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More Matlab.



More on vectorization.


MATLAB is a vectorized high level language


Requires change in programming style
(if one already knows a non-vectorized 

programming language such as Fortran, C, Pascal, 
Basic, etc.)


Vectorized languages allow operations over 

arrays using simple syntax, essentially the same 
syntax one would use to operate over scalars.

(looks like math again.)





What is vectorization?
(with respect to matlab)



Vectorization is the process of writing code for 
MATLAB that uses matrix operations or other 
fast built-in functions instead of using explicit 

loops.


The benefits of doing this are usually sizeable.


The reason for this is that MATLAB is an 
interpreted language. Function calls have very 

high overhead, and indexing operations (inherent 
in a loop operation) are not particularly fast. 



Loop versus vectorized version of same code.
New commands “tic” and “toc” - time the 

execution of the code between them.
 
>> a=rand(1000);  !
>> tic;b=a*a;toc!
Elapsed time is 0.229464 seconds.!
>> tic;for k=1:1000,for l=1:1000,c(k,l)=0;for m=1:1000, c(k,l)=c
(k,l)+a(k,m)*a(m,l);end, end, end, toc!
Elapsed time is 22.369451 seconds.!
>> whos!
  Name         Size                Bytes  Class     Attributes!
  a         1000x1000            8000000  double              !
  b         1000x1000            8000000  double              !
  c         1000x1000            8000000  double              !
  k            1x1                     8  double              !
  l            1x1                     8  double              !
  m            1x1                     8  double              !
!
>> max(max(b-c))!
ans =!
   9.6634e-13!

Factor 100 difference in time for 
multiplication of 106x106 matrix!



u(x, t) = sin n! x / L( )sin n! xs / L( )cos !nt( )exp ! !n" / 4( )"# $%
n=1

&

'

Vectorization of 
synthetic seismogram 

example from Stein and 
Wysession, Intro to 

Seismology and Earth 
Structure. 



u(x,t) = sin n! xs / L( )sin n! x / L( )cos !nt( )exp ! !n! / 4( )"
#

$
%

n=1

&

'

Note :  !n = n*!0( )

u(x,t) = sin n! xs / L( )exp ! !n! / 4( )"
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u(x,t) = an sin n! x / L( )cos !nt( )
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u(x,t) = (an cos n! x / L+!nt( )+ cos n! x / L!!nt( )"
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$
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'

This is just the Fourier transform for a standing 
wave

Weight - no dependence 
on x or t

Standing wave made from 2 opposite 
direction traveling waves. Amplitude 
varies with time, but does not "move"



This is a sinusoidal wave that is 
fixed in space, cos(kx), whose 
amplitude is modulated
harmonically in time, cos (ωt)!

u(x, t) = Acos  (kx +!t)+ Acos(kx !!t)
u(k,!) = Acos  (kx +!t)+ Acos(kx -!t)
u(x, t) = u(k,!) = 2Acos(!t)cos(kx)

un (x, t) = cos(knx / L)cos(!nt)

where !n = v kn

Normal Mode (and combination of traveling waves to make standing wave) 

formulation for displacement of a string



u(x,t)=Acos (kx+ωt)+Acos(kx−ωt)!
u(k,ω)=Acos (kx+ωt)+Acos(kx−ωt)!

!
u(x,t)=u(k,ω)=2Acos(ωt)cos(kx)!

Do over a range 
of frequencies.


Delta functions 
going right (top) 
and left (middle) 
and combined 
(bottom).



Look at the basic element of Fourier series, 
weighted sum of sin and cos functions

(look at cos only to see how works).
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Dot product

or matrix multiply

matrix multiply, at multiple times to make full seismogram
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Look at the basic Fourier series

At constant time, weighted 
sum of cosines at different 
frequencies at that time

constant frequency cosine as function of time 
(basis functions)

This is multiplication of a matrix (with cosines as 
functions of frequency – across - and time - 

down) times a vector containing the Fourier series 
weights.



We have just vectorized the equations for the 
Fourier Transform!



Even though this is a major improvement over 
doing this with for loops, and is clear 

conceptually, it is still not "computable" as it takes 
O(N2) operations (and therefore time) to do it. 

This is OK for small N, but quickly gets out of 
hand.


