
Data Analysis in Geophysics
ESCI 7205

Class 16

Bob Smalley

More Matlab.

More on vectorization.

MATLAB is a vectorized high level language

Requires change in programming style
(if one already knows a non-vectorized

programming language such as Fortran, C, Pascal,
Basic, etc.)

Vectorized languages allow operations over

arrays using simple syntax, essentially the same
syntax one would use to operate over scalars.

(looks like math again.)

What is vectorization?
(with respect to matlab)

Vectorization is the process of writing code for
MATLAB that uses matrix operations or other
fast built-in functions instead of using explicit

loops.

The benefits of doing this are usually sizeable.

The reason for this is that MATLAB is an
interpreted language. Function calls have very

high overhead, and indexing operations (inherent
in a loop operation) are not particularly fast.

Loop versus vectorized version of same code.
New commands “tic” and “toc” - time the

execution of the code between them.

>> a=rand(1000); !
>> tic;b=a*a;toc!
Elapsed time is 0.229464 seconds.!
>> tic;for k=1:1000,for l=1:1000,c(k,l)=0;for m=1:1000, c(k,l)=c
(k,l)+a(k,m)*a(m,l);end, end, end, toc!
Elapsed time is 22.369451 seconds.!
>> whos!
 Name Size Bytes Class Attributes!
 a 1000x1000 8000000 double !
 b 1000x1000 8000000 double !
 c 1000x1000 8000000 double !
 k 1x1 8 double !
 l 1x1 8 double !
 m 1x1 8 double !
!
>> max(max(b-c))!
ans =!
 9.6634e-13!

Factor 100 difference in time for
multiplication of 106x106 matrix!

u(x, t) = sin n! x / L()sin n! xs / L()cos !nt()exp ! !n" / 4()"# $%
n=1

&

'

Vectorization of
synthetic seismogram

example from Stein and
Wysession, Intro to

Seismology and Earth
Structure.

u(x,t) = sin n! xs / L()sin n! x / L()cos !nt()exp ! !n! / 4()"
#

$
%

n=1

&

'

Note : !n = n*!0()

u(x,t) = sin n! xs / L()exp ! !n! / 4()"
#

$
%()sin n! x / L()cos !nt()

n=1

&

'

u(x,t) = an sin n! x / L()cos !nt()
n=1

&

'

u(x,t) = (an cos n! x / L+!nt()+ cos n! x / L!!nt()"
#

$
%

n=1

&

'

This is just the Fourier transform for a standing
wave

Weight - no dependence
on x or t

Standing wave made from 2 opposite
direction traveling waves. Amplitude
varies with time, but does not "move"

This is a sinusoidal wave that is
fixed in space, cos(kx), whose
amplitude is modulated
harmonically in time, cos (ωt)!

u(x, t) = Acos (kx +!t)+ Acos(kx !!t)
u(k,!) = Acos (kx +!t)+ Acos(kx -!t)
u(x, t) = u(k,!) = 2Acos(!t)cos(kx)

un (x, t) = cos(knx / L)cos(!nt)

where !n = v kn

Normal Mode (and combination of traveling waves to make standing wave)

formulation for displacement of a string

u(x,t)=Acos (kx+ωt)+Acos(kx−ωt)!
u(k,ω)=Acos (kx+ωt)+Acos(kx−ωt)!

!
u(x,t)=u(k,ω)=2Acos(ωt)cos(kx)!

Do over a range
of frequencies.

Delta functions
going right (top)
and left (middle)
and combined
(bottom).

Look at the basic element of Fourier series,
weighted sum of sin and cos functions

(look at cos only to see how works).
u(tm) = a0

2
+ an cos !ntm()

n=1

N

!

u(tm) = a0

2
+ a1 a2 a3 ! an()• cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()()

u(tm) = a0

2
+ a1 a2 a3 ! an()

cos !1tm()
cos !2tm()
cos !3tm()
!

cos !ntm()

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

=
a0

2
+ cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()()

a1

a2

a3

!
an

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

"u tm : tm+k() = a0

2
+

cos !1tm() cos !2tm() cos !3tm() ! cos !ntm()
cos !1tm+1() cos !2tm+1() cos !3tm+1() ! cos !ntm+1()
! ! ! ! !

cos !1tm+k() cos !2tm+k() cos !3tm+k() ! cos !ntm+k()

"

#

$
$
$
$
$$

%

&

'
'
'
'
''

a1

a2

a3

!
an

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

"u tm : tm+k() = a0

2
+
!
W !a

Dot product

or matrix multiply

matrix multiply, at multiple times to make full seismogram

!

