
Data Analysis in Geophysics
ESCI 7205

Class 11

Bob Smalley

Printing

OLNY SRMAT POELPE CAN RAED TIHS

I cdnuolt blveiee taht I cluod aulaclty uesdnatnrd waht I
was rdanieg. The phaonmneal pweor of the hmuan mnid.

Aoccdrnig to rscheearch at Cmabrigde Uinervtisy, it
deosn't mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoatnt tihng is taht the frist and lsat ltteer be in

the rghit pclae. The rset can be a taotl mses and you can
sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as
a wlohe. Amzanig huh? yaeh and I awlyas tghuhot slpeling

was ipmorantt!

Tihs deos not wrok for the cetupmor!

Manipulating & Printing Files

Basics of the UNIX/Linux Environment

Printing Commands

lpr: submit files for printing

% lpr -P3892_grad file.txt!

Printing Commands

lpq: show printer queue status useful to find out
if other jobs are before yours.

!
!
%lpq -P3892_grad!
3892_grad is ready and printing!
Rank Owner Job File(s) Total Size!
active hdeshon 146 junk.pdf 108544 bytes!

Identifies the job.

lprm: cancel print job (by number)

%lprm -P3892_grad 146!

lpstat: printer status information
useful for finding out printer names on Macs,

which are not necessarily the same as on the SUN
system

!
%lpstat –a!
_3876langston accepting requests since Wed Aug 27 13:11:36 2008!
hp_color_LaserJet_4600 accepting requests since Mon Aug 4 ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! !11:50:47 2008!

CERI Printers

Long Building (3892 Central)

3892_grad -- B & W printer in Mac Lab
3892_hpcolor -- Color printer in Mac Lab
3892_hpxlfp -- Poster printer in Mac Lab
3892_Mitch -- B & W printer in Mitch's office

3892_colorps -- B & W printer in

CERI Printers

House 3 (3876 Central)

3876_langston --
3876_hpcolor -- Color printer

3876_grad –
3876_bodin –
3876_powell –

CERI Printers
(Continued)

House 2 (3890 Central)

3890_hpcolor – Color printer in copier room
3890_copy – B & W printer in copier room

3890_sheila – B & W printer in Michelle's office

House 0 (3918 Central)

3918_usgs –

CERI Printers
(Continued)

House 1 (3904 Central)

3904_tek -- Color printer
3904_tekdup -- Color printer !

3904_hallway -- B & W printer
3904_brother --

Data Analysis in Geophysics
ESCI 7205

Class 11

Bob Smalley

Easiest way to get started

1) Find system with GMT already set up

2) Get working program (shell script) from
someone else and modify (hack) it.

Lots examples in

- Tutorial
- available on www

- available from your “friends”

What goes on in GMT

Sources of operational parameters/job control

i)  command line options/switches or program
defaults

ii) carried over from execution of previous
commands

iii) from your .gmtdefaults file

(looks first in working directory, then in your home directory, finally the system, program
defaults)

Sources of operational parameters/job control

Why a defaults file?

- too many parameters to require setting all
explicitly (powerful)

- customize – can have different defaults in

different directories

Basic GMT use

Most GMT programs

read input from terminal (stdin) or files, and

write output to terminal (stdout) (a few write to
files)

– follow UNIX philosophy.

To write output to files one can use UNIX
redirection (else goes to screen - uselessly):

GMTprogram switches >> Outputfile!

Most GMT programs will accept input-file names
and pipes in lieu of stdin

GMTprogram input-file switches > outputfile!
!
GMTprogram switches < input-file > outputfile!
!
Someprogram | GMTprogram1 | GMTprogram2 > outputfile!

Many GMT programs will also accept input
redirection (in-line input) – reads whatever

follows -- up to character string XXX -- as input.

GMTprogram switches << END > output-file !
.1 .1 !
.2 .2 !
END!

Can also do with “command substitution”:

GMTprogram switches << FIN > output-file !
`someprogram swithches < input-file…`!
FIN!
!
echo `someprogram swithches < input-file…` | GMTprogram switches
> output-file !