Fourier analysis is typically done using the Fast 
Fourier transform (FFT) algorithm – which has     
O(N log N) operations and is significantly 

faster for large N.




Fourier decomposition.

“Basis” functions are the 
sine and cosine functions.

Notice that first sine term is 
all zeros (so don’t really 

need it) and last sine term 
(not shown) is same as last 

cosine term, just shifted one 
– so will only need one of 

these).

Figure from Smith



Fourier transform actually 
Fourier series

Figure from Smith
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The Fast Fourier Transform (FFT) 
depends on noticing that there is 

a lot of repetition in the 
calculations – each higher 

frequency basis function can be 
made by selecting points from the 
ω0 function. The weight value is 

multiplied by the same basis 
function value an increasing 

number of times as ω increases. 



FFT

Figure from Smith
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The FFT uses regularities in the 
calculation and basically does 
each unique multiplication only 

once, stores it, and then does the 
bookeeping to add them all up 

correctly.


The points in the trace at the top 
are made from vertical sums of 

the weighted points at the same 
time in the cos and sin traces in 

the bottom. 



%synthetic seismogram for homogeneous string, u(t)!
%calculated by normal mode summation!
%string length!
alngth=1;!
%velocity m/sec!
c=1.0;!
%number modes!
nmode=200;!
%source position!
xsrc=0.2;!
%receiver position!
xrcvr=0.7;!
%seismogram time duration!
tdurat=1.25;!
%number time steps!
nstep=50;!
%time step!
dt=tdurat/nstep;!
%source shape term!
tau=0.02;!
fprintf('%s\n','synthetic seismogram for string')!
fprintf('%s %0.5g\n','number modes', nmode)!
fprintf('%s %0.5g %0.5g\n','length and velocity', alngth, c)!
fprintf('%s %0.5g %0.5g\n','posn src and rcvr',xsrc,xrcvr)!
fprintf('%s %0.5g %0.5g %0.5g\n','durn, time steps, del 
t',tdurat,nstep,dt)!
fprintf('%s %0.5g\n','source shape', tau)!
%initialize displacement!
for cnt=1:nstep!
    u(cnt)=0;!
end!
for k=1:nstep!
    t(k)=dt*(k-1);!
end!
%outer loop over modes!
for n=1:nmode!
    anpial=n*pi/alngth;!
%space terms - src & rcvr!
    sxs=sin(anpial*xsrc);!
    sxr=sin(anpial*xrcvr);!
%mode freq!
    wn=n*pi*c/alngth;!
%time indep terms!
    dmp=(tau*wn)^2;!
    scale=exp(-dmp/4);!
    space=sxs*sxr*scale;!
%inner loop oner time  steps!
    for k=1:nstep!
%        t=dt*(k-1);!
%        cwt=cos(wn*t);!
        cwt=cos(wn*t(k));!
%compute disp!
        u(k)=u(k)+cwt*space;!
    end!
end!
plot(t,u)!

Traditional 
programming with 
nested loops (left 
Fortran from Stein's 

book, right "translated" 
to Matlab).


Related to the 

details of the math 
(as if you were doing 

it by hand).



%synthetic seismogram for homogeneous 
string, u(t)!
%calculated by normal mode summation!
%string length!
alngth=1;!
%velocity m/sec!
c=1.0;!
%number modes!
nmode=200;!
%source position!
xsrc=0.2;!
%receiver position!
xrcvr=0.7;!
%seismogram time duration!
tdurat=1.25;!
%number time steps!
nstep=50;!
%time step!
dt=tdurat/nstep;!
%source shape term!
tau=0.02;!
fprintf('%s\n','synthetic seismogram for 
string')!
fprintf('%s %0.5g\n','number modes', 
nmode)!
fprintf('%s %0.5g %0.5g\n','length and 
velocity', alngth, c)!
fprintf('%s %0.5g %0.5g\n','posn src and 
rcvr',xsrc,xrcvr)!
fprintf('%s %0.5g %0.5g %0.5g\n','durn, 
time steps, del t',tdurat,nstep,dt)!