! u tm : tm +k() =
a0

2
+

cos "1tm() cos "2tm() cos "3tm() " cos "ntm()
cos "1tm +1() cos "2tm +1() cos "3tm +1() " cos "ntm +1()
" " " " "

cos "1tm +k() cos "2tm +k() cos "3tm +k() " cos "ntm +k()

$

%
%
%
%

&

'

(
(
(
(

a1

a2

a3

"
an

$

%
%
%
%
% %

&

'

(
(
(
(
((

! u tm : tm +k() =
a0

2
+
!

W ! a

Look at the basic Fourier series

At constant time, weighted
sum of cosines at different
frequencies at that time

constant frequency cosine as function of time
(basis functions)

This is multiplication of a matrix (with cosines as
functions of frequency – across - and time -

down) times a vector containing the Fourier series
weights.

We have just vectorized the equations for the
Fourier Transform!

Even though this is a major improvement over
doing this with for loops, and is clear

conceptually, it is still not "computable" as it takes
O(N2) operations (and therefore time) to do it.

This is OK for small N, but quickly gets out of
hand.

Fourier analysis is typically done using the Fast
Fourier transform (FFT) algorithm – which has
O(N log N) operations and is significantly

faster for large N.

Fourier decomposition.

“Basis” functions are the
sine and cosine functions.

Notice that first sine term is
all zeros (so don’t really

need it) and last sine term
(not shown) is same as last

cosine term, just shifted one
– so will only need one of

these).

Figure from Smith

Fourier transform actually
Fourier series

Figure from Smith

!

u(tm) =
a0
2

+ an cos "ntm()
n=1

N

+ bn sin "ntm()
n=1

N

#

!

" a0

!

" a1

!

" a2

!

" a3

!

" a4

!

" b1

!

" b2

!

" b3

The Fast Fourier Transform (FFT)
depends on noticing that there is

a lot of repetition in the
calculations – each higher

frequency basis function can be
made by selecting points from the
ω0 function. The weight value is

multiplied by the same basis
function value an increasing

number of times as ω increases.

FFT

Figure from Smith

!

u(tm) =
a0
2

+ an cos "ntm()
n=1

N

+ bn sin "ntm()
n=1

N

#

!

" a0

!

" a1

!

" a2

!

" a3

!

" a4

!

" b1

!

" b2

!

" b3

The FFT uses regularities in the
calculation and basically does
each unique multiplication only

once, stores it, and then does the
bookeeping to add them all up

correctly.

The points in the trace at the top
are made from vertical sums of

the weighted points at the same
time in the cos and sin traces in

the bottom.

%synthetic seismogram for homogeneous string, u(t)!
%calculated by normal mode summation!
%string length!
alngth=1;!
%velocity m/sec!
c=1.0;!
%number modes!
nmode=200;!
%source position!
xsrc=0.2;!
%receiver position!
xrcvr=0.7;!
%seismogram time duration!
tdurat=1.25;!
%number time steps!
nstep=50;!
%time step!
dt=tdurat/nstep;!
%source shape term!
tau=0.02;!
fprintf('%s\n','synthetic seismogram for string')!
fprintf('%s %0.5g\n','number modes', nmode)!
fprintf('%s %0.5g %0.5g\n','length and velocity', alngth, c)!
fprintf('%s %0.5g %0.5g\n','posn src and rcvr',xsrc,xrcvr)!
fprintf('%s %0.5g %0.5g %0.5g\n','durn, time steps, del
t',tdurat,nstep,dt)!
fprintf('%s %0.5g\n','source shape', tau)!
%initialize displacement!
for cnt=1:nstep!
 u(cnt)=0;!
end!
for k=1:nstep!
 t(k)=dt*(k-1);!
end!
%outer loop over modes!
for n=1:nmode!
 anpial=n*pi/alngth;!
%space terms - src & rcvr!
 sxs=sin(anpial*xsrc);!
 sxr=sin(anpial*xrcvr);!
%mode freq!
 wn=n*pi*c/alngth;!
%time indep terms!
 dmp=(tau*wn)^2;!
 scale=exp(-dmp/4);!
 space=sxs*sxr*scale;!
%inner loop oner time steps!
 for k=1:nstep!
% t=dt*(k-1);!
% cwt=cos(wn*t);!
 cwt=cos(wn*t(k));!
%compute disp!
 u(k)=u(k)+cwt*space;!
 end!
end!
plot(t,u)!

