
Data Analysis in Geophysics
ESCI 7205

Class 23

Bob Smalley

Short intro FORTRAN.

Common Languages used in
Scientific programming

What is the best language to learn?

That depends on what you want to do.

Most common languages used for scientific
programming

(in no particular order – but looks chronological)

Fortran
C

C++
Matlab

Pearl

Evolution of a programmer

High School/Jr.High

!
 10 PRINT "HELLO WORLD"!
 20 END!
!

Prints “HELLO WORLD” to screen.
(don't really need the second line).

First year in College

 program Hello(input, output)!
 begin!
 writeln('Hello World')!
 end.!

!

Prints “Hello World” to the screen.
Twice as "long".

!

Senior year in College

 (defun hello!
 (print!
 (cons 'Hello (list 'World))))!

!

Prints “Hello World” to screen in LISP
which stands for (Lots of ((Irritating (Spurious)(Parenthesis)))

!

 New professional

#include <stdio.h>!
 void main(void)!
 {!
 char *message[] = {"Hello ", "World"};!
 int i;!
 !
 for(i = 0; i < 2; ++i)!
 printf("%s", message[i]);!
 printf("\n");!
 }!

Prints “Hello World” to screen.
In C

!

Seasoned professional
 #include <iostream.h>!
 #include <string.h>!
 class string!
 {!
 private:!
 int size;!
 char *ptr;!
 string() : size(0), ptr(new char[1]) { ptr[0] = 0; }!
 string(const string &s) : size(s.size)!
 {!
 ptr = new char[size + 1];!
 strcpy(ptr, s.ptr);!
 }!
 ~string()!
 {!
 delete [] ptr;!
 }!
 friend ostream &operator <<(ostream &, const string &);!
 string &operator=(const char *);!
 };!
 ostream &operator<<(ostream &stream, const string &s)!
 {!
 return(stream << s.ptr);!
 }!
 string &string::operator=(const char *chrs)!
 {!
 if (this != &chrs)!
 {!
 delete [] ptr;!
 size = strlen(chrs);!
 ptr = new char[size + 1];!
 strcpy(ptr, chrs);!
 }!
 return(*this);!
 } !
 int main()!
 {!
 string str;!
 str = "Hello World";!
 cout << str << endl;!
 return(0);!
 }!

Prints “Hello World” to screen

Master Programmer!
!
 [!
 uuid(2573F8F4-CFEE-101A-9A9F-00AA00342820)!
]!
 library LHello!
 {!
 // bring in the master library!
 importlib("actimp.tlb");!
 importlib("actexp.tlb");!
 // bring in my interfaces!
 #include "pshlo.idl”!
 [!
 uuid(2573F8F5-CFEE-101A-9A9F-00AA00342820)!
]!
 cotype THello!
 {!
 interface IHello;!
 interface IPersistFile;!
 };!
 };!
 [!
 exe,!
 uuid(2573F890-CFEE-101A-9A9F-00AA00342820)!
]!
 module CHelloLib!
 {!
 // some code related header files!
 importheader(<windows.h>);!
 importheader(<ole2.h>);!
 importheader(<except.hxx>);!
 importheader("pshlo.h");!
 importheader("shlo.hxx");!
 importheader("mycls.hxx");!
 // needed typelibs!
 importlib("actimp.tlb");!
 importlib("actexp.tlb");!
 importlib("thlo.tlb");!
 !
 [!
 uuid(2573F891-CFEE-101A-9A9F-00AA00342820),!
 aggregatable!
]!
 coclass CHello!
 {!
 cotype THello;!
 };!
 };!
 #include "ipfix.hxx”!
 extern HANDLE hEvent;!
 class CHello : public CHelloBase!
 {!
 public:!
 IPFIX(CLSID_CHello);!
 CHello(IUnknown *pUnk);!
 ~CHello();!
 HRESULT __stdcall PrintSz(LPWSTR pwszString);!
 private:!
 static int cObjRef;!
 };!
 #include <windows.h>!
 #include <ole2.h>!
 #include <stdio.h>!
 #include <stdlib.h>!

