
Data Analysis in Geophysics
ESCI 7205

Class 18

Bob Smalley

More Matlab.

Matlab
Linear Algebra (a la Matlab) Review

But first - Random numbers

When generated on the computer - how random
are they?

Compare – run multiple times

Restart Matlab – run multiple times
Mac vs PC

(seed)

Computers use "pseudorandom" numbers.

From the Matlab/Mathworks web page

Pseudorandom numbers are generated by
deterministic algorithms.

They are "random" in the sense that, on average,
they pass statistical tests regarding their

distribution and correlation.

They differ from true random numbers in that
they are generated by an algorithm, rather than a

truly random process.

From the Matlab/Mathworks web page

Random number generators (RNGs), like those in
MATLAB are algorithms for generating

pseudorandom numbers with a specified
distribution.

A given number may be repeated many times
during the sequence, but the entire sequence is

not repeated.

Acknowledgement
This lecture borrows heavily from online lectures/

ppt files posted by

David Jacobs at Univ. of Maryland
Tim Marks at UCSD

Joseph Bradley at Carnegie Mellon

Vectors

>> a=[2 3 5];  
>> norm(a)  
6.1644  
>> norm(a)^2  
38.000

U = [umn] = !

u11 " "u12 " "…" "u1n!
u21 " "u22 " "…" "u2n!
" " " "…"

um1 " "um2 " "…" "umn!

The general matrix consists of m rows and n columns. It is also
known as an m x n (read m by n) array.

Each individual number, uij, of the array is called the element

Elements uij where m=n is called the principal diagonal

Matrices

>> a=[6 1;2 5]  
a =  
 6 1  
 2 5  
>> a’  
ans =  
 6 2  
 1 5"

Transpose of a Matrix

Notice how Matlab looks like math.

Matrix & Vector Addition
"

>> a=[1; 2]"
a ="
 1"
 2"
>> b=[3; 4]"
b ="
 3"
 4"
>> c=a+b"
c ="
 4"
 6"
>>"
"

NO LOOPS
Looks like
Math – just
add them.

Vector/Matrix addition is associative
and commutative

(A+B)+C=A+(B C); A+B=B+A"

Matrix and Vector Subtraction

Same as addition
Vector/Matrix subtraction is also associative and

commutative
(A-B)-C =A-(B- C); A-B=B-A"

X

αx

Matrix and Vector Scaling

>> x=[1 2 3]"
x ="
 1 2 3"
>> y=3*x"
y ="
 3 6 9"
>> "

For addition and subtraction, the size of the

matrices must be the same
Anm + Bnm = Cnm "

For scalar multiplication,

the size of Anm does not matter

All three of these operations do not differ from
their ordinary number counterparts

The operators work element-by-element through

the array, amn+bmn=cmn"

v

w

α

 v !w = (x1, x2) ! (y1, y2) =|| v || ! ||w || cos!

Vector Multiplication: inner or dot product

The inner product of vector multiplication
is a SCALAR

!

v " w = (x1,x2) " (y1,y2) = x1y1 + x2y2

Projection of one vector (orange) onto another (green,

result - projection – yellow).
Dot product is zero for perpendicular vectors.

The inner/dot product can be represented as row
matrix multiplied by a column matrix. A row matrix

can be multiplied by a column matrix, in that
order, only if they each have

the same number of elements!

>> x=[1 2]"
x ="
 1 2"
>> y=[2 1]"
y ="
 2 1"
>> x*y’"
ans ="
 4"
>> y=[-2 1]"
y ="
 -2 1"

>> x*y’"
ans ="
 0"
>> y=[2 -1]"
y ="
 2 -1"
>> x*y’"
ans ="
 0"
>> "

Several ways to properly calculate the dot
product of two vectors

>> sum(a.*b)"

element by element multiplication (.*), then
sum the results – based on definition.

Or making it look like matrix multiplication

>> whos"
 Name Size Bytes Class Attributes"
 a 1x3 24 double "
 b 1x3 24 double "
>> a*b’"

Or using Matlab function

>> c=dot(a,b)"

The outer product

A column vector multiplied by a row vector.
The outer product of vector multiplication

is a MATRIX.
"
>> a=[6 2 -3]"
a ="
 6 2 -3"
>> b=[4;1;5]"
b ="
 4"
 1"
 5"
>> c=b*a"
c ="
 24 8 -12"
 6 2 -3"
 30 10 -15"
>> "

Matrix Multiplication

Two matrices can be multiplied together
if and only if

the number of columns in the first equals
the number of rows in the second.

pmmnpn BAC ××× =

cij = aikbkj
k=1

m

!

>> a=[1 2 3;3 2 1]
a =
 1 2 3
 3 2 1
>> b=[4 5;10 2;2 10]
b =
 4 5
 10 2
 2 10
>> c=a*b
c =
 30 39
 34 29
>>

>> a(1,:)
ans =
 1 2 3
>> b(:,1)
ans =
 4
 10
 2
>> a(1,:)*b(:,1)
ans =
 30
>> a(1,:)*b(:,2)
ans =
 39
>> a(2,:)*b(:,2)
ans =
 29
>> a(2,:)*b(:,1)
ans =
 34

In MATLAB, the * symbol represents matrix
multiplication :

>> c=a*b
c =
 30 39
 34 29
>> c=b*a
c =
 19 18 17
 16 24 32
 32 24 16

nnnnnnnn ABBA ×××× ≠

•  Matrix multiplication is not commutative!