Traditional
programming with
nested loops (left
Fortran from Stein's

book, right "translated"
to Matlab).

Related to the

details of the math
(as if you were doing

it by hand).

%synthetic seismogram for homogeneous
string, u(t)!
%calculated by normal mode summation!
%string length!
alngth=1;!
%velocity m/sec!
c=1.0;!
%number modes!
nmode=200;!
%source position!
xsrc=0.2;!
%receiver position!
xrcvr=0.7;!
%seismogram time duration!
tdurat=1.25;!
%number time steps!
nstep=50;!
%time step!
dt=tdurat/nstep;!
%source shape term!
tau=0.02;!
fprintf('%s\n','synthetic seismogram for
string')!
fprintf('%s %0.5g\n','number modes',
nmode)!
fprintf('%s %0.5g %0.5g\n','length and
velocity', alngth, c)!
fprintf('%s %0.5g %0.5g\n','posn src and
rcvr',xsrc,xrcvr)!
fprintf('%s %0.5g %0.5g %0.5g\n','durn,
time steps, del t',tdurat,nstep,dt)!

fprintf('%s %0.5g\n','source shape',
tau)!
%initialize displacement!
for cnt=1:nstep!
 u(cnt)=0;!
end!
for k=1:nstep!
 t(k)=dt*(k-1);!
end!
%outer loop over modes!
for n=1:nmode!
 anpial=n*pi/alngth;!
%space terms - src & rcvr!
 sxs=sin(anpial*xsrc);!
 sxr=sin(anpial*xrcvr);!
%mode freq!
 wn=n*pi*c/alngth;!
%time indep terms!
 dmp=(tau*wn)^2;!
 scale=exp(-dmp/4);!
 space=sxs*sxr*scale;!
%inner loop oner time steps!
 for k=1:nstep!
% t=dt*(k-1);!
% cwt=cos(wn*t);!
 cwt=cos(wn*t(k));!
%compute disp!
 u(k)=u(k)+cwt*space;!
 end!
end!
plot(t,u)!

Slightly
cleaned up
version of
Fortran
program in
Stein and
Wysession
“translated”
to Matlab.

Variables
!
>> whos!
 Name Size Bytes Class Attributes!
 alngth 1x1 8 double !
 anpial 1x1 8 double !
 c 1x1 8 double !
 cnt 1x1 8 double !
 cwt 1x1 8 double !
 dmp 1x1 8 double !
 dt 1x1 8 double !
 k 1x1 8 double !
 n 1x1 8 double !
 nmode 1x1 8 double !
 nstep 1x1 8 double !
 scale 1x1 8 double !
 space 1x1 8 double !
 sxr 1x1 8 double !
 sxs 1x1 8 double !
 t 1x1 8 double !
 tau 1x1 8 double !
 tdurat 1x1 8 double !
 u 1x50 400 double !
 wn 1x1 8 double !
 xrcvr 1x1 8 double !
 xsrc 1x1 8 double !

Synthetic seismogram produced by Matlab
code on previous slide.

% number of time samples M
% points!
% source position xs (meters)!
% speed c (meters/sec)!
% length L (meters)!
% number of modes N!
% source pulse duration Tau
% (sec)!
% length of seismogram T (sec)!
 !
M=50;!
xs=0.25;!
c=1;!
L=1;!
N=200;!
Tau=0.02;!
T=1.25;!
 !
%time vector, 1 row by M
% columns!
%start, step, stop!
dt=T/M;!
t=0:dt:T-dt;!
 !
% receiver posn !

xr = 0.7;!
 !
%stein actually starts at mode
% 1!
%freq vector from 0 to n*pi*c/L
%, 1 row by N columns!
wn=linspace(1,N,N);!
wn=wn*pi*c/L;!
 !
%time independent terms - modes
%- 1xN vector (row vector)!
timeindep=sin(wn*xr).*sin
(wn*xs).*exp(-(wn*Tau).^2/4);!
 !
%time dependent terms -
%time*freqs = MxN matrix!
timedep=cos(t'*wn);!
 !
%use matrix * vector multiply
%to do "loop"!
%(MxN)times(Nx1)=(Mx1) (column
%vector)!
seism=timedep*timeindep';!
 !
plot(t,seism)!