 #include "thlo.h"!
 #include "pshlo.h"!
 #include "shlo.hxx"!
 #include "mycls.hxx”!
 int CHello::cObjRef = 0;!
 CHello::CHello(IUnknown *pUnk) : CHelloBase(pUnk)!
 {!
 cObjRef++;!
 return;!
 }!
 HRESULT __stdcall CHello::PrintSz(LPWSTR pwszString)!
 {!
 printf("%ws!
", pwszString);!
 return(ResultFromScode(S_OK));!
 }!
 CHello::~CHello(void)!
 {!
 // when the object count goes to zero, stop the server!
 cObjRef--;!
 if(cObjRef == 0)!
 PulseEvent(hEvent);!
 return;!
 }!
 #include <windows.h>!
 #include <ole2.h>!
 #include "pshlo.h"!
 #include "shlo.hxx"!
 #include "mycls.hxx”!
 HANDLE hEvent;!
 int _cdecl main(!
 int argc,!
 char * argv[]!
) {!
 ULONG ulRef;!
 DWORD dwRegistration;!
 CHelloCF *pCF = new CHelloCF();!
 hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);!
 // Initialize the OLE libraries!
 CoInitializeEx(NULL, COINIT_MULTITHREADED);!
 CoRegisterClassObject(CLSID_CHello, pCF, CLSCTX_LOCAL_SERVER,!
 REGCLS_MULTIPLEUSE, &dwRegistration);!
 // wait on an event to stop!
 WaitForSingleObject(hEvent, INFINITE);!
 // revoke and release the class object!
 CoRevokeClassObject(dwRegistration);!
 ulRef = pCF->Release();!
 // Tell OLE we are going away.!
 CoUninitialize();!
 return(0); }!
 extern CLSID CLSID_CHello;!
 extern UUID LIBID_CHelloLib;!
 CLSID CLSID_CHello = { /* 2573F891-CFEE-101A-9A9F-00AA00342820
*/!
 0x2573F891,!
 0xCFEE,!
 0x101A,!
 { 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 }!
 };!
 UUID LIBID_CHelloLib = { /* 2573F890-
CFEE-101A-9A9F-00AA00342820 */!
 0x2573F890,!
 0xCFEE,!
 0x101A,!

 { 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 }!
 };!
 #include <windows.h>!
 #include <ole2.h>!
 #include <stdlib.h>!
 #include <string.h>!
 #include <stdio.h>!
 #include "pshlo.h"!
 #include "shlo.hxx"!
 #include "clsid.h”!
 int _cdecl main(!
 int argc,!
 char * argv[]!
) {!
 HRESULT hRslt;!
 IHello *pHello;!
 ULONG ulCnt;!
 IMoniker * pmk;!
 WCHAR wcsT[_MAX_PATH];!
 WCHAR wcsPath[2 * _MAX_PATH];!
 // get object path!
 wcsPath[0] = '\0';!
 wcsT[0] = '\0';!
 if(argc > 1) {!
 mbstowcs(wcsPath, argv[1], strlen(argv[1]) + 1);!
 wcsupr(wcsPath);!
 }!
 else {!
 fprintf(stderr, "Object path must be specified\n");!
 return(1);!
 }!
 // get print string!
 if(argc > 2)!
 mbstowcs(wcsT, argv[2], strlen(argv[2]) + 1);!
 else!
 wcscpy(wcsT, L"Hello World");!
 printf("Linking to object %ws\n", wcsPath);!
 printf("Text String %ws\n", wcsT);!
 // Initialize the OLE libraries!
 hRslt = CoInitializeEx(NULL, COINIT_MULTITHREADED);!
 if(SUCCEEDED(hRslt)) {!
 hRslt = CreateFileMoniker(wcsPath, &pmk);!
 if(SUCCEEDED(hRslt))!
 hRslt = BindMoniker(pmk, 0, IID_IHello, (void **)&pHello);!
 if(SUCCEEDED(hRslt)) {!
 // print a string out!
 pHello->PrintSz(wcsT);!
 !
 Sleep(2000);!
 ulCnt = pHello->Release();!
 }!
 else!
 printf("Failure to connect, status: %lx", hRslt);!
 // Tell OLE we are going away.!
 CoUninitialize();!
 }!
 return(0);!
 }!

Prints “Hello World” to screen

Fortran
(FORmula TRANslator)

We are going to assume you have already
mastered programming ideas like if/then/

else, various kinds of loops, i/o formating,
etc.

So this is going to be a firehose presentation.

You will come across two versions of FORTRAN,
77 and 90/95

FORTRAN is a high-level language designed for
number crunching.

Unlike MATLAB, it is not interactive. It must be
translated into the low-level machine language as

a separate step in order to run.

This is done via a compiler and yields an
executable program specific to that "platform"

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/intro.html

Basics of Fortran

Simple programs have the following
"structure" (used loosely – Fortran is not a

"structured" programming language) –

Comments
Common block inclusions

Variable declarations
Program

The power of UNIX

The file name for all source files input to the
Fortran compiler must end in .f!