Some GMT programs require input-file names
(usually when need more than one input file, or
input usually so big that one would be forced to
pipe or redirect input all the time, or binary file,

etc.)

GMT and scripts

GMT commands act much like regular UNIX
commands.

Generally, the commands are enacted within a
shell script so that they may be combined with

other UNIX commands such as awk.

bash and csh are the most commonly
encountered shells in academia and passing down

GMT scripts is how much of seismology gets
illustrated

Use Comments!

Comments are very popular to forget but if you
don’t comment your script, 2 years later you may
not remember what you were doing (especially if
you write tight UNIX code that took 20 iterations

to get "correct" [as compact as possible]).

Spaces and blank lines make your script
readable. While it may take more paper if you

print it, it only takes two bytes to make new line or
a space.

Keeping track of your scripts

You will be glad (someday) if you set up
directories and subdirectories to keep your

maps, data, and scripts organized.

Mitch suggests have something like this in ~/GMT!

csh/ data/ ps/ scratch/ sh/!

There is a directory for csh scripts, for sh scripts,
for data files, for postscript files, and for scratch

files.

OK lets look at some “simple” examples:

Plot x1/2 from 0 to 100 as a dashed line, using red
triangles with green borders at x=n*10.

1) We start by making the basemap frame for a
linear x-y plot.

2) We want it to go from 0 to 100 in x, with ticks,

grid and annotation every 10, and from 0 to 10 in
y, with ticks, grid and annotation every 2.

3) The final plot should be 4 by 3 inches in size.

Note GMT does not make any helpful
assumptions such as

a) You want to plot the whole x and y range of the

data and

b) You want it to fit nicely on the page.

You have to specify EVERYTHNG (comes under
the excuse of being “powerful”)

Here's how we do it:

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
> plot.ps !

We will first look at how we specify to GMT how to

make the map/figure.

This is done using the command line options/
switches.

psbasemap

draws a map frame and sets up the map
parameters

(so they don’t have to be re-specified in later GMT program calls, although it is a good

idea – variables make it easy).

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
> plot.ps

Requirements 1 (projection) and 3 (axis sizes) are
specified to GMT together

1) We start by making the basemap frame for a

linear (the projection, or lack of one) x-y plot.

3) The final plot should be 4 by 3 inches in size.

psbasemap

The –J option selects the type of projection and
the scale.

In this case we want a linear x-y plot, or no
projection, which is specified by

x or X.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
> plot.ps

There are 25 projections available in GMT, each
specified by one letter (case sensitive to set

options).

There are no provisions for providing your own
projection.

(short of using the open source to roll your own.)

Requirements 1 and 3 are specified to GMT
together

The –J option also sets the axis scales (distance

per unit, x) or (axis length, X)

Where the “unit” is specified in .gmtdefaults or
explicitly – inches, i, or cm, c.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

2) We want it to go from 0 to 100 in x, with grid and
annotation every 10, and from 0 to 10 in y,

annotating every 1.

This is really two conditions

i) We want it to go from 0 to 100 in x, and from 0 to
10 in y.

Specified by the REGION (-R) option, which (in
the usual form) is

-Rxmin/xmax/ymin/ymax!

2) We want it to go from 0 to 100!

-Rxmin/xmax/ymin/ymax!
!

Notice that unlike MATLAB, GMT does not
make any assumptions about what you want

(such as the reasonable one that you just might want the region to show all the input

data).

You have to specify every detail. (i.e. powerful)
(why should the writers of gmt work hard when they can convince the user that it is

“better” if the users do!)

psbasemap -R10/100/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps

There are two forms for the –R option

1)  For projections where the boundaries follow
lines of latitude and longitude (“rectangle” on

sphere) – specify sides.

There are two forms for the –R option

2) For regions where the sides do not follow lines
of latitude and longitude (will make more sense
when we do map projections) - specify corners

by appending an “r” to end

The idea of “region” to plot specified this way
breaks down for azimuthal projections

 (outside border of plot is a circle, you really want

to specify center and radius)

will see how to do this later.