Same program in Matlab
after vectorization (is
mostly comments!)

Get same figure as before.

m-files

As we have seen before, it is generally convenient
to save programs in some sort of file (script,

macro, batch, etc.) for program development and
reuse.

Matlab offers this feature through m-files, which

are ascii text files containing a set of Matlab
commands.

m-files

There are two kinds of m-files:

Scripts, which do not accept input
arguments or return output arguments.

They operate on data in the workspace.

Functions, which can accept input arguments
and return output arguments. Functions have

internal variables that are local to the function.

The filename has to end in “.m”

You have been using scripts already in your
previous matlab homework.

These files are the same things that you would
type in when running interactively.

They can have for and while loops, if-
elseif-else-end.

They are executed by entering the file name in the
matlab command window.

Functions
Functions are M-files that can accept input

arguments and return output arguments.
(Comments in Matlab are denoted using the % symbol.)

This function, loadsac, calls another function,
sac, with the filename to read. It then works with
the 3 matrices returned by sac, returning a data

matrix, and 3 scalars dt, beg, pt.

We also see here
that functions
can call other

functions.
But Matlab is not

recursive, so
functions cannot
call themselves.

One of the biggest differences between a
function and a "regular" m-file is that the set of
variables available to the function and routine

that called the function are independent.

loadsac gets a variable
with the file name of the
file we want to process

from the calling program.

loadsac does not "see"
or know about any other

variables in the calling
program.

loadsac returns four variables to the calling
program with the data and some metadata (time
between samples, start time, number samples) it

got from the SAC file header.

The other variables in
loadsac are invisible

"outside" loadsac, the
calling program does not
know about or see them.

The calling program only

sees the variables
returned (inside the [])

The calling program has to know what kind of
variables are required in the "call" and what kinds

of variables are returned (and possibly if the
variables are passed by value or reference [address]).

So the calling program
might contain

[c(:,3),delta,start,numberpts]=…
loadsac('MEM.BHZ.SAC')!

Notice that the names for
things in the calling
program and in the

function do not have to
match.

Unless passed into the function or returned,
variables in a function are known only to the

function (here there are a bunch of them and then don't do anything – they are
set, but never used and they are not returned to the calling program)

Scalars are passed by value (a copy of the variable) so any
changes to such a variable inside the function is
not known outside the functions by the calling

routine (what happens in functions, stays in functions).

Arrays are passed by reference or address. The
function gets the address with the starting

location of the array (and some information
about it's size)

Any thing done to the
array from within the

function is seen by the
calling routine and all

other functions that use
that array.

Global Variables
(another way to pass variables between functions

and the main rouitine)

If you want more than one function to share a
single copy of a variable, simply declare the

variable as global in all the functions.

Do the same thing at the command line if you
want the base workspace to access the variable.

The global declaration must occur before the
variable is actually used in a function.

Although it is not required, using capital letters for the names of global variables helps

distinguish them from other variables.

Global variables

When you define a variable at the matlab prompt,
it is defined inside of matlab's "workspace.”

Running a script does not affect this, since a
script is just a collection of commands, and

they're actually run from the same workspace.

If you define a variable in a script, it will stay
defined in the workspace.

Global variables

Functions, on the other hand, do not share the
same workspace.

A function won't know what a variable is unless

- the function gets the variable as an argument, or

- the variable is defined as a variable that is
shared by the function and the matlab

workspace, i.e. a global variable.

Global variables

To use a global variable, every place (function,
script, or at the matlab prompt) that needs to

share that variable must have a line near the top
identifying it as a global variable, ie:

global phi;!

Then when the variable is assigned a value in one
of those places, it will have a value in all the other

places that have the global statement.

In an .m file called falling.m
!
function h = falling(t)!
global GRAVITY!
h = 1/2*GRAVITY*t.^2;!
!

In the workspace, enter the statements
!
>> global GRAVITY!
>> GRAVITY = 32;!
>> y = falling((0:.1:5)');!
!

The two global statements make the value
assigned to GRAVITY at the command prompt

available inside the function. You can then modify
GRAVITY interactively and obtain new solutions

without editing any files.