•  Matrix multiplication is distributive and
associative

A(B+C) = AB + BC
(AB)C = A(BC)

Matrices can represent sets of equations

What’s the matrix representation?

A=

a11 a12 ... a1n

a21 a22 ... a2n

...
an1 an2 ... ann

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 x =

x1

x2

.
xn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 b =

b1

b2

.
bn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

!

Ax = b

a11x1 + a12x2 +!+ a1nxn = b1
a21x1 + a22x2 +!+ a2nxn = b2
!
an1x1 + an2x2 +!+ annxn = bn

Determinant of a Matrix
"
>> a=magic(3)"
a ="
 8 1 6"
 3 5 7"
 4 9 2"
>> det(a)"
Ans "
 -360"
>>"

Inverse of a Matrix
"

>> a=rand(3)"
a ="
 0.9649 0.9572 0.1419"
 0.1576 0.4854 0.4218"
 0.9706 0.8003 0.9157"
>> b=inv(a)"
b ="
 0.3473 -2.4778 1.0874"
 0.8607 2.4223 -1.2490"
 -1.1203 0.5093 1.0310"
>> a*b"
ans ="
 1.0000 0.0000 -0.0000"
 -0.0000 1.0000 -0.0000"
 0 0.0000 1.0000"
>> b*a"
ans ="
 1.0000 0.0000 -0.0000"
 0 1.0000 0.0000"
 -0.0000 -0.0000 1.0000"
>> "

If square matrix
invertible, has same
right and left inverse.

the determinant

the principal diagonal elements switch positions

the off diagonal elements
change sign

Square matrices with inverses are said to be
nonsingular

Not all square matrices have an inverse. These are

said to be singular.

Square matrices with determinants =0 are
singular. (determinant in denominator)

Rectangular matrices are always singular.

Right- and Left- Inverse

If a matrix G exists such that GA = I, than G is a
left-inverse of A"

If a matrix H exists such that AH = I, than H is a
right-inverse of A"

Rectangular matrices may have right- or left-
inverses, but they are still singular.

For

!

A = m x n, m > n : we have a left inverse AT A()"1
AT A = In ,

 Aleft
"1 = AT A()

"1
AT

A = m x n, n > m : we have a left inverse AAT AAT()"1
= Im,

 Aright
"1 = AT AAT()

"1

>> a=[1 2 3;4 5 6]
a =
 1 2 3
 4 5 6
>> det(a*a')
ans =
 54
>> ainv=a'*inv(a*a’)
ainv =
 -0.9444 0.4444
 -0.1111 0.1111
 0.7222 -0.2222

Right inverse exists,
but left doesn’t.

>> a*ainv
ans =
 1.0000 -0.0000
 -0.0000 1.0000
>> det(a'*a)
ans =
 0

Matrix Division in Matlab

In ordinary math, division (a/b) can be thought
of as a*(1/b) or a*b-1.

There really is no such thing as matrix division in

any simple sense.

A unique inverse matrix of b, b-1, only potentially
exists if b is square.

Also, matrix multiplication is not communicative,

unlike ordinary multiplication.

Matrix Division in Matlab

/ : B/A (right division) is roughly the same as
B*inv(A).

A and B must have the same number of columns
for right division.

More precisely, B/A = (A'\B')’.

Matrix Division in Matlab

\ : If A is a square matrix, A\B (left division) is roughly
the same as inv(A)*B, except it is computed in a

different way.
A and B must have the same number of rows for

left division.
a =
 1 2
 3 4
>> b
b =
 1
 2
>> c=a\b
c =
 0
 0.5000

>> ainv=inv(a)
ainv =
 -2.0000 1.0000
 1.5000 -0.5000
>> ainv*b
ans =
 0
 0.5000
>> a*c
ans =
 1
 2

Matrix Division in Matlab

\ : If A is an m-by-n matrix (not square) and b is
a matrix of m rows, Ax=b is solved by least

squares using A\b (left division).
>> A"
A ="
1.0000 0 0"
1.0000 1.0000 0.5000"
1.0000 2.0000 2.0000"
1.0000 3.0000 4.5000"
1.0000 4.0000 8.0000"
1.0000 5.0000 12.5000"
>> b"
b ="
 1001"
 1093"
 1177"
 1245"
 1305"
 1349"

>> x_=A\b"
x_ ="
 1.0e+03 *"
 1.0004"
 0.0998"
 -0.0120"
>> (A*x_-b)/mean(b)"
ans ="
 -0.0005"
 0.0011"
 -0.0008"
 0.0008"
 -0.0011"
 0.0005"
"

Matlab also has routines to do polynomial fits
(positive powers only).

Data – 11 points (red circles)

5th order polynomial fit to 11 points – fewer
parameters than data – get LS fit (blue line, blue

‘+’) – does not go through data points
(but misfit “minimized”).

Data – 11 points (red circles)

10th order polynomial fit to 11 points – same
number parameters as data – get exact solution

(red line). Goes though each point exactly.

Now add some noise.

Data – 11 points (red circles)

Magenta and green – 5th and 10th order
polynomials fit to data with 10% noise.

The fits to the noisy and perfect data look pretty
much the same when plotted.