2) We want ticks, grid and annotation in x every
10, and in y every 1.

This is specified by the –B option (Border?).

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

This is the most complicated GMT option.

Ticks and annotation – every 10 for x (first one)
and every 1 for y (second one).

If you wanted the same ticks and annotation for x

and y you would only have to specify it once.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

Not in our specifications, but controlled by the –B
option, the plot title.

This is a little more complicated.

Labels are between colons, with

“.” for plot title,
nothing for x axis label,

“,” for y axis label.

If label/title is more than one word, has to be in
double quotes.

psbasemap -R0/100/0/10 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

If this sounds confusing you can look at the man
page for psbasemap for the full explanation

and more examples.

The man page for the –B option, however, is
practically incomprehensible.

The BUGS section of the man page states

“The -B option is somewhat complicated to
explain and comprehend. However, it is fairly

simple for most applications (see examples). “

Remaining options/switches

-P!

Sets the output to Portrait (long side vertical)
mode.

“Default” is Landscape (long side horizontal)
mode.

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first plot": -P \!
>! plot.ps !

This option actually switches “states”.

Remaining options/switches

If .gmtdefaults defines portrait mode as the
default, then –P will send it to landscape.

(make a figure and see how it comes out, if you

don’t like the orientation stick in a –P).

Good start – but usually we make plots to show
some sort of data

– so how do we do that?

So, what did we get for all our effort?

Now let’s look at a little more complicated
example:

Lets call it “full_court_press.sh”

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!
!

This is more than “a little more” complicated.

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

But it follows the UNIX philosophy – a bunch of
simple things stuck together to do something

more complex.

Gives you the idea that most useful GMT
produced figures are going to be a LOT of GMT

calls

Here’s what the output looks like
(actually the output is a ascii file containing a PostScript program, this is what it looks

like after displaying with GhostScript or GhostView to the screen or printing to a
PostScript printer).

Let’s look at it piece, by simple piece.

Set shell

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1,!
...!

Set shell to Bourne Shell.

Could also have set it to bash or csh

(change first line to #!/usr/bin/csh -f, this works because this script does not contain
anything that is specific to one shell script – such as variable name definition. Use -f,

fast, option which stops it from running your .cshrc).

Next piece

Name the output file.

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Being lazy and disorganized - I don’t want to have

to type the output file name in lots of times nor
keep track of which shell script made which

postscript file in my directory.

Next piece

Name the output file.

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

So I want to find a short and easy way to name

the file, and I might want to associate the output
file name with the name of the shell script that

made it.

Enter UNIX argument passing to the rescue.

When you call a shell script, the system passes
predefined, pre-named “arguments” to the shell

script from the command line.

So if I enter
“myscript arg1 arg2”!

UNIX automatically gives me (in this case 3
arguments)

$0 ! !the name of the shell script!

$1 ! !the value of arg1 (character string)!

$2 ! !the value of arg2 !!

All I have to do to use these arguments in my
shell script (within some constraints) is stick them

in.

The Shell will expand them to their proper values.

So my output file will be named

“full_court_press.sh.ps”,

since $0 will get expanded to
“full_court_press.sh”

(the name of the shell script)

Next piece.

Get (actually make) input data – part 1

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

sample1d, resamples (here interpolates) the input,
which in this case is redirected (<<) to being in-
line from the shell script (from the end of this
command line, which is somewhat far away, to

END).

#!/bin/sh!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

We have to specify the resampling step (-I1,
which is steps of 1).

We will leave everything else at the default values.

(see man page if you want more info)

sample1d provides a list of numbers from 0 to 100
in steps of 1 to stnd out.

Next piece. Get (make) input data – part 2
We want x and sqrt(x)!

#!/bin/sh!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Pipe the re-sampled data into the program nawk.

nawk is a great tool for preprocessing data for

GMT.