 If you don't like this use the power of UNIX to

write your own OS with your own rules.

Column formatting – designed for "cards"

!
!
!
!
!
!
!
!
!

Fortran follows a specific line format.!
!

It assumes input is coming from one of these.!

Column formatting – designed for "cards"

!
!
!
!
!
!
!
!
!
!

columns 1-5: reserved for statement numbers!
column 6: reserved for continuation symbol (&)!

columns 7-72: statement!
Columns 73-80: line/card numbers!

Column formatting

As a result, old f77 programs cannot contain
statement text after column 72!!

Newer fortran 90/95 does allow for free-format
(info past column 72) and you can override the

fixed format using compiler flags for f77!

The first line of a segment of Fortran source code
(a program) (in a file) indicates what it is (this

declaration for the main program is actually
optional)

 program [name of program]!
!
!
 subroutine cluster1(log, nev, ndt!
 & , idata, minobs_cc, minobs_ct!
 & , dt_c1, dt_c2, ev_cusp!
 & , clust, noclust, nclust)!

*Note, the indented “&” – which is in, and has to

be in column 6, indicates a line continuation

Most modern Fortran (77 or later) will let you
start lines with a tab (which is the equivalent of 8

spaces)

If the first character after the tab is one of the
digits 1-9 it interprets it as a continuation

(there is no significance to the digit you put there
– you can use the same one over and over, etc. It

just has to be a non-zero digit.)
! !subroutine cluster1(log, nev, ndt!

!1, idata, minobs_cc, minobs_ct!
! !4, dt_c1, dt_c2, ev_cusp!
! !1, clust, noclust, nclust)

The last line of the segment (a program) needs to
indicate the segment (program) is finished (in

this case, again, is optional)

 end!

Variables

Variables do not need to be declared in Fortran

But should be (and enforced with IMPLICIT
NONE) unless you like debugging.

Variable typing – Fortran has implicit typing of
variables (but depending on this will produce

many hours of debugging fun).

the default is

IMPLICIT REAL(A-H,O-Z)!
INTEGER(I-N)!

!
All variables beginning with A-H and O-Z are real,

and those beginning with I-N are integer.!

And you can specify new implicit variable
definitions

IMPLICIT REAL(A-H)!
IMPLICIT DOUBLE(O-Z)!
IMPLICIT LOGICAL(K)!

IMPLICIT INTEGER(I-J,L-N)!
!

But are still in the dangerous world of implicit
definitions.

Variable typing – turning off implicit variable
naming

IMPLICIT NONE!
!

Unfortunately this is not standard in F-77 (so you

should not use it!), but very useful (all rules are made to be broken!!).

Gives the "Pascal (also C) convention” that all
variables have to be specified – turns off all

implicit definitions.

On the Sun the same effect can be obtained with
the switch -u in the compilation command

The huge benefit of IMPLICIT NONE is that it
will catch most of your typing errors (unless,

unlike me, you are a perfect typer).

Without using IMPLICIT NONE, new variables are
created (by typos) as they show up in your

source code.

A typo makes a new variable!
You now have a bug in your program and have to

"debug" it.

The First Computer Bug

Moth found trapped between points at Relay #
70, Panel F, of the Mark II Aiken Relay Calculator
while it was being tested at Harvard University, 9

September 1947.

The operators affixed the moth to the computer
log, with the entry: "First actual case of bug being

found".

They put out the word that they had "debugged"
the machine, thus introducing the term

"debugging a computer program".

Comments

A “C” or “c” (Fortran is case insensetive!) in
column 1 is used to indicate the “line”/statement/

card is a comment
!
c Version 1.0 - 03/2001!
c Author: Felix Waldhauser, felix@andreas.wr.usgs.gov!
C!
c started 03/1999!

!

A “!” after a Fortran statement, indicates a
comment at the end of a statement (it may also be placed at

the beginning of the line)
!
 integer!log!! Log-file identifier!

Newmann and Goldstine

Series of reports:
Planning and Coding Problems for an Electronic

Computing Instrument

Published “dozens of routines for mathematical
computation with the expectation that some lowly

“coder” would be able to convert them into
working programs.” (Sci. Am., Dec 2009)

Newmann and Goldstine

But people quickly found that “the process of
writing programs and getting them to work was
excruciating difficult.” (Sci. Am., Dec. 2009)

And Wilkes observed in his Memoirs

“the realization came over me with full force that a
good part of the remainder of my life was going to

be spent finding errors in my own programs”

Fortran numeric variable types include:

integer: integers (short, regular, long, quad)

real: floating point number (single, double, quad)

complex: complex number (single, double, quad)

logical: logical value (i.e., true or false).

string variable types include

character: character string of a certain length
(≤256 long).

