
Data Analysis in Geophysics
ESCI 7205

Class 17

Bob Smalley

More Matlab.

Final project selection due soon.

Saving & Exporting Graphics

The default graphics file is a Matlab Figure
or .fig formatted file.

This format retains the most information about
how the figure was created within matlab, but it is

not particularly portable

you can also save as eps (encapsulated
postscript), which can be read by Illustrator

or you can save in one of the picture formats like
tiff and jpg which do not allow additional

editing but maintain good resolution

Cool Feature

After creating the perfect figure, you can
generate an m-file so that the figure can be
recreated using different data in the future.

This feature is
found under the
File drop down

menu in the Figure
toolbar.

Advanced graphics: Handle graphics.

Handle graphics provides a rich set (i.e. powerful, difficult

and confusing) of functions and properties for
generating imagery using Matlab.

!
>> x=1:10;!
>> y=x;!
>> h=plot(x,y,'*-’)!
h =!
 171.0034!
>>!
!
!

Notice the output, saved in “h”, from the plot
command.

“h” is a number that identifies the “handle” for
the graphics object created by the plot command.

>> get(h)!
 DisplayName: ''!
 Annotation: [1x1 hg.Annotation]!
 Color: [0 0 1]!
 LineStyle: '-'!
 LineWidth: 0.5000!
 Marker: '*'!
 MarkerSize: 6!
 MarkerEdgeColor: 'auto'!
 MarkerFaceColor: 'none'!
 XData: [1 2 3 4 5 6 7 8 9 10]!
 YData: [1 2 3 4 5 6 7 8 9 10]!
 ZData: [1x0 double]!
 BeingDeleted: 'off'!
 ButtonDownFcn: []!
 Children: [0x1 double]!
 Clipping: 'on'!
 CreateFcn: []!
 DeleteFcn: []!

 BusyAction: 'queue'!
 HandleVisibility: 'on'!
 HitTest: 'on'!
 Interruptible: 'on'!
 Selected: 'off'!
 SelectionHighlight: 'on'!
 Tag: ''!
 Type: 'line'!
 UIContextMenu: []!
 UserData: []!
 Visible: 'on'!
 Parent: 170.0012!
 XDataMode: 'manual'!
 XDataSource: ''!
 YDataSource: ''!
 ZDataSource: ''!
!
>> !

To view the information associated with the
handle for the plot, use the get function.

This displays all of the properties of the line we
just plotted.

>> help get!
 GET Get object properties.!
 V = GET(H,'PropertyName') returns the value of the specified!
 property for the graphics object with handle H. If H is a !
 vector of handles, then get will return an M-by-1 cell array!
 of values where M is equal to length(H). If 'PropertyName' is!
 replaced by a 1-by-N or N-by-1 cell array of strings containing!
 property names, then GET will return an M-by-N cell array of!
 values.!
 !
 GET(H) displays all property names and their current values for!
 the graphics object with handle H.!
 !
 V = GET(H) where H is a scalar, returns a structure where each!
 field name is the name of a property of H and each field contains!
 the value of that property.!

Most of the properties can be changed using the
set function (a few are read-only).

>> set(h,'color',[1 0 0])!

If you need to change a lot of values, this will
improve your typing skills even more than GMT.

Assigning a graphic’s object to a variable
simplifies modifying the object after creation, but

there are also ways to access a graphics object
even if you forget.

Access to recently plotted/accessed objects is
provided through pre-defined variables

gcf (handle to current figure (get current figure)),

gca (handle to current axis (get current axis)) and

gco (handle to current object (get current object), which
is almost always graphics object created as result

of last graphics command).

>> f=get(gcf)!
f = !
 Alphamap: [1x64 double]!
 BeingDeleted: 'off'!
 BusyAction: 'queue'!
 ButtonDownFcn: ''!
 Children: 170.0044!
 Clipping: 'on'!
 CloseRequestFcn: 'closereq'!
 Color: [0.8000 0.8000 0.8000]!
 Colormap: [64x3 double]!
 CreateFcn: ''!
 CurrentAxes: 170.0044!
 CurrentCharacter: ''!
 CurrentObject: []!
 CurrentPoint: [0 0]!
 DeleteFcn: ''!
 DockControls: 'on'!
 FileName: ''!
 HandleVisibility: 'on'!
 HitTest: 'on'!
 IntegerHandle: 'on'!
 Interruptible: 'on'!
 InvertHardcopy: 'on'!
 KeyPressFcn: ''!
 KeyReleaseFcn: ''!
 MenuBar: 'figure'!
 Name: ''!
 NextPlot: 'add'!
 NumberTitle: 'on'!
 PaperOrientation: 'portrait'!
 PaperPosition: [0.2500 2.5000 8 6]!
 PaperPositionMode: 'manual'!
 PaperSize: [8.5000 11]!

