
Common Languages used in
Scientific programming

What is the best language to learn?

That depends on what you want to do.

Most common for scientific programming
(in no particular order)

Fortran
C

C++
Matlab
Pearl

High School/Jr.High

 10 PRINT "HELLO WORLD"
 20 END

Prints “HELLO WORLD”

First year in College

 program Hello(input, output)
 begin
 writeln('Hello World')
 end.

Prints “HELLO WORLD”

Senior year in College

 (defun hello
 (print
 (cons 'Hello (list 'World))))

Prints “HELLO WORLD”

 New professional

#include <stdio.h>
 void main(void)
 {
 char *message[] = {"Hello ", "World"};
 int i;

 for(i = 0; i < 2; ++i)
 printf("%s", message[i]);
 printf("\n");
 }

Prints “HELLO WORLD”

Seasoned professional
 #include <iostream.h>
 #include <string.h>
 class string
 {
 private:
 int size;
 char *ptr;
 string() : size(0), ptr(new char[1]) { ptr[0] = 0; }
 string(const string &s) : size(s.size)
 {
 ptr = new char[size + 1];
 strcpy(ptr, s.ptr);
 }
 ~string()
 {
 delete [] ptr;
 }
 friend ostream &operator <<(ostream &, const string &);
 string &operator=(const char *);
 };
 ostream &operator<<(ostream &stream, const string &s)
 {
 return(stream << s.ptr);
 }
 string &string::operator=(const char *chrs)
 {
 if (this != &chrs)
 {
 delete [] ptr;
 size = strlen(chrs);
 ptr = new char[size + 1];
 strcpy(ptr, chrs);
 }
 return(*this);
 }
 int main()
 {
 string str;
 str = "Hello World";
 cout << str << endl;
 return(0);
 }

Prints “HELLO WORLD”

Master Programmer

 [
 uuid(2573F8F4-CFEE-101A-9A9F-00AA00342820)
]
 library LHello
 {
 // bring in the master library
 importlib("actimp.tlb");
 importlib("actexp.tlb");
 // bring in my interfaces
 #include "pshlo.idl”
 [
 uuid(2573F8F5-CFEE-101A-9A9F-00AA00342820)
]
 cotype THello
 {
 interface IHello;
 interface IPersistFile;
 };
 };
 [
 exe,
 uuid(2573F890-CFEE-101A-9A9F-00AA00342820)
]
 module CHelloLib
 {
 // some code related header files
 importheader(<windows.h>);
 importheader(<ole2.h>);
 importheader(<except.hxx>);
 importheader("pshlo.h");
 importheader("shlo.hxx");
 importheader("mycls.hxx");
 // needed typelibs
 importlib("actimp.tlb");
 importlib("actexp.tlb");
 importlib("thlo.tlb");

 [
 uuid(2573F891-CFEE-101A-9A9F-00AA00342820),
 aggregatable
]
 coclass CHello
 {
 cotype THello;
 };
 };
 #include "ipfix.hxx”
 extern HANDLE hEvent;
 class CHello : public CHelloBase
 {
 public:
 IPFIX(CLSID_CHello);
 CHello(IUnknown *pUnk);
 ~CHello();
 HRESULT __stdcall PrintSz(LPWSTR pwszString);
 private:
 static int cObjRef;
 };
 #include <windows.h>
 #include <ole2.h>
 #include <stdio.h>
 #include <stdlib.h>

