command. Note that commands in a pipeline
such as this can run simultaneously.

Ready% ddaattee
� �

wwcc
91 6 2

%Ready

-- 22 --

rUse output from one program as command line arguments to anothe
Ready% eecchhoo MMyy ccoommppuutteerr,, `̀hhoossttnnaammee `̀,, tthhiinnkkss ttooddaayy iiss `̀ddaattee `̀

9
R
My computer, samburu, thinks today is Wed Mar 22 13:06:30 PST 198

eady%
Look in the on-line dictionary for words beginning with "pe" and count how many are found

2
Ready% llooookk ppee � � wwcc
94 294 2548

P
Ready%

ipe those 294 lines through cat -n to insert line numbers and then through sed to select only lines 5-8
Ready% llooookk ppee � � ccaatt ––nn � � sseedd ––nn 55,,88pp

5 peaceful
e

7
6 peacemak

peacetime

R
8 peach

eady%
Now, from those 294 words, select only those containing "va" somewhere and re-direct them into the argument
list of the echo command

Ready% eecchhoo II ffoouunndd tthheessee:: `̀llooookk ppee � � ggrreepp vvaa `̀..
.

R
I found these: Pennsylvania Percival pervade pervasion pervasive

eady%
Grep (search) through all files with names ending in ".c" for lines beginning with "#define". (Grep -l lists the

f
file names containing the lines which match instead of the lines themselves). These file names are redirected to
orm the command line of the vi editor — hence, edit all ".c" files which contain "define" statements.

T
Ready% vvii `̀ggrreepp ˆ̂##ddeefifinnee **..cc `̀

he depiction of an interactive session with the "vi" editor is omitted.

2

Ready%

2..55.. SSppeecciiaall cchhaarraacctteerrss:: IInntteerrrruupptt,, EEnndd--OOff--FFiillee,, QQuuoottiinngg,, ‘‘JJoobb CCoonnttrrooll’’

n
i

When a program reads from a file or from a pipe it can tell when there is no more to read. This conditio
s called reading the "end-of-file" or EOF. When standard input is a terminal, the EOF must be explicitly typed

(
because the program must otherwise assume you are still typing. Normally EOF is typed as a CONTROL-D
indicated in print as ˆD). Think of the control key as another SHIFT key — it must be pressed and held when

the D is typed. If the EOF is not the first thing on a line, two must be typed.

If you are running a program and you wish to interrupt it completely, you can often do so by typing ˆC.

r

You can try this with the "wc" program:

un wc then interrupt it
Ready% wwcc
ssaammppllee iinnppuutt

R
ˆ̂CC

eady%
run wc then type EOF

Ready% wwcc
ssaammppllee iinnppuutt
ˆ̂DD

1 2 13

N

Ready%

ote that both ˆD and ˆC ended the program however, ˆD allowed the program to finish normally but ˆC killed it

h
(and produced no output). If, for some reason, you want to type a special character such as ˆC and actually

ave it sent to your program and not generate an interrupt, you can "quote it" by typing a backslash (or some-
,

d
times a ˆV) before it. The backslash also "quotes" shell "meta-characters" such as asterisk, question mark

ouble-quote, backslash, etc.

"Job control" is the name given to an extremely convenient feature of many modern versions of Unix.

g
Job control allows one to suspend a program and resume it later. If you are in the middle of running some pro-

ram when the phone rings, you can type ˆZ to suspend the program (and get back to your shell prompt) without

-- 33 --

interrupting or exiting that program. After you handle the phone call, you can type "fg" to resume the original

r
program right where you left off. Unix permits one to have a fairly large number of suspended jobs and to
esume them in any order. Csh’s "jobs" command displays which jobs are stopped. (In some ways, job control

l
i
is "a poor man’s window system"; however, even on Unix systems with windows, many people find job contro
ndispensable.) For more information on job control, see the "csh" man-page.