Declaring variables
Here are some examples of variable declaration

!
 integer dt_idx(MAXDATA) !default length integer array!
 !declaration using parameter!
 integer*2 dt_idy !explicitly define 2 byte integer!
 integer*4 dt_idz !explicitly define 4 byte integer!
 integer*4 dt_idz !explicitly define 4 byte integer

! real acond !single precision scalar declaration!
 real*4 bcond !double precision scalar declaration!
 double at_idx(1000) !double precision vector declaration!
 character dt_sta(MAXDATA)*7 !array of strings with length 7

or

 INTEGER :: ZIP, Mean, Total (90/95 only)

Variables must be declared at the beginning of
your program.

Have to specify size of arrays upon definition
(this amount of memory becomes part of the

program – does not allocate dynamically – like
Matlab or C)

Can hard-code or use "parameter" syntax.
!
 integer MAXDATA!
 parameter (MAXDATA=1000)!
!
 integer dt_idx(1000) !default length integer array!
 !declaration!
 double at_idx(MAXDATA) !double precision vector !
 character dt_sta(MAXDATA)*7 !string with length!
!

MAXDATA is regular integer variable that you can
use like any other variable, plus its value is known

to the compiler

Can do simple arithmetic in parameter statements.

Variable defined can be used by compiler and is
also regular variable.

You can also reassign the value of the vairiable in

your program.

!
 integer MAXDATA!
 integer ANOTHERMAX!
 parameter (MAXDATA=1000)!
 parameter (ANOTHERMAX=2*MAXDATA)!
 real pi!
 parameter (pi=atan(1))!

Except for the content of strings, Fortran is not
case sensitive (A is the same as a) .

So as a variable “DENS”, “dens”, “Dens” are all

the same.

In a comparison of the contents of character
variables, however, “A” is not equal to “a”.

Assigning values to variables

 real X!
 integer I!
 character*2 plate!
!
 X=2.3!
 I=4!
 plate='sa'!

 There is no special syntax ($, @, etc.) for
accessing the value of a variable.

You don’t have to end statements with a “;”

 You should initialize your variables to be sure
they start at 0!

(or where you want them to start – else they may have whatever was sitting that spot in
memory – depends on how person who wrote the Fortran compiler wrote the code as

what do to in this case is not defined in the language definition.).

 minwght= 0.00001!
 rms_ccold= 0!
 rms_ctold= 0!
 rms_cc0old= 0!
 rms_ct0old= 0!
c--- get input parameter file name:!
c narguments = iargc() !similar to argc in C, counts number of c
c command line input parameters!

you can initialize a variable when specifying the
type (F90/95)

!

 REAL :: Offset = 0.1, Length = 10.0, tolerance = 1.E-7!

!

In Fortran you can put blank lines, tabs, and
spaces as you like for readability (between col 7
and 72 –the first 5 characters are for statement

numbers, 6th for continuation).

Parameters
You can define constants of any type by using

the parameter call
!
 INTEGER, PARAMETER :: Limit = 30, Max_Count = 100!
!

or

 integer*4 MAXEVE, MAXDATA, MAXCL!
 parameter(MAXEVE= 13000 !
 & , MAXDATA= 1300000!
 & , MAXCL= 50)!
!

(I usually put the comma separating variables at the beginning of the continuation line,
rather than at the end of the line being continued. If I have to comment out that line for

some reason – it saves me from having to fix the previous line by editing out the comma.)

Global Variables - Common blocks
collections of variables that can be shared

between different parts of the program (main,
subroutines).

This is a way to specify that certain variables

should be shared among different subroutines.

In general, those that give advice about
programming suggest that, the use of common

blocks should be minimized.

Common blocks

 program main!
 real alpha, beta!
 common /coeff/ alpha, beta!
 . . . Statements . . .!
 stop!
 end!
!
 subroutine sub1 (some arguments – but not alpha or beta)!
 real alpha, beta!
 common /coeff/ alpha, beta!
 . . . Statements . . .!
 return!
 end!
!

The main program and subroutine will physically
share the memory in the common block.