>> poly_demo"
p5 ="
 -0.0010 0.0215 -0.1629 0.4980 -0.6166 0.2926"
pn5 ="
 -0.0009 0.0209 -0.1559 0.4696 -0.5767 0.2733"
p10 ="
 Columns 1 through 11"
 0.0000 -0.0003 0.0051 -0.0474 0.2251 -0.3195 -1.7232 8.6334 -14.0467 7.3647 0.2333"
pn10 ="
 Columns 1 through 11"
 0.0000 -0.0002 0.0024 -0.0145 -0.0298 0.9338 -5.6002 15.8159 -21.1548 10.1628 0.2137"

"

The models (the values for polynomial coefficients), however,
are quite different.

Compare “stability” of the solutions.

? ?

Array Operators (review)

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division.
(A./B: divides A by B by element)

.\ Element-by-element left division
(A.\B divides B by A by element)

.^ Element-by-element power

.' Unconjugated array transpose
(does not take complex conjugate, unlike a regular [no dot] matrix transpose)

Some Special Matrices

Square matrix: m (# rows) = n (# columns)

Symmetric matrix: subset of square matrices
where AT = A "

Diagonal matrix: subset of square matrices where
elements off the principal diagonal are zero, aij

= 0 if i ≠ j"

Identity or unit matrix: special diagonal matrix
where all principal diagonal elements are 1"

>> a=[1 2 3;4 5 6;7 8 9]
a =
 1 2 3
 4 5 6
 7 8 9
>> c=trace(a)
c =
 15
>> a=[.96 -.28; .28 .96]
a =
 0.9600 -0.2800
 0.2800 0.9600
>> inv(a)
ans =
 0.9600 0.2800
 -0.2800 0.9600
>> a'*a
ans =
 1 0
 0 1
>>

MATLAB
Misc stuff

lookfor command – to look for commands
based on “keyword”

(searches all m files in path, including your files, for the keyword).

what command – lists Matlab related files (returns

structure with fields for m, mat, mex, mdl, classes, and packages files).,

Help window (pull down menu).

Helpdesk (internet)

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

workspace
"
>> help workspace"
 WORKSPACE Open Workspace browser to manage workspace WORKSPACE
Opens the Workspace browser with a view of the variables in the
current Workspace. Displayed variables may be viewed,
manipulated, saved, and cleared."

path

>> help path"
 PATH Get/set search path."
 PATH, by itself, prettyprints MATLAB's current search path.
The initial search path list is set by PATHDEF, and is perhaps
individualized by STARTUP."
 P = PATH returns a string containing the path in P. PATH(P)
changes the path to P. PATH(PATH) refreshes MATLAB's view of the
directories on the path, ensuring that any changes to non-toolbox
directories are visible."
 PATH(P1,P2) changes the path to the concatenation of the two
path strings P1 and P2. Thus PATH(PATH,P) appends a new
directory to th current path and PATH(P,PATH) prepends a new
directory. If P is already on the path, then PATH(PATH,P) moves
P to the end of the path, and similarly, PATH(P,PATH) moves P to
the beginning of the path."
 For example, the following statements add another directory
to MATLAB’s search path on various operating systems:"
 Unix: path(path,'/home/myfriend/goodstuff')"
 Windows: path(path,'c:\tools\goodstuff’)"

format command
"
>> help format"
. . ."
FORMAT Set output format."
. . ."
FORMAT does not affect how MATLAB computations are done."

To separate multiple commands on one line use
“;” for no output, and ‘,’ for output

Command line editing

arrows: move cursor by character

ctrl arrows l and r: move cursor by word

ctrl a, e: move cursor to beginning, end line

ctrl u, d, h, k: clear line, delete char at
cursor, delete char before cursor, delete to end

of line.

Running an m file from the command line (should
not be an interactive m file)

"
>> Matlab < somefile.m"
"

Don’t show output on terminal (send to bit
bucket), run in background to not lock up

terminal
"
>> Matlab -nosplash < eig_mov.m > /nl &"
"

>> a=[1 2 3;4 5 6;7 8 9]
a =
 1 2 3
 4 5 6
 7 8 9
>> c=trace(a)
c =
 15

>> a=[.96 -.28; .28 .96]
a =
 0.9600 -0.2800
 0.2800 0.9600
>> inv(a)
ans =
 0.9600 0.2800
 -0.2800 0.9600
>> a'*a
ans =
 1 0
 0 1
>>

Block matrices

>> b=[2 2;1 3]"
b ="
 2 2"
 1 3"
>> c=[0 2 3; 5 4 7]"
c ="
 0 2 3"
 5 4 7"
>> d=[1 0]"
d ="
 1 0"
>> e=[-1 6 0]"
e ="
 -1 6 0"
>> a=[b c;d e]"
a ="
 2 2 0 2 3"
 1 3 5 4 7"
 1 0 -1 6 0"

Linear Dependence

a b c"
"
2a + 1b = c"
"

Linear Independence

There is no simple, linear combination of a and b
what will produce c.

a b c"

Rank of a matrix

>> a=[1 2; 3 4]"
a ="
 1 2"
 3 4"
>> rank(a)"
ans ="
 2"
>> rref(a)"
ans ="
 1 0"
 0 1"
>> help rref"
 rref Reduced row echelon form."
 R = rref(A) produces the reduced row echelon form of A."