fprintf('%s %0.5g\n','source shape', 
tau)!
%initialize displacement!
for cnt=1:nstep!
    u(cnt)=0;!
end!
for k=1:nstep!
    t(k)=dt*(k-1);!
end!
%outer loop over modes!
for n=1:nmode!
    anpial=n*pi/alngth;!
%space terms - src & rcvr!
    sxs=sin(anpial*xsrc);!
    sxr=sin(anpial*xrcvr);!
%mode freq!
    wn=n*pi*c/alngth;!
%time indep terms!
    dmp=(tau*wn)^2;!
    scale=exp(-dmp/4);!
    space=sxs*sxr*scale;!
%inner loop oner time  steps!
    for k=1:nstep!
%        t=dt*(k-1);!
%        cwt=cos(wn*t);!
        cwt=cos(wn*t(k));!
%compute disp!
        u(k)=u(k)+cwt*space;!
    end!
end!
plot(t,u)!

Slightly 
cleaned up 
version of 
Fortran 
program in 
Stein and 
Wysession 
“translated” 
to Matlab.



Variables
!
>> whos!
  Name        Size            Bytes  Class     Attributes!
  alngth      1x1                 8  double              !
  anpial      1x1                 8  double              !
  c           1x1                 8  double              !
  cnt         1x1                 8  double              !
  cwt         1x1                 8  double              !
  dmp         1x1                 8  double              !
  dt          1x1                 8  double              !
  k           1x1                 8  double              !
  n           1x1                 8  double              !
  nmode       1x1                 8  double              !
  nstep       1x1                 8  double              !
  scale       1x1                 8  double              !
  space       1x1                 8  double              !
  sxr         1x1                 8  double              !
  sxs         1x1                 8  double              !
  t           1x1                 8  double              !
  tau         1x1                 8  double              !
  tdurat      1x1                 8  double              !
  u           1x50              400  double              !
  wn          1x1                 8  double              !
  xrcvr       1x1                 8  double              !
  xsrc        1x1                 8  double !



Synthetic seismogram produced by Matlab 
code on previous slide.



% number of time samples M      
% points!
% source position xs (meters)!
% speed c (meters/sec)!
% length L (meters)!
% number of modes N!
% source pulse duration Tau     
% (sec)!
% length of seismogram T (sec)!
 !
M=50;!
xs=0.25;!
c=1;!
L=1;!
N=200;!
Tau=0.02;!
T=1.25;!
 !
%time vector, 1 row by M        
% columns!
%start, step, stop!
dt=T/M;!
t=0:dt:T-dt;!
 !
% receiver posn !

xr = 0.7;!
 !
%stein actually starts at mode   
% 1!
%freq vector from 0 to n*pi*c/L  
%, 1 row by N columns!
wn=linspace(1,N,N);!
wn=wn*pi*c/L;!
 !
%time independent terms - modes 
%- 1xN vector (row vector)!
timeindep=sin(wn*xr).*sin
(wn*xs).*exp(-(wn*Tau).^2/4);!
 !
%time dependent terms - 
%time*freqs = MxN matrix!
timedep=cos(t'*wn);!
 !
%use matrix * vector multiply 
%to do "loop"!
%(MxN)times(Nx1)=(Mx1) (column 
%vector)!
seism=timedep*timeindep';!
 !
plot(t,seism)!

Same program in Matlab 
after vectorization (is 
mostly comments!)



Get same figure as before.



m-files


As we have seen before, it is generally convenient 
to save programs in some sort of file (script, 

macro, batch, etc.) for program development and 
reuse.

 
Matlab offers this feature through m-files, which 

are ascii text files containing a set of Matlab 
commands.



m-files


There are two kinds of m-files:


Scripts, which do not accept input
arguments or return output arguments.

They operate on data in the workspace.


Functions, which can accept input arguments
and return output arguments. Functions have 

internal variables that are local to the function.


The filename has to end in “.m”



You have been using scripts already in your 
previous matlab homework.



These files are the same things that you would 
type in when running interactively.



They can have for and while loops, if-
elseif-else-end.



They are executed by entering the file name in the 
matlab command window.



Functions
Functions are M-files that can accept input 

arguments and return output arguments.
(Comments in Matlab are denoted using the % symbol.)



This function, loadsac, calls another function, 
sac, with the filename to read. It then works with 
the 3 matrices returned by sac, returning a data 

matrix, and 3 scalars dt, beg, pt.