(they already share the memory of the variables
passed to the subroutine)

Since memory is physically shared, we don’t have
to use the same names or even the same types in
the different instances of the “named” common

block. (can be handy, and very dangerous)
!
 program main!
 real*4 alpha, beta!
 common /coeff/ alpha, beta!
 . . . Statements . . .!
 stop!
 end!
!
 subroutine sub1 (some arguments – but not alpha or beta)!
 Integer*4 delta, gamma!
 common /coeff/ delta, gamma!
 . . . Statements . . .!
 return!
 end!
!

Common blocks can also be “unnamed” (just leave out
the “/name/” – there is only "one" of these

INCLUDE statements

INCLUDE statements insert the entire contents of
a separate text file into the source code

(ex: “include mydefs.inc”, include files
normally have “.inc” as their “extension”.).

This feature can be particularly useful when the
same set of statements has to be used in several

different program units.

INCLUDE statements

Such is often the case when defining a set of
constants using PARAMETER statements, or when

declaring common blocks with a set of COMMON
statements (without the common below, the variables would be local to each

subroutine).

 include ‘hypoDD.inc’ !in the main program hypoDD.f!
!

contents of file hypoDD.inc!

 integer*4 MAXEVE, MAXDATA, MAXSTA!
c params for medium size problems (e.g.: SUN ULTRA-2,768 MB RAM)!
 parameter(MAXEVE= 13000!
 & , MAXDATA= 1300000!
 & , MAXSTA= 2000)!
 common /mycommon/MAXEVE, MAXDATA, MAXSTA!

Fortran Operators

Type Operator Associativity

Arithmetic
Mult, Div *, / left to right
Add, Sub +, - left to right
Exponentiation ** right to left

Fortran Operators

Type Operator Associativity

Relational
Less than, less than or equal
 .lt. (<), !.le. (<=) none

Greater than, greater than or equal
 .gt. (>), !.ge. (>=)

!

“()” indicates 90/95 convention
Equal, not equal
 .eq. (==),!.ne. (/=)

! is negation

Fortran Operators

Type Operator Associativity

Logical
 .not. right to left
 .and. left to right
 .or. left to right
 .eq. .ne. left to right

Logical variables take on the values .true.

and .false.!

if/endif!
if/else/endif!

if/elseif/endif!
!
if (iflrai(no,neit).eq.1) then ! note the testing syntax!
 ttime= temps!
 else if (iflrai(no,neit).eq.2) then!
 ttime = atim!
 if(iheter1.eq.3) then!
 if(isp.eq.0) then!
 secp(no,neit)=seco(neit)+pdl(ji)+ttime!
 else!
 secp(no,neit)=seco(neit)+sdl(ji)+ttime!
 endif!
 endif!

!endif!

goto/go to!

(remember spacing not important in Fortran)

One of the best features of Fortran is the ability
to quickly jump to (almost) anywhere in the code.

One of the worst features of Fortran is the ability
to quickly jump to (almost) anywhere in the code.

goto/go to!

Any command or block may be labeled using a
numeric number.

Then you can use the goto command to jump to
that line (label).

Labels must be unique.

55 . . .!
56  if(iter.eq.maxiter) goto 600 ! all iterations done.!
 iter= iter+1!
 goto 55 ! next iteration!
c--- update origin time (this is only done for final output!!)!
600 continue!

Problem with indiscriminant use of “go to”s is
spaghetti code.

Disorganized structure of code makes validation
(making sure code does what you want it to), debugging and

maintenance difficult to impossible.
(program flow tends to look like a bowl of spaghetti, i.e. twisted and tangled.

[Wikipedia])

See also

Ravioli code (good)

Lasagna code (good)

Spaghetti and meatballs code (bad ravioli code)

do/endo
do # / # continue!

aka the “do loop”

Two forms

1st form - block form (do-enddo)

 mbad= 0!
 k= 1!
 do i= 1,nsrc!
 if(src_dep(i) + (src_dz(i)/1000).lt.0) then!
 amcusp(k)= ev_cusp(i)!
 k=k+1!
 endif!
 enddo!
 mbad= k-1 ! number of neg depth events!
!

Indenting to make it more readable, maintainable.

2nd form - statement number form

(labelled statement at end of do loop can be executable statement, eg. x=x+1, or non-
executable – continue)

 do 23184 l=1,j1!
 if (.not.(v(l).gt.vlmax)) goto 23186!
 lmax = l!
 tklmax = thk(l)!
 vlmax = v(l)!
23186 continue!
23184 continue!

Numbered line can be executable or not
(continue) and be shared between multiple do

loops.