>> a=[1 2 3;4 5 6;7 8 9]"
a ="
 1 2 3"
 4 5 6"
 7 8 9"
>> b=inv(a)"
Warning: Matrix is close to singular or badly scaled. Results may
be inaccurate. RCOND = 1.541976e-18. "
b ="
 1.0e+16 *"
 -0.4504 0.9007 -0.4504"
 0.9007 -1.8014 0.9007"
 -0.4504 0.9007 -0.4504"
>> a*b"
ans ="
 2 0 2"
 8 0 0"
 16 0 8"
>> b*a"
ans ="
 4 0 0"
 0 8 0"
 4 0 0"

>> a=[1 2 3;4 5 6;7 8 9]"
a ="
 1 2 3"
 4 5 6"
 7 8 9"
>> det(a)"
ans ="
 6.6613e-16"
>> 1*(5*9-6*8)-2*(4*9-7*6)+3*(4*8-7*5)"
ans ="
 0"
>> c=a(:,1:2)\a(:,3)"
c ="
 -1.0000"
 2.0000"
>> rank(a)"
ans ="
 2"
>> rref(a)"
ans ="
 1 0 -1"
 0 1 2"
 0 0 0"
>> "
"
"

Computers versus
Math:
Determinant is
actually zero,
inverse does not
exist.

There are a lot of matrix math functions

>> help matfun"
 Matrix functions - numerical linear algebra."
 "
 Matrix analysis."
 norm - Matrix or vector norm."
 normest - Estimate the matrix 2-norm."
 rank - Matrix rank."
 det - Determinant."
 trace - Sum of diagonal elements."
 null - Null space."
 orth - Orthogonalization."
 rref - Reduced row echelon form."
 subspace - Angle between two subspaces."
 "
 Linear equations."
 / and / - Linear equation solution; use "help slash"."
 linsolve - Linear equation solution with extra control."
 inv - Matrix inverse."
 rcond - LAPACK reciprocal condition estimator"
 cond - Condition number with respect to inversion."
 condest - 1-norm condition number estimate."
 normest1 - 1-norm estimate."

 cholinc - Incomplete Cholesky factorization."
 ldl - Block LDL' factorization."
 lu - LU factorization."
 luinc - Incomplete LU factorization."
 qr - Orthogonal-triangular decomposition."
 lsqnonneg - Linear least squares with nonnegativity

" " " " " " " " " " " " " " "constraints."
 pinv - Pseudoinverse."
 lscov - Least squares with known covariance."
 "
 Eigenvalues and singular values."
 eig - Eigenvalues and eigenvectors."
 svd - Singular value decomposition."
 gsvd - Generalized singular value decomposition."
 eigs - A few eigenvalues."
 svds - A few singular values."
 poly - Characteristic polynomial."
 polyeig - Polynomial eigenvalue problem."
 condeig - Condition number with respect to eigenvalues."
 hess - Hessenberg form."
 schur - Schur decomposition."
 qz - QZ factorization for generalized eigenvalues."

 ordschur - Reordering of eigenvalues in Schur decomposition."
 ordqz - Reordering of eigenvalues in QZ factorization."
 ordeig - Eigenvalues of quasitriangular matrices."
 "
 Matrix functions."
 expm - Matrix exponential."
 logm - Matrix logarithm."
 sqrtm - Matrix square root."
 funm - Evaluate general matrix function."
 "
 Factorization utilities"
 qrdelete - Delete a column or row from QR factorization."
 qrinsert - Insert a column or row into QR factorization."
 rsf2csf - Real block diagonal form to complex diagonal

" " " " " " " " " " " " " " " " "form."
 cdf2rdf - Complex diagonal form to real block diagonal

" " " " " " " " " " " " " " " " "form."
 balance - Diagonal scaling to improve eigenvalue accuracy."
 planerot - Givens plane rotation."
 cholupdate - rank 1 update to Cholesky factorization."
 qrupdate - rank 1 update to QR factorization."
"
>>"

MATLAB
Data Analysis

 Flow Charts

2 tasks

Understanding How a Process Works
(if you don't know how to do it, you can't write a

program to do it)

Communicating How a Process Works
(translating it into computer code, communicating

to the computer.)

A flow chart can therefore be used to:

Define and analyze processes;

Build a step-by-step picture of the process for
analysis, discussion, communication, and coding;

and

Define, standardize or find areas for improvement
in a process.

Also

by conveying the information or processes in a
step-by-step flow, you can then concentrate

more intently on each individual step,

without feeling overwhelmed by the bigger
picture.

Most flow charts are made up of three main types
of symbol:

 Elongated circles, signify start or end of a
process;

 Rectangles, show instructions or actions;

 Diamonds, show decisions to be made

Within each symbol, write down what the symbol
represents. This could be the start or finish of the
process, the action to be taken, or the decision to

be made.

Symbols are connected one to the other by
arrows, showing the flow of the process.

Worlds most famous Flowchart:
General Flowchart For Problem Resolution -

Don’t Fool with it!

YES NO

YES

YOU IDIOT!
NO

Will it blow up
in your hands?

NO

Look the other way

Anyone else
know? You’re SCREWED!

YESYES

NO

Hide it
Can you blame
someone else?

NO

NO PROBLEM!

Yes

Is it working?

Did you fool
with it?

