
Quick intro for HW

awk :
[Aho, Kernighan, Weinberger]

new-awk = nawk

Powerful pattern-directed scanning and
processing language.

So powerful that we will devote a lot of time
to it in the future.

One of the most used Unix tools.

For now we will present the bare basics that
will allow us to start processing data.

nawk reads a file and processes it a line at a
time.

The input line is parsed into fields separated
by spaces or tabs.

The fields are addressed as $1, $2, etc.

$0 is the while line.

Here is the basic syntax for performing
simple nawk processing from the command

line.

nawk ‘[/regex/...] {print $n, $m, …}’ file

Where /regex/ is an optional (the []s) regular
expression contained within forward slashes

“/”s. (There can be more than one {the …}, combined logically &&, ||, !).

$n, $m, etc. are the columns of the file to
print out

file specifies the input file.

 A basic, and useful, nawk example.

Print out a number of columns of a file (say
the lat and long for plotting by GMT).

Here is the file

 CAT YEAR MO DA ORIG TIME LAT LONG DEP MAGNITUDE
 PDE 1973 01 05 123556.50 46.47 -112.73
 PDE 1973 01 07 225606.10 37.44 -87.30 15 3.2
 PDE 1973 01 08 091136.80 33.78 -90.62 7 3.5

The lat and long are in columns 6 and 7,
respectively. For now use an editor to

remove the header line.

If a regular expression is specified, nawk will
only print out the lines which contain a match

to the regular expression.
%nawk ‘/good data/ {print $7, $6}’ mydatafile.dat

Prints out the seventh and sixth column for all lines in the file mydatafile.dat
containing the character string “good data”.

%nawk ‘ {print $7, $6}’ mydatafile.dat

Prints out the seventh and sixth column for all lines in the file mydatafile.dat.

The input to nawk can also be piped or
redirected.

%cat mydatafile.dat | nawk ‘ {print $7, $6}’

%nawk ‘ {print $7, $6}’ << END
`cat mydatafile.dat`
END

(Although one would never do either of the
above in practice!! Why?)

This is enough awk/nawk knowledge to do the
homework.

Some useful commands

finger - find out information about users
w/who - who is currently on the machine and
what are they doing
whoami – reports username
id - tells you who you are (username, uid, group,
gid)
uname - tells you basic information about the
system.
whois - information about hosts
which/whereis - locates commands locate -
locates files
whatis - gives brief summary of a command
talk - chat with other users on the system
write/wall - send messages to users of the
system

Basic scripting

Interpreted vs. Compiled Languages

End members of methods for changing what
you write in a high-level language into the

individual machine instructions the
computer’s CPU executes.

Compiler

The name "compiler" is primarily used for
programs that translate source code written

in a high-level programming language to a
lower level language such as assembly

language or machine code (everything has to end up as

machine code eventually).

Typically produces most efficient (in terms
of run time) implementation of a program.

Source to executable with compiled
language.

Several steps.

- Edit the source code.

- Compile the source code into machine code.
- Link the machine code with libraries, etc.
(oftentimes done in one command together

with compile, but not necessarily).

- Run the program (which is itself another file).

Examples of some languages that are
typically compiled.

FORTRAN
C

C++
ALGOL
PASCAL

Visual BASIC

Interpreter

The name ”interpreter" is primarily used for
programs that translate source code written

in a high-level programming language to
machine code at the time of execution.

Typically produces less efficient (in terms of
run time) implementation of a program (for
example, in a loop it has to reinterpret the
instructions each time through the loop).

Source to executable with interpreted
language.

Two steps.

- Edit the source code.

- Run the program

(It does the “compiling” and “linking”, or
translating to machine code, steps

automatically.)

Examples of some languages that are
typically interpreted

Shell scripts (always)
BASIC

MATLAB

- Compiled languages are compiled.

- Modern interpreted languages are typically
hybrids (they will compile the code in a loop
for instance, instead of interpreting it each

pass).

Some languages, such as MATLAB, do both.
It has interpreted parts, compiled as needed

parts, pre-compiled parts, and you can
compile your code.

When you run a compiled program again you
skip the compile/link steps.

(the compile/link process produces an executable file, which is the file that is
run/executed – not the source file.)

When you run an interpreted program again
the computer has to redo the interpretation

each time.