In an .m file called falling.m
!
function h = falling(t)!
global GRAVITY!
h = 1/2*GRAVITY*t.^2;!
!

In the workspace, enter the statements
!
>> global GRAVITY!
>> GRAVITY = 32;!
>> y = falling((0:.1:5)');!
!

This also shows the basic function syntax.

function [output variables] =… FunctionName(input variables)!
body of function!

There is no statement to end the function (no return or
end needed, uses EOF or new definition)

return!
!

return: returns to invoking function

allows for termination of function before it runs to
completion

!
%det(magic)!
function d = det(A)!
%DET det(A) is the determinant of A.!
if isempty(A)!

!d = 1;!
!return! !%exit the function det at this point!

else!
!…!

end!

function tsting!
global c!
c=4!
b=2!
[a d]=tstfn(b)!
whos!
return!
function [out1 out2]=tstfn(in)!
global c!
out1=in.^2!
out2=c*out1!
whos!
return!
!
>> tstingfuns!
c =!
 4!
b =!
 2!
out1 =!
 4!
out2 =!
 16!
 Name Size Bytes Class Attributes!
 c 1x1 8 double global !
 in 1x1 8 double !
 out1 1x1 8 double !
 out2 1x1 8 double !
a =!
 4!
d =!
 16!
 Name Size Bytes Class Attributes!
 a 1x1 8 double !
 b 1x1 8 double !
 c 1x1 8 double global !
 d 1x1 8 double !

Can put multiple functions in
one m file.
The variables “b” and “c” are
declared global in both, but
only assigned in one of them.

Rethinking code for taking advantage of matlab
vectorization.

More than just defining vectors and matricies

using matlab definitions.
!
%cheating a little – creation of x is vectorized!
x = rand(1,100);!
!
%In place of :!
for k=1:100!
y(k) = sin(x(k));!
end!
!
% We can use :!
y = sin(x); !

Given an=n and bn=(1000-an) , n=1,2,…1000,
calculate

!

ssum = anbn
n=1

1000

"

Solution: It might be tempting to implement the
above calculation as

!
a = 1:1000;!
b = 1000 - a;!
ssum=0;!
for n=1:1000 %poor style...!
 ssum = ssum +a(n)*b(n);!
end!

Recognizing that the desired sum/calculation is
the inner or dot product of the vectors a and b,
or multiplication of the matrices abT , we can do
better (we even have a more than one way to do

it!):

!
ssum = a*b' ! ! %Vectorized, better!!
ssum = dot(a,b) ! !%Vectorized, better!!

Given an=n and bn=(1000-an) , n=1,2,…
1000, calculate

!

ssum = anbn
n=1

1000

"

Say we have a number of seismograms and we
would like to “window” and scale each one.

First – what is the “window” process?

(Blue trace is original
signal, red trace is
“window”, dashed red trace
is negative of window to
show “envelope” – will use it
to scale the original signal.

Green trace is the final
result after applying the
“window” to the blue trace.

In this case the windowing is
done using a point by point
multiply of the blue and red
vectors, b.*r, [64 pts]).

What if we want to do this to a number of
seismograms?

We could use a loop, doing the vectorized multiply

on each seismogram.

But can we do better than that?

We would not be asking leading questions if not!

So how do we do it?

(Now we want to do point
by point multiplies of each
trace by the window –
T1.*w and T2.*w, etc.

How can we do this in one
shot?

What if we make a diagonal
matrix of the window vector
[elements of the vector on
the diagonal and all else
zero]?)

Looking at what happens when we do matrix
multiplication, we see that this does what we

need.
!
!
% length!
%Number traces!
N = 64;!
M=1:4;!
TH=1:N;!
X = sin(TH'*M*...!
pi*2/(N-1));!
plot(X)!
 !
% Make a window!
w = hamming(N);!
W = diag(w);!
% Windowed signals!
%without loops!
XW = W * X;!

To do the point by point multiply we need to
match the length of the seismograms (64 points in

this case).
!
>> whos!
 Name Size Bytes Class Attributes!
 M 1x4 32 double !
 N 1x1 8 double !
 TH 1x64 512 double !
 W 64x64 32768 double !
 X 64x4 2048 double !
 XW 64x4 2048 double !
 g 1x4 32 double !
 w 64x1 512 double !
!