Coding and Flow Charts

Today’s presentation will focus on understanding
Chuck’s Matlab script for polarization analysis
using 3 component recordings of body and/or

surface waves

Chucks example codes:

http://www.ceri.memphis.edu/people/langston/Matlab/programming.html

GOAL: solve for polarization using 3 component
seismic data

Starting data: 3 component single station SAC

formatted data

Result: Identify the azimuth(s) of the primary
wave(s) recorded in the data

How to we get from A to B?

Principal Component Analysis

Principal component analysis (PCA) is a vector
space transform often used to reduce

multidimensional data sets to lower dimensions
for analysis.

Principal Component Analysis

PCA involves the calculation of the eigenvalue
decomposition of a data covariance matrix or
singular value decomposition of a data matrix,
usually after mean centering the data for each

attribute.

Its operation can be thought of as revealing the
internal structure of the data in a way which best

explains the variance in the data.

What we are looking for:

New set of axis (basis) that maximizes the
correlation of HT(Z) with R, and minimizes the
correlations between both HT(Z) and R with T.

We are not using the full power of PCA, since we

already have some model for the result of the
analysis

(and have therefore preprocessed the data by taking the Hilbert transform of the z

component).

What is the idea?

Seismic waves are polarized

P wave longitudinal (V and R)

S wave transverse with SH and SV polarizations
(T, V and R)

Rayleigh waves (V and R)

Love waves (T).

If we take a short time period we can think of
each component as a vector of n terms.

If we take the dot product of each vector with
itself and with the other two components we can

find the “angle” between them.

We can also make these dot products by making a
3xn array using each seismogram as a row.

Multiplying this array with its transpose (an array
where each seismogram is a column) results in a
3x3 matrix with the various dot products in the

elements of the matrix.

(there are only 6 unique ones, 3 are redundant,
since the resultant matrix is symmetric since

a•b=b•a)

Now find the eigenvectors and eigenvalues of this
matrix.

From the eigenvectors we can make a rotation
matrix that will rotate our matrix to a diagonal

matrix.

The off diagonal elements are now all zero and
from the geometric interpretation of the dot

product this means that the two vectors used to
make that dot product are perpendicular.

So we can rotate the original horizontal
components into a new set of seismograms

rotated to the principal directions defined by the
eigenvectors.

The dot products of the off diagonal terms will

now be zero, indicating the vectors are
perpendicular.

•  load SAC data

•  remove mean

• plot waveforms

•  filter waveforms to
highlight waves of
interest

• plot filtered waveforms

Data
Preparation

•  principal component
analysis using 3-
component data

• note, this technique
requires zero-mean
data

Main Code
• plot azimuths of

eigenvectors

• plot azimuths
exceeding 50% of
maximum value

Results

GOAL: Solve for polarization

Plot filtered waveforms

Filter waveforms to highlight waves of interest
Design a filter; allow flexible input of corner info Work on 3 files…suggests a subroutine

Plot waveforms vs time

Remove the mean

Load SAC data
3 files (Z,E,N)…. suggests using a subroutine Provide station name

Step 1: Data Preparation

Create function ‘polarize’

function polarize(station,delt,ttot,twin,hilb,flp,fhi)
%
% function polarize(station,delt,ttot,twin,hilb,flp,fhi)
%
% Program to read in 3 component waveform data
% Create the covariance matrix for a moving time window
% Find the principal components and infer polarization
%
% input:
% station = station name for sacfile prefix
% delt = sampling interval
% ttot = total number of seconds to analyze in traces
% twin = time window length, each time shift will be 1/2 of the
% window length
% hilb = 0, no hilbert transform of vertical component
% = 1, hilbert transform
% flp = low passband corner frequency of a 2nd order butterworth
% filter used to filter the data, if 0, then no filtering
% fhi = hi passband corner frequency of the filter

Loading SAC data

Many Matlab scripts exist to read in SAC data.

I modified one version so it is

- not sensitive to byte order
- returns the data, plus: npts, delta, and begin

point of the SAC file

- data is a column vector

Read the data
"
[e,npts,delt,date,hour,minu,seco,fname]=get_sac_fn('../ "

" "2007.308.20.37.16.3856.IU.SBA.00.BHE.R.SAC');"
"
[n,npts,delt,date,hour,minu,seco,fname]=get_sac_fn('../ " " "

" "2007.308.20.37.16.3856.IU.SBA.00.BHN.R.SAC');"
"
[z,npts,delt,date,hour,minu,seco,fname]=get_sac_fn('../ " " "

" "2007.308.20.37.16.3856.IU.SBA.00.BHZ.R.SAC');"
"

Removing the data mean
We need to remove the mean of the data for

principal component analysis (PCA).