(So while modern interpreters may internally take shortcuts such as compiling a
loop, it is local to each running of the program. Each time you run/execute the

interpreted program it returns to the source file and starts from scratch.)

Shell scripts are strictly interpreted.

The philosophy of shell scripting is to

- develop a tool with the shell and

- then write the final, efficient,
implementation of the tool in C (or other

high level language).

The second step is typically skipped.

Interpreting vs. Compiling.

Compiling: good for medium, large-scale,
complicated problems, number crunching,

when you need the efficiency.

Interpreting: good for smaller scale, simpler
problems, when not number crunching, when
your efficiency is more important than the

CPU’s.
(It is not worth spending an hour of your time to save a microsecond of

execution time on a program that will run once.)

- Olden days –

Computer was expensive, limited, resource.
Programmer – relatively less expensive.
Lots of effort to write small, efficient

programs.

- Today –

Abundance of inexpensive computer
resources.

Programmer – very expensive.
(Buy another gigabyte of memory!)

- Take home lesson -

Use the appropriate tool.

What is a shell script?

It is a program that is written using shell
commands

(the same things you type to do things in the
shell).

When to use a shell script?

Shell scripts are used most often for
combining existing programs to accomplish
some small, specific job, typically one you

want to run often/multiple times.

Once you've figured out how to get the job
done, you put the commands into a file, or

script, which you can then run directly.

Why use shell scripts?

- Repeatability -

why bother retyping a series of common
commands?

Why use shell scripts?

- Portability -

Once you have a useful tool, you can move
you shell script from one machine/flavor

Unix to another.

POSIX standard – formal standard
describing a portable operating environment.

IEEE Std 1003.2 current POSIX standard.

Why use shell scripts?

Simplicity

Use more command to
see what is in shell
script (file) run.csh.

This csh script simply
runs a series of
tomographic inversions
using different
parameter setups.

Simple example
%more 0.5/run.csh
mkdir 0.5_3
tomoDD2.pwave tomoDD.3.inp
mv red* 0.5_3
cp tomo* 0.5_3
mv Vp* 0.5_3

mkdir 0.5_20
tomoDD2.pwave tomoDD.20.inp
mv red* 0.5_20
cp tomo* 0.5_20
mv Vp* 0.5_20

When we run the
script, it runs the
commands in the file –
so it runs the program
tomoDD2, and moves
the output files to
specially named
directories.
It then does it again
with a different input
data set.

Simple example
%more 0.5/run.csh
mkdir 0.5_3
tomoDD2.pwave tomoDD.3.inp
mv red* 0.5_3
cp tomo* 0.5_3
mv Vp* 0.5_3

mkdir 0.5_20
tomoDD2.pwave tomoDD.20.inp
mv red* 0.5_20
cp tomo* 0.5_20
mv Vp* 0.5_20

The prep work allows
us to save time and
effort later.

Simple example
%more 0.5/run.csh
mkdir 0.5_3
tomoDD2.pwave tomoDD.3.inp
mv red* 0.5_3
cp tomo* 0.5_3
mv Vp* 0.5_3

mkdir 0.5_20
tomoDD2.pwave tomoDD.20.inp
mv red* 0.5_20
cp tomo* 0.5_20
mv Vp* 0.5_20

This is an example
only.
If we really wanted to
run the same program
multiple times, we
would write this as
some sort of loop.
This way we would only
write the commands
once, and pass the info
that changes to the
commands.

Simple example
%more 0.5/run.csh
mkdir 0.5_3
tomoDD2.pwave tomoDD.3.inp
mv red* 0.5_3
cp tomo* 0.5_3
mv Vp* 0.5_3

mkdir 0.5_20
tomoDD2.pwave tomoDD.20.inp
mv red* 0.5_20
cp tomo* 0.5_20
mv Vp* 0.5_20

Standard example

Create a file (typically with an editor), make
it executable, run it.

%vim hello.sh
i#!/bin/bash
echo ’hello world.’
a=`echo ”hello world." | wc`
echo "This phrase contains $a lines, words and
characters”<Esc>
:wq
%chmod ug+x hello.sh
%./hello.sh
hello.sh
hello world.
This phrase contains 1 2 13 lines, words and characters
%

(i and <Esc> etc. above in blue don’t show up on screen.)