22..66.. FFiilleess,, ppeerrmmiissssiioonnss,, SSeeaarrcchh PPAATTHH

Unix files exist in directories. Every user has a "home directory", which is the "current directory" after

w
logging in. A user can make "sub directories" with the "mkdir", command and make them the current directory

ith the "cd" command. You can print your current directory with the "pwd" command and you can refer to the
parent directory as ".." (two dots). You can get back to your home directory by typing "cd" with no arguments.

Files and directories have permissions called "modes" which determine whether you, "your group", or

r
everyone can: read, write, or execute the file. Permissions are changed with the "chmod" command. The main
eason for bringing this up now is to point out that a collection of commands which can be typed to the shell

t
n
can also be put in a file, given a name, made executable and subsequently invoked as a new command by tha

ame. This type of file is called a "shell script" and is one of the main ways Unix is customized to the work
habits and chores of its users.

When a user types a command, s/he usually doesn’t type the full (and unambiguous) path name of the pro-

t
gram: (/bin/date for example) but instead types only the last component of the path name, date, thus requesting
he system to search for it. To achieve predictability and efficiency, the system searches only those directories

p
listed in your PATH environment variable and it searches them in that order. By placing your own version of a
rogram in a directory you search before the system directories, you can override a system command with your

t
w
own version of it. Your version can be anything from an entirely different program to a simple shell scrip

hich supplies some arguments you always use and then calls the standard version. The command
g

e
"echo $PATH" will print the value of the PATH environment variable to stdout. The procedure for settin
nvironment variables such as PATH differs from shell to shell. See the man-page for the shell you use.

33.. TThhee UUnniixx PPhhiilloossoopphhyy

Well, so much for the nitty-gritty. I will now try to explain "The Unix Philosophy" in a bit more detail.

c
Basically, the idea is that rather than have a custom program for each little thing you want to do, Unix has a
ollection of useful tools each of which does a specific job (and does it well). To get a job done, one combines

a
the pieces either on the command line or in a shell script. For example, on Unix, a user would not expect an
pplication to provide an input text editor. Instead, one would expect to be able to use one’s favorite (and stan-

,
C
dard) "text editor" (probably "vi", perhaps "emacs") for all instances of editing text. Electronic mail

programs, shell scripts, documents-to-typeset can all be edited with the same text editor. By convention,
applications invoke the text editor you have specified in your EDITOR environment variable.

Even though Unix editors are generally very powerful and capable programs, they too recognize that they
-

m
are just tools and they allow you to pipe all or part of your "editor buffer" through any pipeline of Unix com

ands in order to do something special for which there isn’t a built-in editor command. (The editor buffer is
that private copy of your file to which the editor makes changes before you save them.)

Unlike most other operating systems, Unix has only one "file type". Any program which can read or write
t

e
standard I/O can read/write any "file" (even if it is a device such as a terminal, printer or disk). Granted, no
very program can make sense out of the data in every file, however, that is strictly between the program and

-
a
the data — nothing imposed by Unix. The single file-type contributes greatly to the modular/re-usable pipes
nd-filters approach to problem solving.

So, what is to be learned from all this? Just that it is good to construct solutions to your problems in as
r

s
general and modular a fashion as possible. You will undoubtedly find that a somewhat general program (o
hell script) you wrote as part of the solution to one problem will be just what you need as part of the solution

4

to some future problem and it will be simple to hook up.

4.. AA ‘‘TTyyppiiccaallllyy UUnniixx’’ SSoolluuttiioonn

Let’s assume the following problem, inspired by a real-world situation. You are a professor of English
.

Y
and someone walks into your office with an old manuscript claiming it is an undiscovered work by Shakespeare

ou postulate (correctly) that you can use statistics about frequency of word usage to help determine its

-- 44 --

authenticity. The problem, therefore, is to come up with a histogram (count) of the number of times each word
is used.