We also need to transpose the column vector data
into row vectors.

e=dmean(e’); " " "% remove the mean from each"
n=dmean(n’); " " "% and transpose the data"
z=dmean(z’);"

subroutine: dmean"
function [a]=dmean(b)"
%"
% [a]=dmean(b)"
%"
% Remove the mean from a row vector"
m=mean(b);"
a=b-m;"
return;"

Make Love and Rayleigh waves (Z, R and T)

Rayleigh R and Z related by Hilbert X-form (90° phase

shift, blue trace is Hilbert Transformed to green trace, then overlays red trace.).

n=512;"
a=sin(2*pi*[0:(n-1)]/n);"
b=hilbert(a);"
clf"
plot(a)"
hold"
plot(-imag(b),'r')"
plot(real(b),'g--')"
grid"
"
"

Hilbert Transform
"
if hilb ==1; "% hilbert transform the vertical component"
 zh=hilbert(z); "% to make Rayleigh wave in phase (rather than

" " " " " "90° different) on vert and horz"
 z=-imag(zh); "% if present (z constructed from HT, so

" " " " " "used +imag to make overlay for last
" " " " " "figure)"

 else;"
end;"

Make Love and Rayleigh waves (Z, R and T)

Rotate horizontals into seismograms @ 30°.

Plot the data"
% plot the raw data"
f1=figure('name','DATA SEISMOGRAMS'); "
subplot(3,1,1);"
plot(t,e);"
xlabel('time sec');"
ylabel(strcat('EW Comp at ',station));"
subplot(3,1,2);"
plot(t,n);"
xlabel('time sec');"
ylabel(strcat('NS Comp at ',station));"
subplot(3,1,3);"
plot(t,z);"
xlabel('time sec');"
ylabel(strcat('Z comp at ',station));"
"

Filtering

Filtering is a two step process in Matlab

Design the filter
Apply the filter

There is a filter design GUI you can use to design

the perfect filter called fdatool

Or you can design filters using pre-built filter
types (Butterworth, Bessel, etc.)

function [d]=bandpass(c,flp,fhi,npts,delt)"
%"
% [d]=bandpass(c,flp)"
%"
% bandpass a time series with a 2nd order butterworth filter"
%"
% c = input time series"
% flp = lowpass corner frequency of filter"
% fhi = highpass corner frequency"
% npts = samples in data"
% delt = sampling interval of data"
%"
n=2; " " "% 2nd order butterworth filter"
fnq=1/(2*delt); " "% Nyquist frequency"
Wn=[flp/fnq fhi/fnq]; % non-dimensionalize the corner
frequencies"
[b,a]=butter(n,Wn); % butterworth bandpass non-dimensional
frequency"
d=filtfilt(b,a,c); % apply the filter: use zero
phase filter (p=2)"
return;"

Filter & plot the filtered data"
% filter the data"
%"
if flp > 0;"
 e1=bandpass(e,flp,fhi,npts,delt);"
 n1=bandpass(n,flp,fhi,npts,delt);"
 z1=bandpass(z,flp,fhi,npts,delt);"
 e=e1;"
 n=n1;"
 z=z1;"
 %"
 % plot the filtered data"
 f2=figure('name','FILTERED SEISMOGRAMS');"
 subplot(3,1,1);"
 …… removed for clarity!
 else;"
end;"
"

*The vertical channel has also had
a Hilbert transform applied so that
the Rayleigh wave is in phase on
the NS and Z components

•  Recognize that incoming seismic phases
should represent the principal components,
or the strongest signal, on the 3 component
data

• The principal components, in turn, are
equal to the eigenvectors of the covariance
matrix of the 3 component matrix. This
can be derived using PCA techniques

• Eigenvectors/values represent a spatial
transformation which maximizes
covariance between the 3 components, and
they contain information on the azimuth
from which the primary signal is derived

• Since multiple phases may be present, we
would prefer to look at short time
windows of the 3 component data, or in
other words, perform PCA on a running
window through the continuous waveforms Main Code

•  plot azimuths of
eigenvectors

•  plot azimuths
exceeding 50%
of maximum
value

Results

GOAL: Solve for polarization

Create a
running
window

Create a
matrix of the
3 component
data in the

window

Calculate the
correlation

matrix

Find the
eigenvectors

and
eigenvalues

Reorder the
eigenvectors/
eigenvalues

Calculate the
azimuth for each

eigenvalue

Step 2: Main Code

npts1
nwin

npshift

Moving window using loops"
% Moving window loop"
%"
npts1=fix(ttot/delt) + 1; % total number of samples to analyze"
nwin=fix(twin/delt) + 1; % number of samples in a time window"
npshift=fix(twin/(2*delt))+1; % number of samples to shift over"
kfin=fix((npts1-nwin)/(npshift+1))+1; % number of time windows
considered"
"
mxde1=0.;"
mxde2=0.;"
mxde3=0.;"

overlap

k=1

k=2

k=3 …
k=kfin

for k=1:kfin;"
 nwinst=(k-1)*(npshift-1)+1; % start of time window"
 nwinfn=nwinst+nwin-1; % end of time window"
 …….. missing code to be supplied later!
 t2(k)=delt*(nwinst-1); % assign time for this window to the
window start"
end;"

Eigenvalues/Eigenvectors

Missing code from inside our loop
!
a=csigm(e,n,z,nwinst,nwinfn); "% signal matrix"
c=a'*a; " " " " " "% covariance matrix"
[v1,d1]=eig(c); " "% eigenvalue/eigenvectors"
[v,d]=order(v1,d1); "% put eigenvalues & eigenvectors

" " " " " "in ascending order"
"
% azimuth for each of the 3 eigenvalues"
ang1(k)=atan2(v(1,1),v(2,1)) * 180/pi; "
ang2(k)=atan2(v(1,2),v(2,2)) * 180/pi; "
ang3(k)=atan2(v(1,3),v(2,3)) * 180/pi; "
"
% incidence angle of the 3 eigenvalues"
vang1(k)=acos(abs(v(3,1)))* 180/pi; %angle from the vertical"
vang2(k)=acos(abs(v(3,2)))* 180/pi;"
vang3(k)=acos(abs(v(3,3)))* 180/pi;"