Next piece: Generate input data – part 2

Using nawk, one does not have to write programs
to make intermediate files in GMT input format,

but can go right to the source data file,

read it,

modify each line into GMT input format

and pipe this directly into the GMT program.

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | \!
psxy -R0/100/0/10 -JX4/2 -Ba20f10g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P -K > $0.ps!
0 0!
100 0!
END!

Next piece.
Generate input data – part 2

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | psxy -
R0/100/0/10 \!
-JX4/2 -Ba20f10g10/a2g2WSne -W5t15_15:0 -Y2 -P -K > $0.ps!
0 0!
100 0!
END!

The nawk command says to print the first column
($1) and the square root of the first column (sqrt

($1)) of every line.

We will (break the UNIX philosophy and) make an
intermediate file as we will need it more than once.

Next piece.

Plot it
#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Finally we get to the graphics part of GMT

psxy is the GMT program that plots points and
lines.

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

psxy accepts the “standard”/”global” options of
the GMT filters that produce PostScript output.

(one can put all the plot/map specifications into the first GMT call rather than use
psbasemap, everything we said before holds, so we don't have to re-say it.)

We already know what –R, -J, –B and –P do,

although the –B option here is a bit more
complicated looking.

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Output file $0.ps (is first instance so use >,
append in second instance so use >> – this takes

care of UNIX part)

Use \ to continue command on next line

Next piece.

...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
...!

So, what’s all that extra stuff on the –B?

Each of the letters controls a different feature/
aspect of the plotting of the axis

...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
...!

a is for annotation spacing

g is for grid spacing

WSne says to plot the annotation and ticks on the
West and South sides and ticks only on the north

and east sides.
(how would you put annotation without ticks?)

Next piece.

Draw a line -W5t15_15:0!
...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
. . .!

Make line 5 units thick (where units depends on
the device and default settings)

-W5t15_15:0 !

Can also specify color

-W5/0t15_15:0 for black line or
-W5/255/0/0t15_15:0 for red line

...!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
. . .!

Make it dashed with dashes 15 units long followed
by 15 unit long open spaces -W5t15_15:0, and a

“phase offset” for the dashes of zero -
W5t15_15:0!

 compare to -W5t120_15:60 !
(line segment 120 long, 15 blank, first line segment only 60 long [phase])

What is “phase offset”

This format also works
W[width],[color],[texture]!

-W5,0,15_15:-!

-W5,255/0/0,15_15:-!

-W5,red,15_15:-!

!

Gives the same plot.

Next piece. Misc. 1
#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

-Y2 offset plot 2 units in the Y direction (else x
axis labels get cut off across bottom of plot)

Misc. 2
#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

-K do not close PostScript file

-O do not initialize PostScript

-K do not close
PostScript file (don’t output

“showpage”) so more
PostScript can be

appended to the file

-O do not initialize
PostScript

(does not output PostScript header

stuff) so this can be
appended to existing

file (that hopefully
does not have a

showpage at the end).

Misc. 3

Several common “gotchas”

– no showpage (can see on screen, but does not
print – actually prints a blank page) (error: have

a –K in last GMT call)

-  showpage in middle of file (error: forgot the –K
somewhere) – only get part of file on screen or in

final print or get ghostscript error message.

- Have header in middle of file (error: forgot –O
somewhere), get ghostscript error message.

Next piece.
Draw symbols every 10th point

#!/bin/sh!
#plot square root x!
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat!
0!
100!
END!
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2g2WSne -W5t15_15:0 \!
-Y2 -P {$0}_1.dat -K > $0.ps!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

 Resample our

temporary file –
taking every 10th
point (-I10). Pipe
output to psxy!

Next piece.
Draw symbols -St0.2!

...!
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Make triangles, t, that are 0.2 units big -
St0.2!

Next piece.
Draw symbols

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Make the line outlining/drawing the symbols, -W
flag, that is 5 units wide, and draw outline in green

(R/G/B) -W5/0/255/0 or W5/green!