 #include "thlo.h"
 #include "pshlo.h"
 #include "shlo.hxx"
 #include "mycls.hxx”
 int CHello::cObjRef = 0;
 CHello::CHello(IUnknown *pUnk) : CHelloBase(pUnk)
 {
 cObjRef++;
 return;
 }
 HRESULT __stdcall CHello::PrintSz(LPWSTR pwszString)
 {
 printf("%ws
", pwszString);
 return(ResultFromScode(S_OK));
 }
 CHello::~CHello(void)
 {
 // when the object count goes to zero, stop the server
 cObjRef--;
 if(cObjRef == 0)
 PulseEvent(hEvent);
 return;
 }
 #include <windows.h>
 #include <ole2.h>
 #include "pshlo.h"
 #include "shlo.hxx"
 #include "mycls.hxx”
 HANDLE hEvent;
 int _cdecl main(
 int argc,
 char * argv[]
) {
 ULONG ulRef;
 DWORD dwRegistration;
 CHelloCF *pCF = new CHelloCF();
 hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 // Initialize the OLE libraries
 CoInitializeEx(NULL, COINIT_MULTITHREADED);
 CoRegisterClassObject(CLSID_CHello, pCF,
CLSCTX_LOCAL_SERVER,
 REGCLS_MULTIPLEUSE, &dwRegistration);
 // wait on an event to stop
 WaitForSingleObject(hEvent, INFINITE);
 // revoke and release the class object
 CoRevokeClassObject(dwRegistration);
 ulRef = pCF->Release();
 // Tell OLE we are going away.
 CoUninitialize();
 return(0); }
 extern CLSID CLSID_CHello;
 extern UUID LIBID_CHelloLib;
 CLSID CLSID_CHello = { /* 2573F891-
CFEE-101A-9A9F-00AA00342820 */
 0x2573F891,
 0xCFEE,
 0x101A,
 { 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 }
 };
 UUID LIBID_CHelloLib = { /* 2573F890-
CFEE-101A-9A9F-00AA00342820 */
 0x2573F890,
 0xCFEE,

 0x101A,
 { 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 }
 };
 #include <windows.h>
 #include <ole2.h>
 #include <stdlib.h>
 #include <string.h>
 #include <stdio.h>
 #include "pshlo.h"
 #include "shlo.hxx"
 #include "clsid.h”
 int _cdecl main(
 int argc,
 char * argv[]
) {
 HRESULT hRslt;
 IHello *pHello;
 ULONG ulCnt;
 IMoniker * pmk;
 WCHAR wcsT[_MAX_PATH];
 WCHAR wcsPath[2 * _MAX_PATH];
 // get object path
 wcsPath[0] = '\0';
 wcsT[0] = '\0';
 if(argc > 1) {
 mbstowcs(wcsPath, argv[1], strlen(argv[1]) + 1);
 wcsupr(wcsPath);
 }
 else {
 fprintf(stderr, "Object path must be specified\n");
 return(1);
 }
 // get print string
 if(argc > 2)
 mbstowcs(wcsT, argv[2], strlen(argv[2]) + 1);
 else
 wcscpy(wcsT, L"Hello World");
 printf("Linking to object %ws\n", wcsPath);
 printf("Text String %ws\n", wcsT);
 // Initialize the OLE libraries
 hRslt = CoInitializeEx(NULL, COINIT_MULTITHREADED);
 if(SUCCEEDED(hRslt)) {
 hRslt = CreateFileMoniker(wcsPath, &pmk);
 if(SUCCEEDED(hRslt))
 hRslt = BindMoniker(pmk, 0, IID_IHello, (void **)&pHello);
 if(SUCCEEDED(hRslt)) {
 // print a string out
 pHello->PrintSz(wcsT);

 Sleep(2000);
 ulCnt = pHello->Release();
 }
 else
 printf("Failure to connect, status: %lx", hRslt);
 // Tell OLE we are going away.
 CoUninitialize();
 }
 return(0);
 }

Prints “HELLO WORLD”

You will come across two versions of
FORTRAN, 77 and 90/95

FORTRAN (FORmula TRANslator) is a high-
level language.

Unlike MATLAB, it is not interactive. It
must be translated into the low-level

machine language as a separate step in order
to run.

This is done via compiler and yields an
executable specific to that platform

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/intro.html

Basics of Fortran

Simple programs have the following
structure –

Comments
Common block inclusions

Variable declarations
Program

Column formatting

Fortran follows a specific line format

columns 1-5: reserved for statement
numbers

column 6: reserved for continuation
symbol (&)

columns 7-72: statement

Columns 73-80: line/card numbers

Column formatting

As a result, old f77 programs cannot contain
statement text after column 72!