New Unix construct

- Command substitution –

Invoked by using the back or grave (French)
quotes (actually accent, `).

a=`echo ”hello world." | wc`

What is this?

Command substitution tells the shell to run
what is inside the back quotes and substitute

the output of that command for what is
inside the quotes.

So the shell runs the commmand

echo hello world. | wc

(%echo hello world. | wc
1 2 13)
(why is it 2 lines and 13 characters?)

takes the output (the “1 2 13” above), substitutes it
for what is in the back quotes (echo ”hello world.),

and sets the shell variable equal to it
a=`echo ”hello world." | wc`

does this (is as if you typed)

a=‘1 2 13’

Compare/contrast this to what the pipe (“|”)
does.

This is a very useful and powerful feature.

It completes the standard set of Unix
features.

The #! in the first line (known as shebang).

The first line can be used to tell the system
what language (shell) to use for command

interpretation.

It is a very specific format

#!/bin/bash

or
#!/bin/csh –f

(the –f is optional – for “fast” initialization –
see man page (-f Fast start. Reads neither the .cshrc file, nor

the .login file (if a login shell) upon startup.))

If you want your shell script to use the same
shell as the parent process you don’t need to

declare the shell with the shebang at the
beginning.

BUT
You can’t put a comment (indicated by #) in

the first line.

So the first line has to be one of

#!/shell_to_use
or

command (not comment, not “/shell_to_use”)

Scripting Etiquette

Most scripts are read by both a person and a
computer.

Don’t ignore the person using or revising your
script (most likely you 6 months later – when
you will not remember what you did, or why

you did it that way.)

Advice

1.  Use comments to tell the reader what
they need to know. The # denotes a
comment in bash and csh.

2.  Use indentation to mark the various
levels of program control. (loops, if-then-else
blocks)

3.  Use meaningful names for variables and
develop a convention that helps readers
identify their function.

4.  Avoid unnecessary complexity…keep it
readable.

Usually you will find the obvious stuff will be
commented and described fully.

The stuff the original author did not
understand that well – but somehow got to
work – will generally not be commented (or
usefully commented, may even be wrong).

Header

Adding a set of comments at the beginning
that provides information on

1.  Name of the script
2.  How the script is called

3.  What arguments the script expects
4.  What does the script accomplish
5.  Who wrote the script and when

6.  When was it revised and how

#!/usr/bin/bash -f

#Script: prepSacAVOdata.pl

#Usage: $script <unixDir> <dataDir> <staFile> <phaseFile> <eventFile>

#------------------------------------

#Purpose: To prepare SAC AVAO data for further processing

(1) generate event information file and add the event info

(name, event location) to the SAC headers

(2) generate event phase file and add the phase info

(time and weights) to the SAC headers

#Original Author (prepSacData.pl: Wen-xuan Du, Date: Mar. 18, 2003

Modified: May 21, 2004

#

#Last Modified by Heather DeShon Nov. 30, 2004

A) Reads AVO archive event format directly (hypo71):

subroutines rdevent and rdphase

B) Reads SAC KZDATA and KZTIME rather than NZDTTM, which is

not set in AVO SAC data

. . .  

Do (at least simple) error checking of call
and print some sort of message for error.

if [$# -ne 5]
then
 printf "Usage:\t\t$script <unixDir> <dataDirList>\
<staFile> <phaseFile> <eventFile>\n”
 printf "<unixDir>:\tdirectory in the unix system\
where pick file is stored;\n”
 printf "<dataDirList>:\tlist of data directories\
under <unixDir>; 'dataDir.list';\n”
 printf "<staFile>:\tstation file;\n”
 printf "<phaseFile>:\tphase info file for program\
'ph2dt';\n”
 printf "<eventFile>:\tevent info file (one line for\
 one event);\n”
exit (-1)
fi

if does everything between “then” and
“fi” (green box) if...

Check there are 5 input parameters.

$ to have shell return the value of a variable.

is the shell variable (shell gives you this
variable when it starts a script) that

contains number of parameters on input line.

-ne is the numerical test for not equal
(-eq is the numerical test for equal).

if [$# -ne 5]
then
. . .
fi

So if the number of input parameters is not
5, it will do what is between “then” and “fi”.