 PaperType: 'usletter'!
 PaperUnits: 'inches'!
 Parent: 0!
 Pointer: 'arrow'!
 PointerShapeCData: [16x16 double]!
 PointerShapeHotSpot: [1 1]!
 Position: [1029 583 560 420]!
 Renderer: 'painters'!
 RendererMode: 'auto'!
 Resize: 'on'!
 ResizeFcn: ''!
 Selected: 'off'!
 SelectionHighlight: 'on'!
 SelectionType: 'normal'!
 Tag: ''!
 ToolBar: 'auto'!
 Type: 'figure'!
 UIContextMenu: []!
 Units: 'pixels'!
 UserData: []!
 Visible: 'on'!
 WindowButtonDownFcn: ''!
 WindowButtonMotionFcn: ''!
 WindowButtonUpFcn: ''!
 WindowKeyPressFcn: ''!
 WindowKeyReleaseFcn: ''!
 WindowScrollWheelFcn: ''!
 WindowStyle: 'normal'!
 XDisplay: '/tmp/launch-GGBpjE/:0'!
 XVisual: '0x24 (TrueColor, depth
24, RGB mask 0xff0000 0xff00 0x00ff)'!
 XVisualMode: 'auto’!
>> !

Use get function with predefined variables to get
parameters.

And set function with predefined variables to set
parameters.

>> set(gcf, 'Units', 'Inches');!

As with GMT you have to know all the values (you
can get the property names from the get
function), no cheating with menus, etc.

Modified from Mathworks Matlab documentation
web pages

Matlab assigns a handle to every graphics object
it creates. All object creation functions optionally

return the handle of the created object.

If you want to access the object's properties
(e.g., from an M-file), assign its handle to a

variable at creation time to avoid searching for it
later.

If you forget to assign the handle when you plot
the figure, you can always obtain the handle of an

existing object with the findobj function or by
listing its parent's Children property.

Special Object Handles

The root object's handle is always zero.

The handle of a figure is either:

- An integer

- A floating point number requiring full Matlab
internal precision

The figure property IntegerHandle controls
the type of handle the figure receives.

All other graphics object handles are floating-
point numbers.

You must maintain the full precision of these
numbers when you reference handles.

(The “full precision” condition means means you
cannot read handles off the screen [usually an

approximation to the actual floating point value in memory] and retype
them, you must store the value in a variable and
pass that variable whenever Matlab requires a

handle).

The Current Figure, Axes, and Object

An important concept in the Handle Graphics
technology is that of being current.

The current figure is the window designated to
receive graphics output.

Likewise, the current axes is the target for

commands that create axes children.

The current object is the last graphics object
created or clicked on by the mouse.

Matlab stores the three handles corresponding to

these objects in the ancestor's property list.

Relationship between various objects is
hierarchical.

As you work with higher-dimensional plots, or
figures with lots of plots on top of each other, the

set of handles can seem a little unwieldy.

Fortunately, the set of handles for each figure are
nicely organized in a parent-child hierarchy.

The figure handle is at the top.

It’s child is the axes.

To see this, type the command
get(gcf,’Children’) and compare

the result to just typing gca.

We could also discover that the figure is the
parent by typing get(gca,’Parent’) and

comparing the result to just typing gcf.

The axes are in turn the parent of each plot, and
also of the xlabel, ylabel, and title.

At this point one is tempted to wonder why all this
matters... the important result here is that we can

find handles that we did not store in variables
when the object was created.

clear all % clears the variable space!
close all % closes all figures!
x1 = linspace(0,2*pi,1000);!
y1 = sin(x1);!
y2 = sin(x1)./x1;!
x2 = linspace(0,2*pi,9);!
y3 = sin(x2);!
y4 = sin(x2)./x2;!
figure(2) % opens a new figure with!
%ID 2, or goes to figure 2 if open!
p1 = plot(x1,y1,'color','b');!
hold on;!
p2 = plot(x1,y2,'color','r');!
p3 = plot(x2,y3,'-o','color','c');!
p4 = plot(x2,y4,'-s','color','m');!
hold off;!
set(gca,'XLim',[0 2*pi],'XTick',[0:pi/2:2*pi],'XGrid','on');!
set(gca,'XTickLabel',{'0','p/2','p','3p/
2','2p'},'FontName','Symbol','FontSize',12)!
xlabel('θ [rad]','FontSize',14,'Interpreter','latex')!
ylabel('$f(\theta)$','FontSize',14,'Interpreter','latex')!
title('Plots of $f_1(\theta) = sin(\theta)$ and $f_2(\theta) = \frac{sin
(\theta)}{\theta}$',...!
'FontSize',16,'FontWeight','b','Interpreter','latex');!
l1 = legend([p1,p2,p3,p4],'f_1','f_2','f_1 undersampled','f_2
undersampled',1);!
set(l1,'FontName','Helvetica')!