You could, of course, write a program from scratch in C or FORTRAN to do it, however a partial solution
)

l
comes to mind using "awk", a programmable text processing tool which has 2 particularly useful features: 1
ines are read and processed automatically; 2) arrays can have text-string subscripts. So, if you hadn’t already

e
fi
written a "histogram" shell script, you write one now. (Keep it around, you will find a use for it again.) Th

le "histogram" has the following contents (de-mystified somewhat below):

N
awk ’

F > 0 { counts[$0] = counts[$0] + 1; }
}

F

’
END { for (word in counts) print counts[word], word;

or each line with NF > 0 (NF is awk-talk for number-of-fields-on-this-line, hence for each non-empty line), add
.

T
1 to that particular counter hereby associated with the-text-on-this-line ($0 is awk-talk for the-text-on-this-line)

hen, at the END of input, for each unique input line; print that line preceded by the count of how many times
f

y
it was seen. (Note that even though the preceding solution "smacks of programming", it is simple. Thus, even i
ou don’t attempt it yourself, the fact that the solution is simple means that you will have a much easier time

finding someone else to do it for you.)

So, now the task is simply getting the input into a format where all punctuation marks are removed and
t

t
each word appears on a line by itself. Again, you could write a program to do it; you could manually reforma
he text with an editor; or you could notice that Unix has a translate command "tr" which will do just what you

want when used in two steps as shown:

tr –dc "a–zA–Z’ \012" � tr " " "\012"

m
s
The first "tr" command has options -dc (delete the complement of the indicated characters) so it will delete fro
tandard input all characters except those which are listed (letters, apostrophe, space, and octal 012 (newline)).

m
The resulting output has no punctuation. The second "tr" translates all spaces into newlines, thus causing at

ost one word to be on each line.

Piping the output of these two commands into "histogram" will give us word counts. Piping the output of

i
histogram into "sort -n" will sort the histogram in numerical order. Putting the whole thing in a file and making
t executable makes it available as conveniently as if it had been built into Unix.

Here then is some sample input and the output our script produces:

One black bug bled blue black blood

A

while another blue bug bled black.

nd the output of tr ... � tr ... � histogram � sort:

1
1 One

another

1
1 blood

while

2
2 bled

blue

3
2 bug

black

Note that other simple solutions to the problem exist. Our awk-based histogram program can be replaced
"

c
by "sort 	 uniq -c" (but that is less intuitive than the awk solution and not necessarily any better). Also, "sed
ould have been used in place of either or both of the "tr" commands. (Sed is much more powerful than tr how-

5

ever the sed command line would have been less intuitive.)

5.. MMoorree aabboouutt PPiippeelliinneess aanndd CCoonnccuurrrreenntt EExxeeccuuttiioonn

Probably the two biggest advantages of concurrent execution of commands in a pipeline are: 1) No disk
f

t
space is required for intermediate data which flows through pipelines. 2) output can start coming out the end o
he pipeline before the entire input is processed through the first program in the pipeline.

-- 55 --

For example, imagine you want to compute a histogram for a very large file which is compressed and your
t

d
disk is too full to hold the uncompressed version. You can uncompress it to standard output and pipe tha

irectly into your histogram pipeline.

Now imagine you have a pipeline which takes 30 minutes to compute and produces data which takes 30
t

o
minutes to print. If you first computed and then printed, it would take 60 minutes. If you re-direct the outpu

f the pipeline to the printer, the whole process only takes 30 minutes. (Note: you can output directly to a dev-

fi
ice such as a printer but in a multi-user environment the normal printing mechanism is to spool the output in a

le (with "lpr") and print it after the computation finishes.)

On Unix you can run any number of programs "in the background", which means that the shell doesn’t
wait for them to finish before giving you a new prompt. Read more about this in the manual for your shell.

You can also have programs started for you automatically at certain times of the day, week, month, etc.

6

(read about "at" and "cron") or when certain events happen, such as when electronic mail arrives.