(labelled statement at end of do loop can be executable statement, eg. x=x+1, or non-
executable – continue)

 do 23184 l=1,j1!
 do 23184 m=l,j2!
 if (.not.(v(l).gt.vlmax)) goto 23186!
 lmax = l!
 tklmax = thk(l)!
 vlmax = v(l)!
23186 continue!
23184 continue!

do/while-loops

 while (logical expr) do!
… statements …!
 enddo!

Or

 do while (logical expr)!
… statements …!
 enddo !

semi-infinite loop

 do while (.true.)!
… statements …!
 test with go to!
… statements …!
 enddo !

What is the value of loop counter (l in this case) when I
leave the loop? (can I depend on l's value and use it for something?)

It depends on how the loop “terminates”

 do 23184 l=1,j1!
 if (.not.(v(l).gt.vlmax)) goto 23186!
 lmax = l!
 tklmax = thk(l)!
23184 continue!
 . . . !

If I’m here the loop ran to "completion" and l is undefined (we cannot
be sure its value is j1). Solution save l into another variable.
 . . .!
 goto 23188!
23186 continue!
 . . .!

If I’m here I branched out of the loop and l keeps its value.!
 . . .!
23188 continue!

Arrays

Arrays of any type can be formed in Fortran.

The syntax is simple:

 type name(dim, dim, …)!
!

/you have to know how big the array/vector will
be when you define the array (write the

program)!/

(Static, not dynamic, memory allocation. But - F90/95 allow dynamic memory allocation.)
!
 real sta_rmsn(MAXSTA)!
 real tmp_ttp(MAXSTA,MAXEVE)!
 example usages:!
 dt_dt(l) = (tmp_ttp(i,j)-tmp_ttp(i,k))!

Arrays

Array indices are integers, increment by 1.

No restriction on range of indices.

 Real X(100)!

Indices range from 1 to 100 in steps of 1.

 Real Y(-100:100)!

Indices range from -100 to 100 in steps of 1.

Real Z(-10:10,5)!

Indices range from -10 to 10 in steps of 1 (first
index), and 1 to 5 in steps of 1 (second index).

This is a very powerful feature of Fortran.

It allows one to “map” real coordinates easily into
the array.

Say I have a seismogram that goes from 1 second
to 12 seconds, sampled at 100 sps (0.01 sec).

I have 1101 samples. I can define my seismogram
array to go from 100 to 1200 and map the index

directly into time by multiplying the index value by
0.01 and vice versa.

(in Matlab or C it would be something more complicated.)

Standard I/O

To read in from standard input (first *)

 CHARACTER(LEN=10) :: Title!
 REAL :: Height, Length, Area!
 read(*,*) Title, Height, Length, Area!

Input example is unformatted list processing
(second *, tries to put variable type and what

finds on input line together "reasonably", works
for reads and writes).

Reads a character string and 3 numbers in any
format (ceri 2 3e4, -.02) , separated by

whitespace (spaces, tabs) or commas into 4
variables.!

I/O from file

To read in from standard input

CHARACTER(LEN=10) :: Title, Height, Length, Area!
…!
read(*,*) Title, Height, Length, Area!

Input example is unformatted list proessing.

If the the variables Title, Height,
Length, Area are declared as character

strings – it reads groups of characters
separated by spaces or enclosed in quotes

(first second “third-i third-ii "
fourth”).

Formatted I/O with "inline" format statement

write (*,'("# lines = ",i7,” in file “,a)') ncts, filename!

Output example is formatted.
It prints out the string in variable filename in
double quotes then a 7 character integer (no

decimal point) whose value comes from ncts, and
the filename (uses the length of the character string, first byte of Fortran

character string has length)

The single quotes define the complete format
specification.

think of write as nawk/C printf with a
different syntax.

Get same results using this form, moving the
strings to list of stuff to print and adding format

specifiers.
!
!
 write (*,'(a,i7,a,a)') "# lines = ",ncts!
 & , ” in file “,filename!
!

Can also specify format in its own statement,
identified with line number

This is useful as it allows more than one write

statement to use the same format.
!
 write (*,8) "# lines = ",ncts, ” in file “,filename!
8 format(a,i7,a,a)!

Finally – you can use the unformatted version
(Fortran figures out what each variable is – during

compile – and handles them with some
"intellegent" default or standard).!

!
 write (*,*) "# lines = ",ncts, ” in file “,filename!

Format codes for Fortran!

a - text string

d - double precision numbers, exponent notation
e - real numbers, exponent notation
f - real numbers, fixed point format

g – "reasonably" selects between e and f.
i – integer

x - horizontal skip (space)
/ - vertical skip (newline)

Specifying format!