Newer fortran 90/95 does allow for free-
format (info past column 72) and you can
override the fix format using compiler

flags for f77

The first line of segment of
fortran source code (a program) (in

a file) indicates what it is

 program [name of program]

 subroutine cluster1(log, nev, ndt,
 & idata, minobs_cc, minobs_ct,
 & dt_c1, dt_c2, ev_cusp,
 & clust, noclust, nclust)

*Note, the indented “&” indicates a
line continuation

The last line of the segment (a program)
needs to indicate the segment (program) is

finished

 end

Variable typing – Implicit

IMPLICIT NONE
not standard (so you should not use it!), but very useful

(all rules are made to be broken!!).

Gives the "Pascal convention” that all
variables have to be specified.

For Sun the same effect can be obtained
with the switch -u in the compilation

command

Variable typing – Implicit

IMPLICIT - the default is

IMPLICIT REAL(A-H,O-Z),INTEGER(I-N)

And you can specify whatever you want

IMPLICIT REAL(A-H)
IMPLICIT DOUBLE(O-Z)
IMPLICIT LOGICAL(K)

IMPLICIT INTEGER(I-J,L-N)

The huge benefit of IMPLICIT NONE is
that it will catch most of your typing errors.

Without it, new variables are created as
they show up in your source code.

So a typo makes a new variable.

The First Computer Bug

Moth found trapped between points at Relay
70, Panel F, of the Mark II Aiken Relay

Calculator while it was being tested at
Harvard University, 9 September 1947. The
operators affixed the moth to the computer
log, with the entry: "First actual case of bug

being found". They put out the word that
they had "debugged" the machine, thus

introducing the term "debugging a computer
program".

Comments

A “C” or “c” (fortran is case insensetive!) in
column 1 is used to indicate the “line”/

statement is a comment
c Version 1.0 - 03/2001
c Author: Felix Waldhauser, felix@andreas.wr.usgs.gov
C
c started 03/1999

A “!” after a fortran statement, indicates a
comment at the end of a statement (it may also be
placed at the beginning of the line)

integer log ! Log-file identifier

Variables

Variables do not need to be declared in
Fortran

But should be unless you like debugging.

Newmann and Goldstine

Series of reports:
Planning and Coding Problems for an
Electronic Computing Instrument

Published “dozens of routines for
mathematical computation with the

expectation that some lowly “coder” would
be able to convert them into working

programs.” (Sci. Am., Dec 2009)

But “the process of writing programs and
getting them to work was excruicating

difficult.” (Sci. Am., Dec. 2009)

Wilkes
Memoirs

“the realization came over me with full force
that a goo part of the remainder of my life
was going to be spent finding errors in my

own programs”

numeric variable types include:

integer: integers (short, regular, long, quad)

real: floating point number (single, double, quad)

complex: complex number (single, double, quad)

logical: logical value (i.e., true or false).

string variable types include

character: character string of a certain
length (≤256 long).

Declaring variables
Here are some examples of variable

declaration
 integer dt_idx(MAXDATA) !integer vector declaration
 double at_idx(MAXDATA) !double precision vector
 real acond !single precision scalar declaration
 character dt_sta(MAXDATA)*7 !string with length

or

 INTEGER :: ZIP, Mean, Total (90/95 only)

Variables must be declared at the beginning
of your program.

Except for the content of strings, Fortran is
not case sensitive (A is the same as a) .

So as a variable “DENS”, “dens”, “Dens” are
all the same.

In a comparison of character variables “A” is
not equal to “a”.

 There is no special syntax ($, @, etc.) for
using a variable.

You don’t have to end statements with a “;”

 You should initialize your variables to be
sure they start at 0 (or where you want them to start).

 minwght= 0.00001

 rms_ccold= 0

 rms_ctold= 0

 rms_cc0old= 0

 rms_ct0old= 0

c--- get input parameter file name:

narguments = iargc() !similar to argc in C, counts number of
command line input parameters

you can initialize a variable when specifying
the type (F90/95)

 REAL :: Offset = 0.1, Length = 10.0, tolerance = 1.E-7

You can put blank lines, tabs, spaces as you
like for readability (except at beginning –
first 5 characters for statement number,
6th for continuation --- can use tab with
digit 1-9 for continuation immediately

after the tab.).