So we have a 64x64 matrix * 64x4 matrix
producing a 64x4 result matrix .

Say we want to scale each seismogram (there
are 4 of them). We have to multiply each point

in the seismogram by the same number).

(Now we want to multiply
each trace by its scale –
T1*w1 and T2*w2, etc. How
can we do this in one shot?

What if we make a diagonal
matrix of the weights
[elements of the vector on
the diagonal and all else
zero]?)

(really same as last time, but
elements on diagonal are
now scaling weights for each
seismogram – boxcar
window of height other than
1)!

% Make a vector of gain factors!
g = 1./M;!
G = diag(g);!
 !
% scale each seismogram by corresponding gain factor!
XG = X * G;!

Do both windowing and gain scaling together.

% Windowing and gain scaling is just left and right!
% multiplication with appropriate diagonal matrices.!
XWG = W * X * G;!

Sum the basis functions to get the Fourier series.

>> s=sum(XG');!
>> plot(s)!
>> grid!

Notice that vectorization requires a different
thought pattern in the approach to solving

problems.

It will initially take longer to develop the program.

But with practice (effort!, and seeing/looking for
examples), it will become more natural and faster

to code.

(If doing the previous example “for real” one would use the sparse matrix feature for the
diagonal matrices

W = diag(sparse(w));!

This will save on both memory use and execution time.)

Why Use Vectorized Code?
Advantages

 Increased Speed:

Vectorized code runs significantly faster.

How much faster?

This depends on the commands used and the
application. And although Matlab has made great
strides in accelerating low-level code, vectorized
code still runs faster. But in general, vectorized

code is faster than it’s low-level counterpart.

Why Use Vectorized Code?
Advantages

 Compact: Vectorized code is more compact
and can be easier to read and understand.

("Looks-like" the underlying Math)

Why Use Vectorized Code?
Disadvantages

 Difficulty:

Most people with programming experience are
used to doing things in a low-level manner (i.e.

FOR loops).

Vectorizing code can be a challenge because of
the different thinking that is required. In addition,
there is no set formula on how to vectorize code.

A good working knowledge of the available
functions within Matlab is certainly helpful when it

comes to vectorization.

Why Use Vectorized Code?
Disadvantages

 Compact:

Being compact is both a blessing and a curse.

Vectorized code can be difficult to understand
because it is so compact.

If the code is undocumented and does not have
any comments, it can be a real pain to figure what

the code does.
(but probably not worse than any other undocumented code.

As least it is not spaghetti code – can't write spaghetti code in Matlab since don't have a
goto).

Although vectorization can make your code
simpler at times, it can also make your code

archaic and difficult to understand.

In addition, it can be difficult to vectorize your
code at times, so it may not be worth the time and

effort to do so.

Thus, you may be wondering if it is really worth
your time to vectorize your code.

If you find it too difficult to vectorize your code,
you may be better off just using a low level

method.

The most important thing is to make sure that
your code works!

After you get your code working, you can
consider optimizing it through vectorization.

In conclusion, vectorization is not required, but it
can certainly be beneficial.

Unless the arrays you are dealing with are quite
large (and depending on the operations

performed), it can be difficult to see the benefits
of vectorization.

But in general, I believe that it’s good practice to
get into the habit of using vectorized code as it is

more efficient.

Another look at arithmetic between a matrix and a
vector.

Saw how to do it using

-repmat

-Tony's trick
-Multiply by matrix of ones

(plus a few others).

bsxfun - Apply element-by-element binary
operation to two arrays with singleton expansion

enabled

Syntax
C = bsxfun(fun,A,B)

Description

C = bsxfun(fun,A,B) applies an element-by-
element binary operation to arrays A and B, with

singleton expansion enabled.

The inputs must be of the following types:
numeric, logical, char, struct, cell.

fun is a function handle, and can either be a
MATLAB function or one of the following built-in

functions:

The size of the output array C is equal to:
max(size(A),size(B)).*(size(A)>0 & size(B)>0).

@plus ! !Plus!
@minus! !Minus!
@times! !Array multiply!
@rdivide !Right array divide!
@ldivide !Left array divide!
@power! !Array power!
@max ! !Binary maximum!
@min ! !Binary minimum!
@rem ! !Remainder after division!
@mod ! !Modulus after division!
@atan2! !Four quadrant inverse tangent!
@hypot! !Square root of sum of squares!
@eq! ! !Equal!
@ne! ! !Not equal!
@lt! ! !Less than!
@le! ! !Less than or equal to!
@gt! ! !Greater than!
@ge! ! !Greater than or equal to!
@and ! !Element-wise logical AND!
@or! ! !Element-wise logical OR!
@xor ! !Logical exclusive OR!