Still in loop
!
de1(k)=d(1);"
de2(k)=d(2);"
de3(k)=d(3);"
"
mxde1=max(mxde1,de1(k)); % find the maximum values"
mxde2=max(mxde2,de2(k));"
mxde3=max(mxde3,de3(k));"

Outside of Loop again
"
f3=figure('name','Eigenvalues and Inferred Azimuth');"
subplot(3,1,1);"
plot(t2,de1,'-or',t2,de2,'-dg',t2,de3,'-+b');"
xlabel('time sec');"
ylabel('eigenvalues');"
"
subplot(3,1,2);"
plot(t2,ang1,'-or',t2,ang2,'-dg',t2,ang3,'-+b');"
xlabel('time sec');"
ylabel('Azimuth ');"
"
subplot(3,1,3);"
plot(t2,vang1,'-or',t2,vang2,'-dg',t2,vang3,'-+b');"
xlabel('time sec');"
ylabel('incidence angle ');"

• 

Main Code

•  plot azimuths
of eigenvectors

•  plot azimuths
exceeding 50%
of maximum
value

Results

GOAL: Solve for polarization

Rose Diagrams
"
% Rose plots"
f4=figure('name','Azimuth Distribution');"
subplot(2,3,1);"
title('Azimuth - Largest Eigenvalue');"
rose(ang1*pi/180,100);"
"
subplot(2,3,2);"
title('Azimuth - Intermediate Eigenvalue');"
rose(ang2*pi/180,100);"
"
subplot(2,3,3);"
title('Azimuth - Smallest Eigenvalue');"
rose(ang3*pi/180,100);"
"

nskip=1;"
if nskip == 1;"
 else;"
neig1=0;"
neig2=0;"
neig3=0;"
for k=1:kfin;"
 if de1(k) >= 0.5*mxde1;"
 neig1=neig1+1;"
 angm1(neig1)=ang1(k);"
 else;"
 end;"
 if de2(k) >= 0.5*mxde2;"
 neig2=neig2+1;"
 angm2(neig2)=ang2(k);"
 else;"
 end;"
 if de3(k) >= 0.5*mxde3;"
 neig3=neig3+1;"
 angm3(neig3)=ang3(k);"
 else;"
 end;"
end;"
subplot(2,3,4);"

title('Azimuth - Largest
Eigenvalue,50% Threshold');"

rose(angm1*pi/180,100);"
subplot(2,3,5);"
title('Azimuth - Intermediate

Eigenvalue,50% Threshold');"
rose(angm2*pi/180,100);"
subplot(2,3,6);"
title('Azimuth - Smallest

Eigenvalue,50% Threshold');"
rose(angm3*pi/180,100);"
end; "

MATLAB
Intro writing GUI’s

What is a GUI?

Graphical User Interface

(Aside - what is “wysiwyg”?)

MatLab provides a tool called the

Graphical User Interface Development
Environment

(GUIDE)

A GUI used to create GUI’s.

You can also be a masochist and write the code
from scratch.

A GUI should be consistent and easily
understood.

(if you need the manual, there’s a bug in the program or a flaw in the gui. Non-UNIX philosophy!)

Provide the user with the ability to use a program
without having to worry about commands to run

the actual program.

Possible components of a GUI -

Pushbuttons
Sliders

List boxes

Menus
Interactive Graphics

….etc

3 Essential Parts of a GUI –

1

Graphical Components
pushbuttons, edit boxes, sliders, labels, menus,

etc…

Static Components
Frames, text strings,…

Both created using the MATLAB function
uicontrol.

3 Essential Parts –

2

Figures – components are contained in figures.

3

Callbacks – The functions which perform the
required action when a component is “pushed”.

GUIDE Properties

Allows the user to drag and drop components
that he/she wants in the “layout” area of the GUI.

All “guide” GUI’s start with an opening function.

Callback is performed before user has access

to GUI.

GUIDE stores GUIs in two files, which are
generated the first time you save or run the GUI:

– .fig file - contains a complete description of the
GUI figure layout and the components of the

GUI.
Changes to this file are made in the Layout Editor

– .m file - contains the code that controls the
GUI.

You program callbacks in this file using the M-file
Editor.

Creating a GUI

Typical stages of creating a GUI are:

1.  Designing the GUI

2. Laying out the GUI
Using the Layout Editor

3. Programming the GUI

Writing callbacks in the M-file Editor

4. Saving and Running the GUI

Assessing the Value of Your GUI

Ask yourself two basic questions when designing
your GUI.

- Do the users always know where they are?

- Do they always know where to go next?

Constantly answering these two questions will
help you keep in perspective the goal of your

GUI.

Callback function

The “meat” of the GUI process.

Opening function is first callback in every “guide”
generated GUI.

Usually used to generate data used in GUI.

Callbacks define what will happen when a figure

component is selected.

You must write the callback code!!!!

Summary

At command prompt type “guide”.

Lay out your GUI in the layout editor.

Define data in Opening Function.