Global Variables/Parameters
You can define constants of any type by

using the parameter call
 INTEGER, PARAMETER :: Limit = 30, Max_Count = 100

or
 integer*4 MAXEVE, MAXDATA, MAXCL
 parameter(MAXEVE= 13000
 & , MAXDATA= 1300000
 & , MAXCL= 50)

(I usually put the comma separating variables at the beginning of the
continuation line, rather than at the end of the line being continued. If I have
to comment out that line for some reason – it saves me from having to edit out

the comma from the previous line also.)

Global Variables - Common blocks
collections of variables that can be shared
between different parts of the program

(main, subroutines).

This is a way to specify that certain
variables should be shared among different

subroutines.

In general, those that give advice about
programming suggest that, the use of
common blocks should be minimized.

Common blocks
 program main
 real alpha, beta
 common /coeff/ alpha, beta
 . . . Statements . . .
 stop
 end

 subroutine sub1 (some arguments – but not alpha or beta)
 real alpha, beta
 common /coeff/ alpha, beta
 . . . Statements . . .
 return
 end

The main program and subroutine will
physically share the memory in the common

block.

Since memory is physically shared, we don’t
have to use the same names or even the
same types in the different instances of the
“named” common block. (can be handy, and very dangerous)

 program main
 real*4 alpha, beta
 common /coeff/ alpha, beta
 . . . Statements . . .
 stop
 end

 subroutine sub1 (some arguments – but not alpha or beta)
 Integer*4 delta, gamma
 common /coeff/ delta, gamma
 . . . Statements . . .
 return
 end

Common blocks can also be “unnamed” (just leave
out the “/name/”

include statements

INCLUDE statements insert the entire
contents of a separate text file into the

source code
(ex: “include mydefs.inc”, include files

normally have “.inc” as their “extension”.).

This feature can be particularly useful when
the same set of statements has to be used in

several different program units.

include statements

Such is often the case when defining a set
of constants using PARAMETER statements,
or when declaring common blocks with a set
of COMMON statements (without the common below, the

variables would be local to each subroutine).
 include ‘hypoDD.inc’ !in the main program hypoDD.f

contents of file hypoDD.inc
 integer*4 MAXEVE, MAXDATA, MAXSTA
c parameters for medium size problems (e.g. : SUN ULTRA-2, 768
MB RAM)
 parameter(MAXEVE= 13000
 & , MAXDATA= 1300000
 & , MAXSTA= 2000)
 common /mycommon/MAXEVE, MAXDATA, MAXSTA

Operators

Type Operator Associativity
Arithmetic

 ** right to left
 * & / left to right
 + & - left to right

Relational
 lt (<) le (<=) none
 gt (>) ge (>=) !

“()” indicate 90/95 convention
 eq (==) ne (/=)

! is negation

Logical

Intrinsic Fortran Functions

Mathematical functions (sqrt, sin, cos,tan,
etc) accept REAL types and return REAL

types.

All trig functions use radian or degrees.

sin, sind, etc.

abs (absolute value) will also accept
INTEGERs.

Intrinsic Fortran Functions

Conversion functions (90/95 conventions)

INT(x) integer part x, REAL2INTEGER

NINT(x) nearest integer to x,
REAL2INTEGER

FLOOR(x) greatest integer less than or equal
to x, REAL2INTEGER

FRACTION(x) the fractional part of x,
REAL2REAL

REAL(x) convert x to REAL, INTEGER2REAL

if/else if/else/endif
if (iflrai(no,neit).eq.1) then ! note the testing
syntax
 ttime= temps
 else if (iflrai(no,neit).eq.2) then
 ttime = atim
 if(iheter1.eq.3) then
 if(isp.eq.0) then
 secp(no,neit)=seco(neit)+pdl(ji)+ttime
 else
 secp(no,neit)=seco(neit)+sdl(ji)+ttime
 endif
 endif

endif

goto/go to

One of the best features of Fortran is the
ability to quickly jump to (almost) anywhere

in the code.