@plus ! !Plus!
@minus! !Minus!
@times! !Array multiply!
@rdivide !Right array divide!
@ldivide !Left array divide!
@power! !Array power!
@max ! !Binary maximum!
@min ! !Binary minimum!
@rem ! !Remainder after division!
@mod ! !Modulus after division!
@atan2! !Four quadrant inverse tangent!
@hypot! !Square root of sum of squares!
@eq! ! !Equal!
@ne! ! !Not equal!
@lt! ! !Less than!
@le! ! !Less than or equal to!
@gt! ! !Greater than!
@ge! ! !Greater than or equal to!
@and ! !Element-wise logical AND!
@or! ! !Element-wise logical OR!
@xor ! !Logical exclusive OR!

Example, use bsxfun to subtract the column
means from the corresponding columns of matrix

A.

A = magic(5); A = bsxfun(@minus, A, mean(A));!

bsxfun is even faster than building the matrices
and does not use as much memory (speed

increase comes from not having to build the
matrix, also saves space).

Problem is that it is not very readable.!

Matlab
Graphics

Basics

Types of Graphics

Predefined graph types, or
Create your own graphics

Creating a Graph

Use plotting tools to create graphs interactively.

Use the command interface to enter commands in
the Command Window or create plotting

programs.

Creating a plot

The plot function has many different forms,
depending on the input arguments.

If y is a vector, plot(y) produces a piecewise

linear graph of the elements of y versus the index
of the elements of y.

If you specify two vectors as arguments to plot,
plot(x,y) produces a graph of y versus x.

!
>> x = 0:pi/100:2*pi;!
>> y = sin(x);!
>> plot(x,y)!

>> xlabel('x = 0:2\pi')!
>> ylabel('Sine of x')!
>> title('Plot of the Sine Function','FontSize',12)!
!

(Notice that the fontsize specification is sort of verbose. This aspect of setting plot
parameters is worse than GMT! It will improve you typing however.)

>> seis=loadsac('BJT.BHZ_00.Q.2005:01:23:41');!
>> plot(seis)!
>> ylabel('Digital Counts')!
>> xlabel('Number of points')!
>> title('BJT BHZ Seismogram')!

Plotting multiple data sets

Multiple x-y pair arguments create multiple
graphs with a single call to plot, which

automatically cycles through a predefined (but
customizable) list of colors

>> x = 0:pi/100:2*pi;!
>> y = sin(x);!
>> y2 = sin(x-.25);!
>> y3 = sin(x-.5);!
>> plot(x,y,x,y2,x,y3)!
>> legend('sin(x)',…!
'sin(x-.25)','sin(x-.5)')!

>> size(seis)!
!25138 !1!

>> x=1:25138;!
>> plot(x,seis,x,seis2)!
>> legend('Raw','Mean Removed’)!

Plotting multiple data sets

If you have a matrix of y vectors for a single x
vector, plots all the ys against x.

>> x=[0:.01:2*pi];
>> y=[sin(x); cos(x)];
>> plot(x,y)
>>

Specifying line colors/styles

It is possible to specify color, line styles, and
markers (such as plus signs or circles) when you

plot your data using the plot command:

>> plot(x,y, 'specify_color_linestyle_markertype')!

Change color

>> plot(x,seis,'r',x,seis2,'b')!
>> plot(x,seis,'r',x,seis2,'b:')!

Color

'c'!

'm'!

'y'!

'r'!

'g'!

'b'!

'w'!

'k'!

cyan

magenta

yellow

red

green

blue

white

black

Line style

'-'!

'--'!

':'!

'.-'!

no character

solid

dashed

dotted

dash-dot

Specifying lines and markers
If you specify a marker type but not a line style,

only the marker is drawn.

>> plot(x,y,'ks')!
!

plots black (k) squares (s) at each data point,
but does not connect the markers with a line

>> plot(x,y,'r:+')!
!

plots a red-dotted line and places plus sign
markers at each data point

>> x1 = 0:pi/100:2*pi;!
>> x2 = 0:pi/10:2*pi;!
>> plot(x1,sin(x1),'r:',x2,sin(x2),'r+')!