[AX,H1,H2]=plotyy(rt,gt,r,pofr);!
grid!
set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2') !
set(get(AX(2),'Ylabel'),'String','p(r) km/m^3') !
xlabel('distance from center of earth, km')!
title('density and gravity of earth’)!

Plotting
and labeling

multiple
axes. Two
sets x and
y vectors.

Plot shows
g and ρ as
functions

of r.

The code to do the calculation and make the last
plot is amazingly short.

G=6.67300e-11!
%load prem density model!
prem_r_ro=load('prem_r_ro_fixed.dat');!
%make running ave for mass integration!
ra=[1 1];!
avro=conv(prem_r_ro(:,2),ra)/2;!
%calc mass in shells!
massinshell=4/3*pi*(prem_r_ro(2:end,1).^3-prem_r_ro(1:end-1,1).^3).*avro(2:end);!
%calc total mass inside as fn radius!
massinside=cumsum(massinshell);!
%calc g inside as fn radius!
ginside=G*massinside(:)./prem_r_ro(2:end,1).^2;!
%calc g outside to 10000km as fn radius in steps 25000!
rout=[prem_r_ro(end,1):25000:10e6]';!
gout=[G*massinside(end)./rout.^2]; !
%plot!
[AX,H1,H2]=plotyy([0;prem_r_ro(2:end,1);rout(2:end)],[0;ginside;gout
(2:end)],prem_r_ro(:,1),prem_r_ro(:,2));!
grid!
set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2') !
set(get(AX(2),'Ylabel'),'String','p(r) km/m^3') !
xlabel('distance from center of earth, km')!
title('density and gravity of earth') !
hold!
%add g inside for uniform density to compare!
plot([0 prem_r_ro(end,1)],[0 ginside(end)],'m--')!

The calculation is above
this line (and almost half
of this is comments)

This just plotting.

[AX,H1,H2]=plotyy(rt, [gt; rt.*([g(end)/…!
r(end)*ones(1,length(r)) repmat(NaN,1,length(ro))])],r,…!
[m; mpave]);!
set(get(AX(1),'Ylabel'),'String','g(r) m/sec^2 as function of radius for
uniform density sphere and earth') !
set(get(AX(2),'Ylabel'),'String','m in kg as function of radius for
uniform density sphere and earth') !
xlabel('distance from center of earth, km')!
title('mass distribution and gravity of uniform density sphere versus
earth')!
set(H1,'LineStyle','--')!
set(H2,'LineStyle',':')!
!

Plotting
multiple

functions on
same axes.
Multiple y
vectors for

each x.

Matlab
Misc stuff

Saving and reading your workspace!
>> eig_mov!
>> whos!
 Name Size Bytes Class Attributes!
 D 2x2 32 double !
 V 2x2 32 double !
 . . .!
 cnt 1x1 8 double !
 x 2x361 5776 double !
>> save eig_mov_ex.mat!
!

Saves workspace in file stuff.mat
>> clear!
>> whos!
>> load eig_mov_ex.mat!
>> whos!
 Name Size Bytes Class Attributes!
 D 2x2 32 double !
 V 2x2 32 double !
 . . . !
 cnt 1x1 8 double !
 x 2x361 5776 double !
>>!

Saving what you type
!
>> diary everythingItype.txt!
!

Saves everything you type
!
>> dairy!
!

To turn it off

Garbage collection

Any system such as Matlab that maintains an
environment with variables continually being
created and destroyed must have a form of
“garbage collection” to remove dead (or no

longer needed/used) space.

Unfortunately, Matlab has no automatic garbage
collection mechanism.

The function clear allows the user to manage his
workspace and do his own house cleaning.

Even that is not enough, since other temporary

arrays might be created and destroyed whenever
M-files are run.

In place of garbage collection, there is a Matlab
function called

pack

which saves all the active variables in the entire
workspace, clears the workspace, and then loads

the saved variables.

This is time-consuming, but it is the best way to
get some room to work if memory limits start to

hinder your progress.

Supressing “Current plot held”, etc. messages

be more specific - hold (‘on’), etc.

Importance of thinking through how to program
something

http://www.joelonsoftware.com/articles/fog0000000319.html

(so the world is not stuck with your mistake forever).