Colors specified in
R/G/B format

(intensity of Red, Green and Blue
color guns – primary colors for

additive system).

sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \!
-G255/0/0 -W5/0/255/0 -O >> $0.ps!

Fill the symbol, -G flag, with color red, -G255/0/0,
or -Gred!

Can also use color names (red, green, blue. There
are over 700 X-11 color names).

Next piece.
Draw symbols

We’re done!

That wasn’t so bad now, was it?

There are two other non-map-projected forms

1) Logarithmic - add l (lower case letter L) after
scale of axis you want logarithmic -JX4l/2 !

2) Power/exponential – add p and exponent after
scale of axis you want exponential (can scale axes

individually)
-JX4p0.5/2 !

Common command options on first, and possibly
subsequent, calls

Need on all calls

-R Define region for plot – will need on first call
and at least “–R” on subsequent

-J! !define projection for plot – will need this on
all calls if need to define region

Common command options on first, and possibly
subsequent, calls

(Generally) Need on first call only

-B Borders -- annotation, frame, grid. Only
need on first (or a single) call.

-P! !Switch between landscape and portrait
modes

-X Shift X axis

-Y! !Shift Y axis

Common command options on first, and
possibly subsequent, calls.

Need when needed.

-K Don’t close PostScript (showpage), use
when more will follow

 - need on all but last GMT call

-O Don’t initialize PostScript, use when
appending to pre-existing file
- need on all but first GMT call

- use both –K and –O when putting a large
number of GMT call outputs together

Common command options on first, and possibly
subsequent, calls.

Need when needed.

-V Verbose (prints out stuff to standard error
for user).

-H Header records (tells GMT to skip first H
lines of ascii input file)

How about
making

pretty

MAPS?

(this was
made by
the shell
script I put
in Mitch’s
GMT -ToT
web page.)

Map projections available in GMT

List of
“standard”

command line
options.

The –J option
sets the

“projection”
One has to

look at the man
page for each

one as
“different

things vary”

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

“All” gmt programs
plot “maps” through
the projection
command line option
or switch (even the x-y plot).

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

All projections give
you two selections for
specifying the scale

(note GMT takes the mapmakers
attitude that a map has to have a
predetermined/known scale –
assuming you want the map to nicely fill
the page does not cut it – a map
without an explicitly known or specified
scale is inconceivable.)

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

-Jmparameters!

 (Mercator).

Specify one of:

 -Jmscale or -JMwidth !

Give scale along
equator

(1:xxxx or UNIT/degree).

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

-Jmlon0/lat0/scale or!

-JMlon0/lat0/width !

Give central
meridian, standard
latitude and scale

along parallel
(1:xxxx or UNIT/degree, UNIT

= number inches or cms).

Map Projection:

address plotting sphere on a plane

Mercator Projection:
One way to address plotting sphere on a plane

(which is whole ‘nother subject)
Conformal (maintains shapes but not relative

sizes)
Cylindrical projection

Albers

Also conformal (maintains/conserves shape)

Conical projection

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

Region is
“rectangle” on
the spherical

earth.

-N for
boundaries

(international, US/Canadian/
Mexian state boundaries

“built in”), rivers.

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-A to get rid of
small water/

island features

Projection (b/
B) – need to

know
something

(center and
standard
parallels).

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
\ -N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-Jblon0/lat0/lat1/lat2/scale or -JBlon0/lat0/lat1/lat2/width

(Albers [E]). Give projection center, two
standard parallels, and scale (1:xxxx or UNIT/degree).

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \ !

-G255/255/255 -S150/50/150 -P >! map.ps !

Other projections –

azimuthal orthographic
(projection mimics
looking at earth from
infinite distance).

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \ !

-G255/255/255 -S150/50/150 -P >! map.ps !

New option
-Dc!

Controls resolution of
coastline

f full

h high

l low

c crude

Helps manage file sizes.

Some useful
maps.

The world
centered on

Memphis.

Use to get
back azimuth

and distance to
earthquakes at

a glance.