The syntax is: [n]FC[width-1].[width-2]!
!

n - optional repeat count specifying number times
format code should be processed. If not

specified, a repeat count of 1 is used.

FC - is the format code. One of
a,d,e,f,g,i,x,/.

Specifying format!

The syntax is: [n]FC[width-1].[width-2]!

width-1,-2 – optional width specifications,
default values are format-code specific, look in

documentation for the format code.

If output does not fit in width-1, prints
width-1 number of *.

Specifying format!

The syntax is: [n]FC[width-1].[width-2]!

width-1 is total number characters (including
signs, decimal points, exponential symbol – e.

width-2 is number digits after decimal point for

floating point numbers or number digits to
display, with zero rather than blank padding, for

integers. Not applicable for a, x, /.

Dynamic format specification

For compilers that support DEC extensions to
Fortran (Sun, Absoft on Mac).

f<m>.<n>!

Where m and n are variables.

 f=1.234567!
 m=5!
 n=3!
 write(*,8)f!
8 format(f<m>.<n>)!
!

Prints out
!
1.234!

I/O to other than standard I/O

Use unit numbers (or modern name - file handles)
to work with external files

c--- open log file for writing:!
!
 call freeunit(log) !sets file handle (gets free unit #)!
 open(unit=log,file='hypoDD.log',status='unknown’)!
 str1= 'starting hypoDD (v1.0 - 03/2001)...’!
 call datetime(dattim) !!calls a subroutine!
 write(unit=log,'(a45,a)') str1, dattim !formatted i/o!
!

Assigns some unused number to variable “log”
associated with a file specified in the open

statement.
Use “log” to identify file from which to to do

reads and writes.

c--- open log file for writing:!
!
 call freeunit(unit=log) !sets file handle (gets free, as in
c unused, unit #)!
 open(unit=log,file='hypoDD.log',status='unknown’)!
 str1= 'starting hypoDD (v1.0 - 03/2001)...’!
 call datetime(dattim) !!calls a subroutine!
 write(unit=log,'(a45,a)') str1, dattim !formatted i/o!
!

See Fortran documentation for other parameters
in open statement.

Since UNIX only supports flat files, most of the

options for the open statement are not applicable
under UNIX. !

Predefined units

0 and 102 – standard error
5 and 100 – teletype (standard in)

6 and 101 – line printer!! (standard out)

n without an open (that defines a file name) looks
for file “fort.n”

Be careful with, and while mixing, free format
character input with numeric input.

Obtaining length (in characters) of input line

! !read(*,'(q,a)',end=1) len, buf!

q format specifier returns length of input line, in
this case going into variable len.

Internal read

! !read(*,'(q,a)',end=1) len, buf!
! !read(buf,*) lat2, lon2!

 First read reads from the standard in into a
variable buf. Second read, reads from the

variable buf instead of a file.

This allows you to read in an input line without
knowing what kinds of information/variables it

has and process it depending on what you find.

Internal read

! !character*150 inbuf!
…!
 read(*,'(q,a)',end=1) len, inbuf!
! !read(inbuf(11:14),'(a4)')code
(cnt)!

 Reads 4 characters (a4) from variable inbuf,
columns/positions 11 through 14, instead of

starting at the beginning of the character string.

This way of accessing columns/positions in a
character string is general for using character

strings anywhere in a program.

Checking for file existence.
Look up inquire to see other things you can

ask the OS.
!
 inquire(FILE= fn_inp,exist=ex)!
 if(.not. ex) stop' >>>ERROR OPENING INPUT FILE.'!

c read input control parameters!
 open(unit=01,file='CNTL',status='old',form='formatted',read
only)!
 call input1 !this subroutine actually reads the file!
!
 subroutine input1!
 implicit none!
 integer countrecords!
 . . .!
C this routine reads in control parameters, number of eq’s!
C and also counts them!
 . . .!
 countrecords=0!
 do while (.true.)!
 read(1,*,err=999,end=998) neqs,nsht,nbls,wtsht,kout!
 countrecords=countrecords+1!
 read(1,*) nitloc,wtsp,eigtol,rmscut,zmin,dxmax,rderr!
 read(1,*) hitct,dvpmx,dvsmx,idmp,(vdamp(j),j=1,3),stepl!
 end do!
998  continue processing
 . . .
999  handle error
 . . .
 return !!alternately you can end using stop or exit!

Do while loop.