Second part only plots the + every 10 points. So
does.!

>> plot(x1,sin(x1),'r:',x1(1:10:end),sin(x1(1:10:end)),'r+’)!

Marker Type

'+'!

'o'!

'*'!

'x'!

's'!

'd'!

'^'!

'v'!

'>'!

'<'!

'p'!

'h'!

no character!

plus mark

unfilled circle

asterisk

letter x

filled square

filled diamond

filled upward triangle

filled downward triangle

filled right-pointing triangle

filled left-pointing triangle

filled pentagram

filled hexagram

no marker

Graphing imaginary and complex data

Reminder: complex numbers can be represented
by the expression a+bi where a and b are real

numbers and i is a symbol with the property
i2=-1!

Complex numbers can be plotted using Real and

Imaginary axes.

When the arguments to plot are complex, the
imaginary part is ignored except when you pass
plot a single complex argument. For this special
case, the command is a shortcut for a graph of

the real part versus the imaginary part.
>> t = 0:pi/10:2*pi;!
>> plot(exp(i*t),'-o')!
>> axis equal!
>> xlabel('Real')!
>> ylabel('Imaginary')!
>> hold on!
>> plot(t,t,'r+-')!
!

Plus plotting second
data set with
“hold” (else erases existing figure
with new call to plot)

Figure Handling

Graphing functions automatically open a new
figure window if there are no figure windows

already on the screen.

If a figure window exists, it is used for graphics
output (and clobbers what’s there if hold is off).

The default is to graph to the current figure
(usually the last active figure)

To create a new figure without overwriting the old,
use the figure command

When multiple figures already exist, you can set
one of them to the current figure with the

command figure(n) where n is the number at the
top of the figure window.

>> plot(x,seis,x,seis2)!
>> legend('Raw','Mean Removed') !!
>> figure !%creates 2!
>> plot(seis,'r')!
>> figure(1) %makes 1 current!

1 2

3 4

Creating subplots

The subplot command enables you to display
multiple plots in the same window or print them on

the same piece of paper.

t = 0:pi/10:2*pi;!
[X,Y,Z] = cylinder(4*cos(t));!
subplot(2,2,1); mesh(X)!
subplot(2,2,2); mesh(Y)!
subplot(2,2,3); mesh(Z)!
subplot(2,2,4); mesh(X,Y,Z)!
!
%creates a 2 x 2 matrix of !
%subplots!
>> help cylinder
 CYLINDER Generate cylinder.
 [X,Y,Z] = CYLINDER(R,N) forms the unit cylinder based on the generator
 curve in the vector R. Vector R contains the radius at equally
 spaced points along the unit height of the cylinder. The cylinder
 has N points around the circumference. SURF(X,Y,Z) displays the
 cylinder.
 [X,Y,Z] = CYLINDER(R), and [X,Y,Z] = CYLINDER default to N = 20
 and R = [1 1].
 Omitting output arguments causes the cylinder to be displayed with
 a SURF command and no outputs to be returned.

Controlling axes

The axis command provides a number of options
for setting the scaling, orientation, and aspect

ratio of graphs.

Set the axis limits

axis auto!
axis([xmin xmax ymin ymax zmin zmax])!

!

Set the axis aspect ratio
!

axis auto normal!
axis square; axis equal!

The axis command provides a number of options
for setting the scaling, orientation, and aspect

ratio of graphs.
!

Set axis visibility
!

axis on; axis off!
!

Set grid lines
!

grid on; grid off!
!

axis vs axes
!

>> help axis!
 AXIS Control axis scaling and appearance.!
>> help axes!
 AXES Create axes in arbitrary positions.!

>> figure(2)!
>> plot(seis2)!
>> axis([6500 10500 -4000 4000])!

>> axis auto!
>> plot(seis2(6500:10500,:),'r')!

Overlaying new graphs
Use the command
hold on
or just
hold
to overlay different types of plots on one another
!
>> [x,y,z] = peaks;!
>> pcolor(x,y,z)!
>> shading interp!
>> hold on!
>> contour(x,y,z,20,'k')!
>> hold off!

>> surf(x,y,z)!
>> clf!
>> [x y z]=peaks;!
>> surf(x,y,z)!
>> shading interp!