We also see here 
that functions 
can call other 

functions.
But Matlab is not 

recursive, so 
functions cannot 
call themselves.



One of the biggest differences between a 
function and a "regular" m-file is that the set of 
variables available to the function and routine 

that called the function are independent.

loadsac gets a variable 
with the file name of the 
file we want to process 

from the calling program.


loadsac does not "see" 
or know about any other 

variables in the calling 
program.



loadsac returns four variables to the calling 
program with the data and some metadata (time 
between samples, start time, number samples) it 

got from the SAC file header.

The other variables in 
loadsac are invisible 

"outside" loadsac, the 
calling program does not 
know about or see them.


The calling program only 

sees the variables 
returned (inside the [])



The calling program has to know what kind of 
variables are required in the "call" and what kinds 

of variables are returned (and possibly if the 
variables are passed by value or reference [address]).

So the calling program 
might contain


[c(:,3),delta,start,numberpts]=… 
loadsac('MEM.BHZ.SAC')!


Notice that the names for 
things in the calling 
program and in the 

function do not have to 
match.



Unless passed into the function or returned, 
variables in a function are known only to the 

function (here there are a bunch of them and then don't do anything – they are 
set, but never used and they are not returned to the calling program)



Scalars are passed by value (a copy of the variable) so any 
changes to such a variable inside the function is 
not known outside the functions by the calling 

routine (what happens in functions, stays in functions).



Arrays are passed by reference or address. The 
function gets the address with the starting 

location of the array (and some information 
about it's size)

Any thing done to the 
array from within the 

function is seen by the 
calling routine and all 

other functions that use 
that array.



Global Variables
(another way to pass variables between functions 

and the main rouitine)


If you want more than one function to share a 
single copy of a variable, simply declare the 

variable as global in all the functions. 


Do the same thing at the command line if you 
want the base workspace to access the variable.



The global declaration must occur before the 
variable is actually used in a function. 


Although it is not required, using capital letters for the names of global variables helps 

distinguish them from other variables. 



Global variables


When you define a variable at the matlab prompt, 
it is defined inside of matlab's "workspace.”


Running a script does not affect this, since a 
script is just a collection of commands, and 

they're actually run from the same workspace.


If you define a variable in a script, it will stay 
defined in the workspace. 



Global variables


Functions, on the other hand, do not share the 
same workspace.



A function won't know what a variable is unless


- the function gets the variable as an argument, or 


- the variable is defined as a variable that is 
shared by the function and the matlab 

workspace, i.e. a global variable.



Global variables


To use a global variable, every place (function, 
script, or at the matlab prompt) that needs to 

share that variable must have a line near the top 
identifying it as a global variable, ie:



global phi;!


Then when the variable is assigned a value in one 
of those places, it will have a value in all the other 

places that have the global statement.



In an .m file called falling.m
!
function h = falling(t)!
global GRAVITY!
h = 1/2*GRAVITY*t.^2;!
!

In the workspace, enter the statements
!
>> global GRAVITY!
>> GRAVITY = 32;!
>> y = falling((0:.1:5)');!
!

The two global statements make the value 
assigned to GRAVITY at the command prompt 

available inside the function. You can then modify 
GRAVITY interactively and obtain new solutions 

without editing any files.



In an .m file called falling.m
!
function h = falling(t)!
global GRAVITY!
h = 1/2*GRAVITY*t.^2;!
!

In the workspace, enter the statements
!
>> global GRAVITY!
>> GRAVITY = 32;!
>> y = falling((0:.1:5)');!
!

This also shows the basic function syntax.


function [output variables] =… FunctionName(input variables)!
body of function!


There is no statement to end the function (no return or 
end needed, uses EOF or new definition)



return!
!

return: returns to invoking function


allows for termination of function before it runs to 
completion

!
%det(magic)!
function d = det(A)!
%DET det(A) is the determinant of A.!
if isempty(A)!