One of the things done in the error
processing (in the green box) is the command

“exit(-1)”.

if [$# -ne 5]
then
 . . .
 exit (-1)
fi

This returns a message, a numeric “return
value” (in this case a -1) to the parent

process.

NOTE
The formatting with respect to spaces, and
lines of the “if []”, “then”, (“else”), “fi” are

very specific.

if [. . .]
then
 . . .
fi

It has to be written exactly as above –
where the test and code to be performed
replace the “. . .” . (look back at previous slide to see where

spaces go)

The parent process can access this return
value using the shell variable ?

(to obtain the value one uses $? (of course)).

This allows the parent process to get
information about what happened in the

daughter process.

This information can be used to control the
execution of the parent process.
(does the parent process continue, quit, try to fix it, etc.?)

Many programs return a value of 0 (zero)
upon successful completion.

From the ls man page -

EXIT STATUS
 0 All information was written successfully.

 >0 An error occurred.

So we can tell if it terminated successfully
(but not what the error was if not).

Types of commands

Built-in commands: commands that the shell
itself executes.

Shell functions: self-contained chunks of
code, written in the shell language, that are

invoked in the same way as a command.

External commands: commands that the shell
runs by creating a separate process.

csh example
%set b = “Hello world.”
%set a = `echo $b | wc`
%echo $a
1 2 13

bash example
%b=“Hello world.”
%a=`echo $b | wc`
%echo $a
1 2 13

Variables

A variable is used to store some piece of
(typically character string) information.

The $ tells the shell to return the value of
the specified variable.

cs/csh and sh/bash have different syntax
for assigning the value of a shell variable.

(in bash cannot have spaces on either side of the equals sign, csh does not care,
works with our without spaces.)

Constants
A constant is used to store some piece of

(typically character string) information that
is not expected to change.

In bash, variables are made constants by
using the readonly command.

bash example
%x = 2
%readonly x
%x = 4

bash: x: readonly variable

Quote syntax

‘ . . .’: Single quotes tell the shell to
take everything within the quotes (the open/

close distinction does not show up in the
editor/shell script) without interpretation

and pass it on literally (as is).

(Double quotes do the same, but the shell
expands variables and command

substitutions.)
(This is the standard quote behavior – Unix

think.)

Quote syntax

What happens if you forget the quotes
depends on the shell.

In csh/tcsh, the variable b below would be
set to Hello, and the shell would ignore the

string world.

alpaca.ceri.memphis.edu545:> echo $0
-tcsh
alpaca.ceri.memphis.edu546:> set b=hello world
alpaca.ceri.memphis.edu547:> echo $b
hello

In sh/bash, the variable b below would be
set to Hello, and the shell would try to run

the command world.

alpaca.ceri.memphis.edu501:> /bin/sh
$ b='hello world'
$ echo $b
hello world
$ b=hello world
world: not found
$

Single vs. double quotes.
alpaca.ceri.memphis.edu503:> set a = A
alpaca.ceri.memphis.edu504:> echo $a
A
alpaca.ceri.memphis.edu505:> set b = 'letter $a'
alpaca.ceri.memphis.edu506:> echo $b
letter $a

Shell did not expand variable a to its value.
Treated literally ($a).

alpaca.ceri.memphis.edu507:> set c = "letter $a"
alpaca.ceri.memphis.edu508:> echo $c
letter A
alpaca.ceri.memphis.edu509:>

Shell expanded variable a to its value, A, and
passed value on.

Works same in csh/tcsh and sh/bash.

Not limited to use in shell scripts, can also
use in shell.

` . . . `: backquotes are used for command
substitution.

The . . . between the quotes above represent
a command.

The output of backquotes can go into a
variable, switch, redirected input (<<), etc.

Cannot go into a pipe (why?).