Edit/Align your components using
- Tools Menu

- Align
- View menu

- Property Inspector

Write the Callbacks
(This is the most difficult aspect when creating GUI’s)

Layout Area

A
lig

nm
en

t T
oo

l
M

en
u

E
di

to
r

Ta
b

O
rd

er
 E

di
to

r
To

ol
ba

r E
di

to
r

M
-F

ile
 E

di
to

r
Pr

op
er

ty
 In

sp
ec

to
r

O
bj

ec
t B

ro
ws

er

Ru
n

B
ut

to
n

C
om

po
ne

nt

Pa
le

tt
e

Figure Resize Tab

Components
of GUIDE GUI
interface

Writing Callbacks (the hard part).

A callback is a sequence of commands (function)
that are execute when a graphics

object is activated.

Callbacks are stored in the GUI’s m-file.

Callbacks are a property of a graphics object
(e.g. CreateFnc, ButtonDwnFnc,

Callback, DeleteFnc).

(Also called an “event handler” in some programming languages.)

A callback is usually made of the following stages:

1.  Get handle of object initiating the action
(the object provides event / information / values).

2. Get handles of objects being affected
(the object thatwhose properties are to be changed).

3. Getting necessary information / values.

4. Doing some calculations and processing.

5. Setting relevant object properties to effect
action.

Let's create a GUI that plots a function that we
can interactively specify.

We first lay out the basic controls for our

program, selected from the menu along the left
side:

axes,
static text,
edit box,

and a button.

Define and place the axis, static text (will have the prompt

for the function), edit text (to interactively enter the function), and a
button to do the plot.

Basic Elements of our GUI-

 axes: a place to draw.

 static text: text that is stuck/fixed/static on the
screen, the user can't edit it.

 edit box: a white box that the user can type input
into.

 button: performs an action when user clicks on it.

The Property Inspector

 When you double-click on a control, it brings up
a window listing all the properties of that control

(font, position, size, etc.)

Tag - the name of the control in the code. best to
rename it to something identifiable ("PlotButton"

vs "button1”)

String - the text that appears on the control

ForegroundColor - color of the text

BackgroundColor - color of the control

Enter text string for
pushbutton

Enter tag for
pushbutton

Running

If you press the green arrow at the top of the GUI
editor, it will save your current
version and run the program.

The first time you run it, it will ask you to
name the program.

Our figure looks about right, but it doesn't do
anything yet.

We have to define a callback for the button so it
will plot the function when we press it.

Pile of windows – GUIDE design window, m file
with code for GUI, window with running GUI.

Buttons “work” (respond when click in them), can enter text.
But nothing happens.

Have to write callback routine to specify what
happens.

Writing Callbacks

As noted, when you run the program, it creates
two files.

your_gui.fig -- contains the layout of your
controls

your_gui.m -- contains code that defines a
callback function for each of your controls

We generally don't mess with the initialization code
in the m-file.

We will probably leave many of the control
callbacks blank.

Writing Callbacks

In our example, we just need to locate the
function for the button.

This is why it is important to have a good Tag so
we can keep our controls straight.

You can also right-click on the control and select
View Callback.

Writing Callbacks
Initially the button callback looks like this.

"
% --- Executes on button press in PlotFunction."
function PlotFunction_Callback(hObject, eventdata, handles)"
% hObject handle to PlotFunction (see GCBO)"
% eventdata reserved - to be defined in a future version of
MATLAB"
% handles structure with handles and user data (see GUIDATA)"
"

We can delete the comments and type code.
Note every function has the parameter handles.

This contains all the controls:
handles.PlotButton, handles.edit1,

handles.axes1, …

We can add variables to handles to make them
available to all functions:

handles.x = 42;"

Writing Callbacks

 We can look up any property of a control with
the get function.

Similarly, we can change any property with the set
function.

 This is where things get complicated."

Writing Callbacks

We need two callbacks.

 1) We want to get the String typed into the edit
box

2) and plot it.

function EnterFN_Callback(hObject, eventdata, handles)"
. . . "
function EnterFN_CreateFcn(hObject, eventdata, handles)"

Look at properties
inspector and m file to see
how things match up.

1) We want to get the string typed into the edit
box

Blue produced by guide, have to add the black
(one line). Variable handles.EnterFn created

here.

function EnterFN_Callback(hObject, eventdata, handles)"
% hObject handle to EnterFN (see GCBO)"
% eventdata reserved - to be defined in a future version of
MATLAB"
% handles structure with handles and user data (see GUIDATA)"
 "
% Hints: get(hObject,'String') returns contents of EnterFN as
text"
% str2double(get(hObject,'String')) returns contents of
EnterFN as a double"
handles.EnterFn=get(hObject,'String');"

2) and plot it.

Blue produced by guide, have to add the stuff in
black (a couple of lines). Variable

handles.EnterFn created by us, while
handles.axes1 created by guide.

% --- Executes on button press in PlotFunction."
function PlotFunction_Callback(hObject, eventdata, handles)"
% hObject handle to PlotFunction (see GCBO)"
% eventdata reserved - to be defined in a future version of
MATLAB"
% handles structure with handles and user data (see GUIDATA)"
x=-10:.01:10"
s = get(handles.EnterFN, 'String');"
y = eval(s); %eval just evaluates the given string"
handles.axes1; %Subsequent commands draw on axes1."
plot(x, y);"
grid;"

Final result.