One of the worst features of Fortran is the
ability to quickly jump to (almost) anywhere

in the code.

goto/go to

Any command or block may be labeled using a
numeric number.

Then you can use the goto command to jump
to that line.

Labels must be unique.
55 . . .
56  if(iter.eq.maxiter) goto 600 ! all iterations

done.
 iter= iter+1
 goto 55 ! next iteration
c--- update origin time (this is only done for final output!!)
600 continue

Problem with indiscriminant use of “go to”s is
spaghetti code.

Disorganized structure of code makes
validation (making sure code does what you want it to),

debugging and maintenance difficult to
impossible.

(program flow tends to look like a bowl of spaghetti, i.e. twisted and tangled.
[Wikipedia])

See also

Ravioli code (good)

Lasagna code (good)

Spaghetti and meatballs code (bad ravioli code)

do/endo or do/continue
aka the “do loop”

Two forms

1 - block form (do-enddo)
 mbad= 0
 k= 1
 do i= 1,nsrc
 if(src_dep(i) + (src_dz(i)/1000).lt.0) then
 amcusp(k)= ev_cusp(i)
 k=k+1
 endif
 enddo
 mbad= k-1 ! number of neg depth events

Indenting to make it more readable,
maintainable.

2 - statement number form
(can be executable statement, eg. X=x+1, or non-executable – continue)

 do 23184 l=1,j1
 if (.not.(v(l).gt.vlmax)) goto 23186
 lmax = l
 tklmax = thk(l)
 vlmax = v(l)
23186 continue
23184 continue

What is the value of loop counter (l in this case)
when I leave the loop? (can I depend on its value and use it

for something?)

It depends on how the loop “terminates”

 do 23184 l=1,j1
 if (.not.(v(l).gt.vlmax)) goto 23186
 lmax = l
 tklmax = thk(l)
23184 continue
 . . .

If I’m here the loop ran to completion and l is undefined (we
cannot be sure its value is j1). Solution save l into another variable.
 . . .
 goto 23188
23186 continue
 . . .

If I’m here I branched out of the loop and l keeps its value.
 . . .
23188 continue

Arrays

Arrays of any type can be formed in Fortran.

The syntax is simple:
 type name(dim)

/*you have to know how big the array/vector
will be when you define the array (write the

program)!*/
(Static, not dynamic, memory allocation. But - F90/95 allow dynamic memory

allocation.)

 real sta_rmsn(MAXSTA)
 real tmp_ttp(MAXSTA,MAXEVE)
 example usages:
 dt_dt(l) = (tmp_ttp(i,j)-tmp_ttp(i,k))

Arrays

Array indices are integers, increment by 1.

No restriction on range of indices.
 Real X(100)

Indices range from 1 to 100 in steps of 1.
 Real Y(-100:100)

Indices range from -100 to 100 in steps of 1.

Real Z(-10:10,5)

Indices range from -10 to 10 in steps of 1
(first), and 1 to 5 in steps of 1 (second).

This is a very powerful feature of Fortran.

It allows one to “map” real coordinates easily
into the array.

Say I have a seismogram that goes from 1
second to 12 seconds, sampled at 100 sps

(0.01 sec).

I have 1101 samples. I can define my
seismogram array to go from 100 to 1200
and map the index directly into time by

multiplying the index value by 0.01 and vice
versa.

(in Matlab or C it would be something more complicated.)

Standard I/O

To read in from standard input (first *)
 CHARACTER(LEN=10) :: Title
 REAL :: Height, Length, Area
 read(*,*) Title, Height, Length, Area

Input example is unformatted (second *).

If the the variables Title, Height,
Length, Area are declared as numbers, it
reads 4 numbers in any format (1 1.1 1.3e2 .
1) , separated by spaces, commas, or tabs

into them.

I/O from file

To read in from standard input
CHARACTER(LEN=10) :: Title
REAL :: Height, Length, Area
read(*,*) Title, Height, Length, Area

Input example is unformatted.