Trivial example of substituting into a switch.

alpaca.ceri.memphis.edu509:> set options='-la'
alpaca.ceri.memphis.edu510:> ls $options
total 2203891
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 CHARGE-2002-107
drwxr-xr-x 94 rsmalley user 31232 Sep 19 17:46 .
dr-xr-xr-x 3 root root 3 Sep 19 17:51 ..
drwxr-xr-x 2 rsmalley user 512 Oct 1 2004 .acrobat
-rw-r--r-- 1 rsmalley user 237 Oct 1 2004 .acrosrch

alpaca.ceri.memphis.edu511:> ls `echo $options`
total 2203891
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 CHARGE-2002-107
drwxr-xr-x 94 rsmalley user 31232 Sep 19 17:46 .
dr-xr-xr-x 3 root root 3 Sep 19 17:51 ..
drwxr-xr-x 2 rsmalley user 512 Oct 1 2004 .acrobat
-rw-r--r-- 1 rsmalley user 237 Oct 1 2004 .acrosrch

Variables are set to the final output of all
commands within the back single quotes.

alpaca.ceri.memphis.edu509:> set options='-la'
alpaca.ceri.memphis.edu513:> set ops = `echo $options`
alpaca.ceri.memphis.edu514:> echo $ops
-la
alpaca.ceri.memphis.edu515:>

Reading command line arguments.

You can send your script input from the
command line just like you do with built-in

commands. It also gets environment
variables from the shell.

alpaca.ceri.memphis.edu517:> vi hi.sh
"hi.sh" [New file]
i #!/bin/bash
echo Hello, my name is $HOST. Nice to meet you $1.<Esc>
:wq
"hi.sh" [New file] 2 lines, 63 characters
alpaca.ceri.memphis.edu518:> x hi.sh
alpaca.ceri.memphis.edu519:> hi.sh Bob
Hello, my name is alpaca.ceri.memphis.edu. Nice to meet you
Bob.
alpaca.ceri.memphis.edu520:>

think of the command line as an array whose
index starts with 0.

When you enter

%command arg1 arg2 arg3 arg4 . . . arg10 arg11 . . . Arg_end

The shell produces the following array
that is passed to the shell script.

array[0]=command
array[1]=arg1
array[2]=arg2

. . .
array[end]=arg_end

Within the script, access to this array is
accomplished using the syntax $n, where n is

the array index.

$0=command
$1=arg1
$2=arg2

. . .
$9=arg9

${10}=arg10
${11}=arg11

note the format for numbers ≥10, the braces
are required (they are optional for numbers ≤9)

Remember the discussion of identifying the
shell you are running?

%echo $0

The shell is (just) a program.

Your shell receives these variables from its
parent process, just like any other program.

So apply Unix think.

Reading user input
(even though it goes against the grain of Unix filter/think philosophy)

read: reads screen input into the specified
variable.

Script – introduce.sh

#!/bin/bash
echo Please, enter your firstname and lastname
read FN LN
echo "Hi! $FN, $LN !"

Running it

alpaca.ceri.memphis.edu528:> introduce.sh
Please, enter your firstname and lastname
Bob Smalley
Hi! Bob Smalley !
alpaca.ceri.memphis.edu529:>

Reading (sucking in) multiple lines.
Use the syntax “<< eof“.

Where eof defines the (character string)
end-of-file delimiter.

This syntax redirects standard-in to the
shell script (or the terminal if you are
typing) until it finds the characters

specified in the eof field.
(You have to be sure those characters are

not in the file/text being sucked in – else it
will stop there.)

Example.
File - my_thoughts.dat

I have a thousand thoughts in my head
and one line of text is not enough to get them
all out. Hello world.

Script - suckitin.sh

#!/bin/bash
cat << END
`cat my_thoughts.dat`
END

Run it

alpaca.ceri.memphis.edu540:> suckitin.sh
I have a thousand thoughts in my head
and one line of text is not enough to get them
all out. Hello world.
alpaca.ceri.memphis.edu541:>

Note – we would never program something
this way.

We could have just done
alpaca.ceri.memphis.edu540:> cat my_thoughts.dat

But we are trying to demonstrate how
command substitution works.

How does this script work?
#!/bin/bash
cat << END
`cat my_thoughts.dat`
END

The cat command reads standard-in, which is
redirected, by the <<, to the lines that follow

in the shell script (or the keyboard if not in a shell script).

We then use command substitution to
produce input to the cat command from the

file my_thoughts.dat.
Finally we terminate the input redirection

with the string “END”

This is a very powerful way to process data.

my_processing_program << END
`my_convert_program input file1`
`cat input file2`
END

If we only needed to process file 1 or file2,
we could have used a pipe

my_convert_program input file1 | my_processing_program
cat input file2 | my_processing_program

But there is no way (we have seen so far) to pipe both
outputs into the program (the pipe is serial,

not parallel).