!d = 1;!
!return! !%exit the function det at this point!

else!
!…!

end!



function tsting!
global c!
c=4!
b=2!
[a d]=tstfn(b)!
whos!
return!
function [out1 out2]=tstfn(in)!
global c!
out1=in.^2!
out2=c*out1!
whos!
return!
!
>> tstingfuns!
c =!
     4!
b =!
     2!
out1 =!
     4!
out2 =!
    16!
  Name      Size            Bytes  Class     Attributes!
  c         1x1                 8  double    global    !
  in        1x1                 8  double              !
  out1      1x1                 8  double              !
  out2      1x1                 8  double              !
a =!
     4!
d =!
    16!
  Name      Size            Bytes  Class     Attributes!
  a         1x1                 8  double              !
  b         1x1                 8  double              !
  c         1x1                 8  double    global    !
  d         1x1                 8  double !

Can put multiple functions in 
one m file.
The variables “b” and “c” are 
declared global in both, but 
only assigned in one of them. 



Rethinking code for taking advantage of matlab 
vectorization.


More than just defining vectors and matricies 

using matlab definitions.
!
%cheating a little – creation of x is vectorized!
x = rand(1,100);!
!
%In place of :!
for k=1:100!
y(k) = sin(x(k));!
end!
!
% We can use :!
y = sin(x); !



Given an=n and bn=(1000-an) , n=1,2,…1000, 
calculate

! 

ssum = anbn
n=1

1000

"

Solution: It might be tempting to implement the 
above calculation as 

!
a = 1:1000;!
b = 1000 - a;!
ssum=0;!
for n=1:1000 %poor style...!
   ssum = ssum +a(n)*b(n);!
end!



Recognizing that the desired sum/calculation is 
the inner or dot product of the vectors a and b, 
or multiplication of the matrices abT , we can do 
better (we even have a more than one way to do 

it!):
 

!
ssum = a*b' ! !   %Vectorized, better!!
ssum = dot(a,b) ! !%Vectorized, better!!

Given an=n and bn=(1000-an) , n=1,2,…
1000, calculate

! 

ssum = anbn
n=1

1000

"



Say we have a number of seismograms and we 
would like to “window” and scale each one.



First – what is the “window” process?

(Blue trace is original 
signal, red trace is 
“window”, dashed red trace 
is negative of window to 
show “envelope” – will use it 
to scale the original signal.

Green trace is the final 
result after applying the 
“window” to the blue trace.

In this case the windowing is 
done using a point by point 
multiply of the blue and red 
vectors, b.*r, [64 pts]).
 



What if we want to do this to a number of 
seismograms?


We could use a loop, doing the vectorized multiply 

on each seismogram.


But can we do better than that?



We would not be asking leading questions if not!


So how do we do it?

(Now we want to do point 
by point multiplies of each 
trace by the window – 
T1.*w and T2.*w, etc.

How can we do this in one 
shot?

What if we make a diagonal 
matrix of the window vector 
[elements of the vector on 
the diagonal and all else 
zero]?)



Looking at what happens when we do matrix 
multiplication, we see that this does what we 

need.
!
!
% length!
%Number traces!
N = 64;!
M=1:4;!
TH=1:N;!
X = sin(TH'*M*...!
pi*2/(N-1));!
plot(X)!
 !
% Make a window!
w = hamming(N);!
W = diag(w);!
% Windowed signals!
%without loops!
XW = W * X;!



To do the point by point multiply we need to 
match the length of the seismograms (64 points in 

this case).
!
>> whos!
  Name       Size            Bytes  Class     Attributes!
  M          1x4                32  double              !
  N          1x1                 8  double              !
  TH         1x64              512  double              !
  W         64x64            32768  double              !
  X         64x4              2048  double              !
  XW        64x4              2048  double              !
  g          1x4                32  double              !
  w         64x1               512  double !
!

So we have a 64x64 matrix * 64x4 matrix  
producing a 64x4 result matrix .



Say we want to scale each seismogram (there 
are 4 of them). We have to multiply each point 

in the seismogram by the same number).

(Now we want to multiply 
each trace by its scale – 
T1*w1 and T2*w2, etc. How 
can we do this in one shot?

What if we make a diagonal 
matrix of the weights 
[elements of the vector on 
the diagonal and all else 
zero]?)

(really same as last time, but 
elements on diagonal are 
now scaling weights for each 
seismogram – boxcar 
window of height other than 
1)!



% Make a vector of gain factors!
g  = 1./M;!
G  = diag(g);!
 !
% scale each seismogram by corresponding gain factor!
XG = X * G;!