If the the variables Title, Height,
Length, Area are declared as character

strings – it reads groups of characters
separated by spaces or enclosed in quotes
(first second “third and fourth” fifth).

Formatted I/O
write (*,'("# lines = ",i7,” in file “,a)') ncts, filename

Output example is formatted.
It prints out the string in double quotes then

a 7 character integer (no decimal point)
whose value comes from ncts, and the

filename (uses the length of the character string, first byte of Fortran
character string has length)

The single quotes define the complete
format specification.

think of write as printf with a different
syntax.

Get same results from.

 write (*,'(a,i7,a,a)') "# lines = ",ncts
 & , ” in file “,filename

Can also specify format in its own statement
(useful when more than one write statement uses same format).

 write (*,8) "# lines = ",ncts, ” in file “,filename
8 format(a,i7,a,a)

and similar results from unformatted
version.

write (*,*) "# lines = ",ncts, ” in file “,filename

I/O to other than standard I/O

Use unit numbers (or modern name - file
handles) to work with external files

c--- open log file for writing:

 call freeunit(log) !sets file handle (gets free unit #)
 open(log,file='hypoDD.log',status='unknown’)
 str1= 'starting hypoDD (v1.0 - 03/2001)...’
 call datetime(dattim) !calls a subroutine
 write(log,'(a45,a)') str1, dattim !formatted i/o

Assigns some unused number to variable “log”
associated with a file specified in the open

statement.
Use “log” to do reads and writes from that

file.

c--- open log file for writing:

 call freeunit(log) !sets file handle (gets free unit #)
 open(log,file='hypoDD.log',status='unknown’)
 str1= 'starting hypoDD (v1.0 - 03/2001)...’
 call datetime(dattim) !calls a subroutine
 write(log,'(a45,a)') str1, dattim !formatted i/o

See fortran documentation for other
parameters in open statement.

Since UNIX only supports flat files, most of
the options for the open statement are not

applicable under UNIX.

unit1 associated with file somewhere else
(previously) in code.

 read(unit1,*) i, a !free format for integers and reals

Be careful with, and while mixing, free
format character input

Checking for file existance.
 inquire(FILE= fn_inp,exist=ex)
 if(.not. ex) stop' >>>ERROR OPENING INPUT FILE.'

c read input control parameters
open(unit=01,file='CNTL',status='old',form='formatted',read
only)
 call input1 !this subroutine actually reads the file

 subroutine input1
 implicit none
 integer countrecords
 . . .
C this routine reads in control parameters, number of eq’s
C and also counts them
 . . .
 countrecords=0
 do while (.true.)
 read(1,*,err=999,end=998) neqs,nsht,nbls,wtsht,kout
 countrecords=countrecords+1
 read(1,*) nitloc,wtsp,eigtol,rmscut,zmin,dxmax,rderr
 read(1,*) hitct,dvpmx,dvsmx,idmp,(vdamp(j),j=1,3),stepl
 end do
998  continue processing
 . . .
999  handle error
 . . .
 return !alternately you can end using stop or exit

Do while loop.

Predefined units

0 and 102 – standard error
5 and 100 – teletype (standard in)

6 and 101 – line printer!! (standard out)

n without an open looks for file “fort.n”

Subroutines – little programs, but not
independent. Use for stuff you do lots and

for organization.
subroutine latlon(x,y,lat,xlat,lon,xlon)
c convert from Cartesian coord to lat and long.
c Takes x,y and returns lat,xlat,lon, and xlon
 common /shortd/ xltkm,xlnkm,rota,nzco,xlt,xln,snr,csr
 rad=1.7453292e-2
 rlt=9.9330647e-1
 fy=csr*y-snr*x
 fx=snr*y+csr*x
 fy=fy/xltkm
 plt=xlt+fy
 xlt1=atan(rlt*tan(rad*(plt+xlt)/120.))
 fx=fx/(xlnkm*cos(xlt1))
 pln=xln+fx
 lat=plt/60.
 xlat=plt-lat*60.
 lon=pln/60.
 xlon=pln-lon*60.
 return
 end

C and C++ are higher-level languages that are
designed to be independent of computational
platform (as is Fortran, COBOL, ALGOL, PL/1, APL,… - and all pretty

much dismal failures at it.).