6.. OOtthheerr EEssppeecciiaallllyy UUsseeffuull UUnniixx PPrrooggrraammss ttoo RReeaadd AAbboouutt

e
m

Since it is not the intent to duplicate information from the Unix manual in this introduction I won’t giv
any details about the following programs, however, I would like to point them out so you can look them up in

f
i
the manual if you are interested. Most manual pages have a "SEE ALSO" section at the end. Consider yoursel
nvited to read up on those programs as well. (If you really want to know everything, look up every program in

l

every directory in your $PATH!)

earn .. An interactive tutorial on a few subjects. (Not available on all systems).

v

Probably most useful for learning the "vi" editor. Type "learn vi" to try it.

i, emacs, ex, ed "vi" is the most common Unix screen-oriented text editor. Emacs can be
-

s
another good choice. ("ed", the original Unix text editor is essentially sub
umed by vi and is much harder to use.) "ex" is really just vi in a non-

,
e
screen-oriented (ed-like) mode. There are substantial printed manuals on vi
x and emacs. Whichever editor you choose, you will eventually want to

d
k
read everything there is to know about it. Unix editors are very powerful an

nowing how to use that power really helps a lot.

.

l

rm, mv, cp, rmdir Remove; move (rename); copy a file. Remove a directory

s ... List directories. More options than just about any other program. Filenames

s

which begin with dot are not listed unless the -a option is used.

tty, tset Set such aspects of terminal I/O as: number of lines on display device, input

c

character- or line-at-a-time; whether keyboard typing is visible.

at ... Concatenate files to standard output.

emore, less, page, pr Display data a screen or page at a time. Search and skip forward to a pag
of interest.

.

g

cmp, comm, diff, diffmk Show differences between 2 files

rep ... Find lines which match specified pattern. Incredibly useful.

arlogin, rsh, rcp Login to remote Unix system, run a command on remote Unix system, copy
file to remote Unix system. Similar to below.

.

t

telnet, ftp Connect to remote system of arbitrary type, copy a file

alk, rn, mail, mh, mm Connect your terminal to another user for interactive communication. Read
d

e
(and reply to) messages posted to a world-wide bulletin board. Send or rea
lectronic mail.

.

c

crypt .. Encrypt or decrypt data

ompress Compress data or files, typical compressions are 2-3 to 1.

rtar, cpio Archive and restore files and directories into/from a single file on disk o
removable media.

sed ... Probably the single most useful command for rearranging or extracting pieces
of data quickly. (A bit cryptic for many users, though.)

-- 66 --

-awk ... More powerful than sed but somewhat slower; almost a general purpose pro
gramming language but definitely tailored to filtering text from stdin to
stdout.

.

fi

head, tail First, last part of a file or stdin

nd .. Locate files which meet specified criteria.

snroff, troff Batch oriented (embedded command) text formatters. This document wa
edited with vi and formatted with troff.

.

s

look, spell Look up words in an on-line dictionary. Find possible spelling errors

um ... Compute a CRC (checksum) for comparison with supposedly identical data

d

on a remote system.

d .. Real handy for doing low-level I/O to mag-tapes if you get one from who-

o

knows-where in some strange format.

d .. Display an octal (or hex) dump of input data. This lets you see every byte of

d

your data as a bunch of numbers.

u, df .. Display disk usage and free disk space.

.

w

script ... Keep a transcript of your session in a file

ho, whoami, su Who is on the system. What is my username? Become another user tem-

t

porarily.

ip, cu .. Unix’s "modem program" or "terminal emulator" — it’s how you login to
h

u
another system via your serial port - a primitive ancestor of kermit whic
ses essentially no protocol.

lps, kill Process-status lists attributes and resources associated with each process. Kil
sends to a process a "signal" which (depending upon the signal sent) will

"
cause the process to terminate in various ways. See also the man-page for
signal".

1

77.. OOtthheerr SSoouurrcceess ooff IInnffoorrmmaattiioonn

. 4.3BSD Unix Manuals, U.C. Berkeley, published by USENIX Association, El Cerrito, CA.

.

3

2. The Unix Programming Environment, Kernighan, B.W. and R. Pike, Prentice Hall, Engelwood Cliffs, N.J

. Welcome to Unix, Rick Ells, Academic Computing Services, University of Washington, Seattle, Washington.