Do both windowing and gain scaling together.
 
% Windowing and gain scaling is just left and right!
% multiplication with appropriate diagonal matrices.!
XWG = W * X * G;!



Sum the basis functions to get the Fourier series.
 
>> s=sum(XG');!
>> plot(s)!
>> grid!



Notice that vectorization requires a different 
thought pattern in the approach to solving 

problems.


It will initially take longer to develop the program.


But with practice (effort!, and seeing/looking for 
examples), it will become more natural and faster 

to code.


(If doing the previous example “for real” one would use the sparse matrix feature for the 
diagonal matrices

 
W = diag(sparse(w));!


This will save on both memory use and execution time.)



Why Use Vectorized Code?
Advantages



      Increased Speed:


Vectorized code runs significantly faster. 


How much faster?


This depends on the commands used and the 
application. And although Matlab has made great 
strides in accelerating low-level code, vectorized 
code still runs faster. But in general, vectorized 

code is faster than it’s low-level counterpart.



Why Use Vectorized Code?
Advantages



      Compact: Vectorized code is more compact 
and can be easier to read and understand.


("Looks-like" the underlying Math)



Why Use Vectorized Code?
Disadvantages



      Difficulty:


Most people with programming experience are 
used to doing things in a low-level manner (i.e. 

FOR loops).


Vectorizing code can be a challenge because of 
the different thinking that is required. In addition, 
there is no set formula on how to vectorize code. 

A good working knowledge of the available 
functions within Matlab is certainly helpful when it 

comes to vectorization.



Why Use Vectorized Code?
Disadvantages



      Compact:


Being compact is both a blessing and a curse. 


Vectorized code can be difficult to understand 
because it is so compact. 



If the code is undocumented and does not have 
any comments, it can be a real pain to figure what 

the code does.
(but probably not worse than any other undocumented code.

As least it is not spaghetti code – can't write spaghetti code in Matlab since don't have a 
goto).



Although vectorization can make your code 
simpler at times, it can also make your code 

archaic and difficult to understand.


In addition, it can be difficult to vectorize your 
code at times, so it may not be worth the time and 

effort to do so.


Thus, you may be wondering if it is really worth 
your time to vectorize your code.



If you find it too difficult to vectorize your code, 
you may be better off just using a low level 

method.



The most important thing is to make sure that 
your code works!




After you get your code working, you can 
consider optimizing it through vectorization.



In conclusion, vectorization is not required, but it 
can certainly be beneficial.



Unless the arrays you are dealing with are quite 
large (and depending on the operations 

performed), it can be difficult to see the benefits 
of vectorization.



But in general, I believe that it’s good practice to 
get into the habit of using vectorized code as it is 

more efficient. 



Another look at arithmetic between a matrix and a 
vector.


Saw how to do it using


-repmat

-Tony's trick
-Multiply by matrix of ones

(plus a few others).




bsxfun - Apply element-by-element binary 
operation to two arrays with singleton expansion 

enabled


Syntax
C = bsxfun(fun,A,B)



Description


C = bsxfun(fun,A,B) applies an element-by-
element binary operation to arrays A and B, with 

singleton expansion enabled.


The inputs must be of the following types: 
numeric, logical, char, struct, cell.



fun is a function handle, and can either be a 
MATLAB function or one of the following built-in 

functions:


The size of the output array C is equal to: 
max(size(A),size(B)).*(size(A)>0 & size(B)>0).



@plus ! !Plus!
@minus! !Minus!
@times! !Array multiply!
@rdivide !Right array divide!
@ldivide !Left array divide!
@power! !Array power!
@max ! !Binary maximum!
@min ! !Binary minimum!
@rem ! !Remainder after division!
@mod ! !Modulus after division!
@atan2! !Four quadrant inverse tangent!
@hypot! !Square root of sum of squares!
@eq! ! !Equal!
@ne! ! !Not equal!
@lt! ! !Less than!
@le! ! !Less than or equal to!
@gt! ! !Greater than!
@ge! ! !Greater than or equal to!
@and ! !Element-wise logical AND!
@or! ! !Element-wise logical OR!
@xor ! !Logical exclusive OR!