Higher-level languages must be translated
into the low-level machine language in order

to run (same as is Fortran, COBOL, ALGOL, PL/1, APL,…).

This is done via compiler and yields an
executable specific to that platform.

Differences between C & C++

C++ grew out of C and is mostly a superset of
the latter, but it is considered a different

language

They are not developed to be cross-
compatible and C++ does not supersede the

use of C

Differences between C & C++

C++ introduces many features that are not
available in C and in practice almost all code

written in C++ is not valid C code

There are many C syntaxes which are invalid
or behave differently in C++

This is all we are going to say about C++
(see the master programmer example for why).

Basics of C

Simple C programs have the following
structure

Comments
Library inclusions

Main Program

C program source file names MUST end in .c
(.cpp for C++)

Lecture based largely on : http://www.physics.drexel.edu/students/courses/
Comp_Phys/General/C_basics/

Comment blocks
/* …. */ : Used to enclose comments
/*
* File: hello.c
* ---------------
* This program prints the message “Hello, world.”
*/

To make turning comment on/off easily use

Commented out
/* i++; /* */

not commented out
i++; /* */

Libraries

Libraries are collections of tools
(subroutines/functions) that perform

specific operations.

They are not part of the basic language.
(they may even be written in another

language).

As part of the UNIX philosophy (remember
the power of unix) C does not include

I/O (basic or otherwise)

math (beyond what is in the CPU as an
instruction: +, -, *, /, and, or, ex-or, not,

shift).

(and they got away with it!)

Writing I/O routines, math (exponentiation
for example) are left to the user to write as

they see fit/need.

Lucky for us – somebody has developed some
of these things

(but we are now relinquishing the power of unix to them).

Since C is so stripped down – libraries are
much more important to C than previous

languages we have seen/used.

You have to declare at least the stdlib.h for
a program to compile (not really, but it is a good idea).

#include <stdlib.h> the standard general purpose library
#include <stdio.h> the standard input/output library
#include <math.h> the standard math library
#include “hrdfavorites.h” a personal extended library

The other two libraries above you almost
always need are the I/O library, stdio.h, and

the math library, math.h.

#include <stdlib.h> the standard general purpose library
#include <stdio.h> the standard input/output library
#include <math.h> the standard math library
#include “hrdfavorites.h” a personal extended library

The final library is some thing you wrote.

Notice the filenames all end in .h

Notice the ones that come with C are in <>,
while local ones are in “”.

Main Program
This block contains the program itself

void main()
{

 printf(“Hello.\n”);
}

Officially, we are defining a function called
main with the body of the function contained

in {}

Variables
Variables need to be declared in C/C++ !!!

numeric variable types include:
int: integers

short: short integers
long: long integers (more memory)

float: single-precision real floating point
number

double: double-precision real floating
point (more precision but also more

memory)

string variable types include
char: character variable (1 btye)

Declaring variables
Here are some examples of variable

declarations
main()
{

int a,b,c;
double dd,ee,ff;

}

Variables mustbe declared at the beginning
of your program/function.

Prototyping

Declaration on steroids.

Not only do we have to define all the
variables in C, we must also define what each

function returns and its list of arguments.
void – returns nothing
int – returns integer
float – returns float
etc.

If you forget to type the funcitons, int is
assumed and the compiler will complain.

void main(int argc, char *argv[])

Main does not return anything and takes two
input/calling arguments, an integer and a

pointer to a character array.

One has to look up what the input/calling
arguments are (the integer has the number
of command line arguments, and the pointer
to the character array has the address of
the beginning of the character string for

each argument).

In a function you write, you decide what to
pass in and out.

All this extra typing is supposed to help the
compiler make sure your code is consistent
(very un-unix like – trying to help the user).