Uses end= and err= features of read.
Use end= together with semi-infinite loop to read

file of unknown length, on EOF go to line #.
Can "handle" error using err=, instead of letting

program fall over go to line #.

 . . .!
 countrecords=0!
 do while (.true.)!
 read(1,*,err=999,end=998) neqs,nsht,nbls,wtsht,kout!
 countrecords=countrecords+1!
 read(1,*) nitloc,wtsp,eigtol,rmscut,zmin,dxmax,rderr!
 read(1,*) hitct,dvpmx,dvsmx,idmp,(vdamp(j),j=1,3),stepl!
 end do!
998  continue processing
 . . .
999  handle error
 . . .
 return !!alternately you can end using stop or exit!

Subroutines – little programs, but not
independent. Use for stuff you do lots and for

organization.
!

subroutine latlon(x,y,lat,xlat,lon,xlon)!
c convert from Cartesian coord to lat and long.!
c Takes x,y and returns lat,xlat,lon, and xlon!
 common /shortd/ xltkm,xlnkm,rota,nzco,xlt,xln,snr,csr!
 rad=1.7453292e-2!
 rlt=9.9330647e-1!
 fy=csr*y-snr*x!
 fx=snr*y+csr*x!
 fy=fy/xltkm!
 plt=xlt+fy!
 xlt1=atan(rlt*tan(rad*(plt+xlt)/120.))!
 fx=fx/(xlnkm*cos(xlt1))!
 pln=xln+fx!
 lat=plt/60.!
 xlat=plt-lat*60.!
 lon=pln/60.!
 xlon=pln-lon*60.!
 return!
 end!

When defining arrays in a subroutine you will not
in general know how big they are when you are
writing the program. Subroutine can get input

parameters from anywhere.

 function findsr!
 1instr,instrlen!
 1,seastr,seastrlen)!
 implicit none!
 character *(*) instr,seastr
!
 use (*) to tell Fortran that it is an array.

A word on array usage

Fortran needs to know how big the arrays are to
assign memory, but after that it forgets this

information (unless your compiler has a flag that
does array bounds checking –but this slows the

program down).

You are responsible for making sure your array
indexing does not go outside the array limits.

(this is true for all but "training-wheels" languages
designed to teach programming and computer
science approved programming techniques.)

A word on array usage

So if your array is 100 long and you say

 myarray(1000)=10!

Fortran will happily put 10 in the 1000th memory
position from the start of the array.

If this position in memory is some other variable/
data you will clobber it.

If it is "code" of your program it will cause the

program to fall over (OS may notice this and die
gracefully with an error message)

A word on array usage

So if your array is 100 long and you say

 myarray(1000)=10!

If this position in memory is outside your program
(and therefore in somebody else's area) the OS

will notice this and die gracefully with an error
message

Intrinsic Fortran Functions

Mathematical functions (sqrt, sin, cos, tan,
etc) accept REAL types and return REAL types.

Trig functions accept radians or degrees - based

on how you call the function -

sin, sind, etc.

abs (absolute value) will also accept
INTEGERs.

Intrinsic Fortran Functions

Conversion functions (90/95 conventions)

INT(x) integer part x, REAL2INTEGER

NINT(x) nearest integer to x, REAL2INTEGER

FLOOR(x) greatest integer less than or equal to x,
REAL2INTEGER

FRACTION(x) the fractional part of x,
REAL2REAL

REAL(x) convert x to REAL, INTEGER2REAL

Functions – little programs, but not independent.
Work like built-in functions sin, cos, etc..

In calling routine have to declare it

 real mom_mag!

To use it in calling routine

 magm=mom_mag(mt)

Functions – little programs, but not independent.
Work like built-in functions sin, cos, etc..

To define function

 function mom_mag(mt)!
 implicit none!
 real mom_mag!
 real mt(6)!
 …!
 return!
 end !
!

How to turn your Fortran source files into a
program that runs/executes.

!

f77 -W132 -lU77 vel_az_apkim2000.f
subs.f –o vel_az_apkim2000!
!

Output – executable file will be named
vel_az_apkim2000.

If you don't put to fields "–o name" the output
file is named a.out.

How to turn your Fortran source files into a
program that runs/executes.

!

f77 -W132 -lU77 vel_az_apkim2000.f
subs.f –o vel_az_apkim2000!

The –W switch lets your input lines go out to 132
characters.

The –lU77 switch gives Sun F77 (actually Sun's

continuation of DEC extensions).
(These switches are for Absoft Fortran on the Mac. In general they are different for

different compilers. Most compilers do not have the DEC extensions.)!