@plus ! !Plus!
@minus! !Minus!
@times! !Array multiply!
@rdivide !Right array divide!
@ldivide !Left array divide!
@power! !Array power!
@max ! !Binary maximum!
@min ! !Binary minimum!
@rem ! !Remainder after division!
@mod ! !Modulus after division!
@atan2! !Four quadrant inverse tangent!
@hypot! !Square root of sum of squares!
@eq! ! !Equal!
@ne! ! !Not equal!
@lt! ! !Less than!
@le! ! !Less than or equal to!
@gt! ! !Greater than!
@ge! ! !Greater than or equal to!
@and ! !Element-wise logical AND!
@or! ! !Element-wise logical OR!
@xor ! !Logical exclusive OR!



Example, use bsxfun to subtract the column 
means from the corresponding columns of matrix 

A.


A = magic(5); A = bsxfun(@minus, A, mean(A));!



bsxfun is even faster than building the matrices 
and does not use as much memory (speed 

increase comes from not having to build the 
matrix, also saves space).


Problem is that it is not very readable.!



Matlab
Graphics



Basics


Types of Graphics


Predefined graph types, or
Create your own graphics


Creating a Graph



Use plotting tools to create graphs interactively.


Use the command interface to enter commands in 
the Command Window or create plotting 

programs.













Creating a plot


The plot function has many different forms, 
depending on the input arguments.

 
If y is a vector, plot(y) produces a piecewise 

linear graph of the elements of y versus the index 
of the elements of y.



If you specify two vectors as arguments to plot, 
plot(x,y) produces a graph of y versus x.

!
>> x = 0:pi/100:2*pi;!
>> y = sin(x);!
>> plot(x,y)!



>> xlabel('x = 0:2\pi')!
>> ylabel('Sine of x')!
>> title('Plot of the Sine Function','FontSize',12)!
!

(Notice that the fontsize specification is sort of verbose. This aspect of setting plot 
parameters is worse than GMT! It will improve you typing however.)



>> seis=loadsac('BJT.BHZ_00.Q.2005:01:23:41');!
>> plot(seis)!
>> ylabel('Digital Counts')!
>> xlabel('Number of points')!
>> title('BJT BHZ Seismogram')!



Plotting multiple data sets


Multiple x-y pair arguments create multiple 
graphs with a single call to plot, which  

automatically cycles through a predefined (but 
customizable) list of colors

  
>> x = 0:pi/100:2*pi;!
>> y = sin(x);!
>> y2 = sin(x-.25);!
>> y3 = sin(x-.5);!
>> plot(x,y,x,y2,x,y3)!
>> legend('sin(x)',…!
'sin(x-.25)','sin(x-.5)')!



>> size(seis)!
!25138 !1!

>> x=1:25138;!
>> plot(x,seis,x,seis2)!
>> legend('Raw','Mean Removed’)!



Plotting multiple data sets


If you have a matrix of y vectors for a single x 
vector, plots all  the ys against x. 

 
>> x=[0:.01:2*pi]; 
>> y=[sin(x); cos(x)]; 
>> plot(x,y) 
>>  



Specifying line colors/styles


It is possible to specify color, line styles, and 
markers (such as plus signs or circles) when you 

plot your data using the plot command:


>> plot(x,y, 'specify_color_linestyle_markertype')!


Change color


>> plot(x,seis,'r',x,seis2,'b')!
>> plot(x,seis,'r',x,seis2,'b:')!



Color

'c'!

'm'!

'y'!

'r'!

'g'!

'b'!

'w'!

'k'!



cyan

magenta

yellow

red

green

blue

white

black



Line style



'-'!

'--'!

':'!

'.-'!





no character

solid

dashed

dotted

dash-dot



Specifying lines and markers
If you specify a marker type but not a line style, 

only the marker is drawn.


>> plot(x,y,'ks')!
!

plots black (k) squares (s) at each data point, 
but does not connect the markers with a line


>> plot(x,y,'r:+')!
!

plots a red-dotted line and places plus sign 
markers at each data point



>> x1 = 0:pi/100:2*pi;!
>> x2 = 0:pi/10:2*pi;!
>> plot(x1,sin(x1),'r:',x2,sin(x2),'r+')!
 

Second part only plots the + every 10 points. So 
does.!