5

4. Introducing the Unix System, Henry McGilton, McGraw-Hill Software Series.

. The C Programming Language, Kernighan, B.W. and Ritchie, D.M., Prentice Hall, Englewood Cliffs, N.J.

7

6. Introducing Unix System V, Morgan, R., McGilton, H., McGraw-Hill Software Series.

. Unix for People, Birns, P., Brown, P., Muster, J.C.C, Prentice Hall, Englewood Cliffs, N.J.

-- 77 --

AAppppeennddiixx 11:: AAnn AAddvvaanncceedd EExxaammppllee

Let’s assume we are editing a file and submitting it for periodic review. Our reviewers appreciate only
2

t
having to study those parts which have changed. Unix has a program, "diff", to find the differences between
ext files and report them in several different formats (see the "diff" man-page), however none of those formats

c
is what our reviewers want — the entire text of the new version with indications in the left margin where
hanges have been made.

As you might expect, Unix tools can be combined into a short shell-script which takes two arguments (an
.

D
old and new file) and produces (on standard output) the new file with change indicators in the left margin

on’t be discouraged if you find the solution presented here syntactically intimidating. "Sed scripts" are
-

a
extremely terse and full of a powerful Unix string pattern matching notation called "regular expressions" (usu
lly described in the man-page for "ed"). Understanding this example, does not require understanding the sed

H

syntax.

ere is the shell-script (the line numbers and comments in italics are not part of the script):

2
1 : Usage diffbar oldfile newfile

TMP=/tmp/db$$ # Set TMP to a unique tempfile name
r

4
3 SIGS="0 1 2 13 15" # Termination causes to clean up afte

trap "rm –f $TMP" $SIGS # Remove TMP when program terminates

6
5 sed ’s/ˆ/ /’ < $1 > $TMP # Insert blank changebar columns in both

sed ’s/ˆ/ /’ < $2
 # new and old versions
r

8
7 diff –e $TMP – � # Diff the old, new versions, but alte

sed ’ # ed commands to add change marks

1
9 $a\
0 1,$p Append a final "ed" print command

:
1
11 /ˆ[0–9,]*d$/ { Handle delete commands specially

2 p keep the delete command but also

1
13 s/,*[0–9]*d/s;ˆ.;–;/ modify it into an "s" command.

4 b Bypass remaining sed commands for this

1
15 } line

6 s/ˆ /+/ Flag new/changed text with "+"
d17 ’ � ed – $TMP # Finally, pipe commands into e

The first thing to notice about the solution is that it uses the standard Unix "diff" with the -e option. This
-

s
form of the diff output is a series of edit commands which if typed to the "ed" editor would change the old ver
ion into the new version. These commands are of the form:

N
23,25c

ew text to replace former lines 23-25.

7
.
,9d

The solution follows from the observation that all the text which should be marked is contained in the "diff"
r

c
output. The solution is to temporarily insert 2 spaces in front of every line in the old file; insert 2 characte
hange indicators in the replacement text generated by diff and let "ed" do the replacement (re-creating the [now

n
u
marked-up] new version from the old). The rest of the script is just "glue" to stick the pieces together and clea
p afterwards.

The key to the simplicity of the solution is inserting spaces at the beginning of each line in the TMP ver-
-

m
sions of both the old and new files before diff’ing them (lines 5-6). This handy trick causes the lines of replace

ent text in the diff output to be easily distinguished from the diff-generated editor commands because they
t

(
each begin with 2 spaces of changemark columns. Line 16 replaces any space in column 1 of diff outpu
which must therefore be replacement text) with a plus sign (+). Lines 11-15 handle deleted text by generating

d
t
an additional "ed" command to put a minus sign (-) in the change mark column of the first line after the delete
ext. Lines 9-10 append a final print command so that after making the changes, "ed" prints them to standard

output and that’s all there is to it.

Note that a similar script has been written to diff typesetting input and insert typesetting commands which +
+

c
create changemarks in the margin after typesetting. This command is usually known as "diffmk" and produces
hangemarks as shown for this paragraph. +

-- 88 --