Another example
my_processing_program << END
class example
10.3
41
`my_convert_program input file1`
`cat input file2`
END

Here we have a character string input,
“class example”,
some numbers,

followed by the other data.

Again we can not use a pipe.
(Also notice that, following the Unix philosophy, the program is not

“interactive”, it is not prompting for the inputs. You have to know what it wants
and how it wants it.)

Another example
my_processing_program inputvari1 inputvari2 << END
echo $1
class example
10.3
41
`my_convert_program input file1`
`cat input file2`
echo $2
END

Now we have added two inputs from the
command line.

further examples: command substitution in
conjunction with the gmt psxy command

#!/bin/sh
#missing beginning and end of script. This command alone will
not work
psxy -R$REGN -$PROJ$SCALE $CONT -W1/$GREEN << END >> $OUTFILE
-69.5 -29.5
-65 -29.5
-65 -33.5
-69.5 -33.5
-69.5 -29.5
`cat my_map_file.dat`
END

This will read the data between the psxy
command and the END and plot it on the map

that is being constructed (the redirected,
appended output).

further examples of <<:
running sac from within a script.

Script to pick times in sac file using taup
Usage: picktimes.csh [directory name]
#
sacfile=$1

sac << EOF >&! sac.log
r $sacfile
sss
traveltime depth &1,evdp picks 1 phase P S Pn pP Sn sP sS
qs
w over
q
EOF

Something new, what does >&! mean?

What does >&! mean?

We have already seen the > (it means redirect output)
and ! (it means clobber any existing files with the same name).

So far we have discussed standard-in and
standard-out.

But there is another standard output stream
- introducing

standard-error.

carpincho:ESCI7205 smalley$ ls nonexitantfile
ls: nonexitantfile: No such file or directory

The message above shows up on the screen,
but is actually standard-error, not standard-

out.

carpincho:ESCI7205 smalley$ ls nonexitantfile > filelist
ls: nonexitantfile: No such file or directory
carpincho:ESCI7205 smalley$ ls -l filelist
-rw-r--r-- 1 smalley staff 0 Sep 21 16:01 filelist
carpincho:ESCI7205 smalley$

Can see this by redirecting standard-out into
a file. The error message still shows up and

the file with the redirected output is empty.
(it has 0 bytes, our standard Unix output, ready for the next command in pipe.)

>& is the csh/tcsh syntax for redirecting
both standard-out and standard-error.

(else standard-error it goes to the screen)

Append standard-out and standard-error
>>&

You can’t handle standard-error alone.
(With what we have seen so far, in csh/tcsh.)

In tcsh the best you can do is (Unix think)

(command > stdout_file) >& stderr_file

which runs "command" in a subshell.

stdout is redirected inside the subshell to
stdout_file.

both stdout and stderr from the subshell
are redirected to stderr_file, but by this

point stdout has already been redirected to
a file, so only stderr actually winds up in

stderr_file.

Subshells can be used to group outputs
together into a single pipe.

sh/bash

(command 1;command 2; command 3) | command

(when a program starts another program [more

exactly, when a process starts another process], the new process
runs as a subprocess or child process. When
a shell starts another shell, the new shell is

called a subshell.)

So in our earlier example using command
substitution we could have done

(my_convert_program input file1; cat input file2) |\
my_processing_program << END

Where we are using the \ to continue the
command on the second line.

The semi-colon “;”, allows us to enter
multiple commands, to be executed in order,

in the sub-shell
(In typical Unix fashion, the “;” works in the shell and shell scripts also. Try it.).

The sh/bash syntax uses 1 to [optionally]
identify standard-out and 2 to identify

standard-error.

To redirect standard-error in sh/bash use
2>

To redirect standard-error to standard-out
2>&1

(! has usual meaning - clobber)

To pipe standard-out and standard-error
2>&1|

Redirect standard-error to file

$ls nonexitantfile > filelist 2> errreport
$cat errreport
ls: nonexitantfile: No such file or directory
$

Redirect standard-error to standard-out
into a file. Can’t do second redirect to a file.

Use subshell command format, redirect
output subshell to file. combofile has both

standard-out and standard-error.

$(ls a.out nonexistantfile 2>&1)>combofile
$more combofile
nonexistantfile: No such file or directory
a.out
$