>> plot(x1,sin(x1),'r:',x1(1:10:end),sin(x1(1:10:end)),'r+’)!



Marker Type

'+'!

'o'!

'*'!

'x'!

's'!

'd'!

'^'!

'v'!

'>'!

'<'!

'p'!

'h'!

no character!



plus mark

unfilled circle

asterisk

letter x

filled square

filled diamond

filled upward triangle

filled downward triangle

filled right-pointing triangle

filled left-pointing triangle

filled pentagram

filled hexagram

no marker



Graphing imaginary and complex data


Reminder: complex numbers can be represented 
by the expression a+bi where a and b are real 

numbers and i is a symbol with the property 
i2=-1!


Complex numbers can be plotted using Real and 

Imaginary axes.



When the arguments to plot are complex, the 
imaginary part is ignored except when you pass 
plot a single complex argument. For this special 
case, the command is a shortcut for a graph of 

the real part versus the imaginary part.
>> t = 0:pi/10:2*pi;!
>> plot(exp(i*t),'-o')!
>> axis equal!
>> xlabel('Real')!
>> ylabel('Imaginary')!
>> hold on!
>> plot(t,t,'r+-')!
!

Plus plotting second 
data set with 
“hold” (else erases existing figure 
with new call to plot)



Figure Handling


Graphing functions automatically open a new 
figure window if there are no figure windows 

already on the screen.


If a figure window exists, it is used for graphics 
output (and clobbers what’s there if hold is off).



The default is to graph to the current figure 
(usually the last active figure)



To create a new figure without overwriting the old, 
use the figure command 



When multiple figures already exist, you can set 
one of them to the current figure with the 

command figure(n) where n is the number at the 
top of the figure window.

 
>> plot(x,seis,x,seis2)!
>> legend('Raw','Mean Removed') !!
>> figure !%creates 2!
>> plot(seis,'r')!
>> figure(1)   %makes 1 current!
 



1 2 

3 4 

Creating subplots


The subplot command enables you to display 
multiple plots in the same window or print them on 

the same piece of paper.


t = 0:pi/10:2*pi;!
[X,Y,Z] = cylinder(4*cos(t));!
subplot(2,2,1); mesh(X)!
subplot(2,2,2); mesh(Y)!
subplot(2,2,3); mesh(Z)!
subplot(2,2,4); mesh(X,Y,Z)!
!
%creates a 2 x 2 matrix of !
%subplots!
>> help cylinder
 CYLINDER Generate cylinder.
    [X,Y,Z] = CYLINDER(R,N) forms the unit cylinder based on the generator
    curve in the vector R. Vector R contains the radius at equally
    spaced points along the unit height of the cylinder. The cylinder
    has N points around the circumference. SURF(X,Y,Z) displays the
    cylinder.
    [X,Y,Z] = CYLINDER(R), and [X,Y,Z] = CYLINDER default to N = 20
    and R = [1 1].
    Omitting output arguments causes the cylinder to be displayed with
    a SURF command and no outputs to be returned.



Controlling axes


The axis command provides a number of options 
for setting the scaling, orientation, and aspect 

ratio of graphs.


Set the axis limits


axis auto!
axis([xmin xmax ymin ymax zmin zmax])!

!

Set the axis aspect ratio
!

axis auto normal!
axis square; axis equal!



The axis command provides a number of options 
for setting the scaling, orientation, and aspect 

ratio of graphs.
!

Set axis visibility 
!

axis on; axis off!
!

Set grid lines
!

grid on; grid off!
!

axis vs axes
!

>> help axis!
 AXIS  Control axis scaling and appearance.!
>> help axes!
 AXES   Create axes in arbitrary positions.!



>> figure(2)!
>> plot(seis2)!
>> axis([6500 10500 -4000 4000])!



>> axis auto!
>> plot(seis2(6500:10500,:),'r')!



Overlaying new graphs
Use the command
hold on
or just
hold
to overlay different types of plots on one another
!
>> [x,y,z] = peaks;!
>> pcolor(x,y,z)!
>> shading interp!
>> hold on!
>> contour(x,y,z,20,'k')!
>> hold off!



>> surf(x,y,z)!
>> clf!
>> [x y z]=peaks;!
>> surf(x,y,z)!
>> shading interp!