#include < stdio.h>

#include < math.h>

main()

{

 int angle_degree;

 double angle_radian, pi, value;

 printf ("\nCompute a table of the sine function\n\n");

/* obtain pi once for all */

/* or just use pi = M_PI, where M_PI is defined in math.h */

pi = 4.0*atan(1.0);

printf (" Value of PI = %f \n\n", pi);

 printf (" angle Sine \n");

 angle_degree=0; /* initial angle value */

 while (angle_degree <= 360) { /* loop until angle_degree > 360 */

 angle_radian = pi * angle_degree/180.0 ;

 value = sin(angle_radian);

 printf (" %3d %f \n ", angle_degree, value);

 angle_degree = angle_degree + 10; /* increment the loop
index */

 }

}

There is no special syntax ($,
@) for using a variable once it

has been declared.

Floats/doubles are relatively easy to use but
problems tend to occur when performing

division.

An int divided by an int returns an int.
An int divided by a float returns a float.
A float divided by an int returns a float.
A float divided by a float returns a float.

As an example, 3 is considered as an int, but
3.0 is considered as a float.

If you want to store the result of a division
as a floating-point (decimal) number, make

sure you store it in a float declared variable.

Explicit conversion
you can specify explicit conversion by using a

type cast
int num, den;
double quotient;

quotient = num / (double) den; /*this recasts den as a
double so the value of an int/double is a double.

Global Constants
You can define constants of any type by
using the #define compiler directive. Its

syntax is simple--for instance
#define ANGLE_MIN 0
#define ANGLE_MAX 360

C distinguishes between lowercase and
uppercase letters in variable names. It is

customary to use capital letters in defining
global constants.

These are traditional declared after the
#include calls

Loops
C is the original looping language…love it or

hate it

Statement blocks, or a sequences of
statements, are encased using { }.

Statements are executed in sequence from
first to last by default

(have not mentioned so far, but, statements in C are terminated by “;”. They
wrap lines, unlike fortran.).

{
first_statement;
last_statement;

}

While
while: continues to loop as long as condition

exited successfully
 count = 0;
 while (count < 10) {
 count += 2;
 printf ("count is now %d\n”,count);
 }

There is no print, there is printf (print to
file) and prints (print to string).

You have to initialize numeric variables to
0 to avoid getting whatever happens to be

sitting in that location in memory.

if/else if/else
If expression is true, then run the first set
of commands. Else if a second expression is
true, run the second set of commands. Else

if neither is true, run a third set of
commands. End the if command

 if (a > b) {
 statement
 } else if (a == b) {

 statement
 } else {
 printf ”%d is less than %d.\n”, a, b;
 }

Conditional Operators

Conditionals are logical operations involving
comparison of quantities (of the same type)

using the conditional operators:

< greater than
<= greater than or equal to
== equal to
!= not equal to
>= greater than or equal to
> greater than

Conditional Operators

and the boolean operators

&& and
|| or
! not

For
one of the most common loop structures is

the for loop, which iterates over an array of
objects

for i values in array, do this
for (i=0; i<=10; i++) {

for (j=0; j<=10; j++) {
H[i][j]=0;

}
}

Switch
The appropriate block of statements is
executed according to the value of the
expression, compared with the constant

expressions in the case statement.

This construct is particularly useful in
handling input variables.

 switch (n) {
 case 1: printf(“Ace\n”); break;
 case 11: { /*there is some flexibility in

syntax*/
 printf(“Jack\n”);

 break;
 }

 …..
 default: printf (“%d\n”,n); break;

 }

break
break: allows you to break out of a for, do,

while, or switch loop

Default behavior is the break out of the
enclosing loop

for (a=0; a<20; a++) {
 if (a > 10) {

 break;
 }
}
 ## last comes here ##

Arrays
Arrays of any type can be formed in C. The

syntax is simple:
 type name[dim];

 double name[100][50];
/*you have to already know how big the array/vector
will be!*/

In C, arrays starts at position 0.

The elements of the array occupy adjacent
locations in memory.

Pointers
The C language allows the programmer to
``peek and poke'' directly into memory

locations.

This gives great flexibility and power to the
language, but it also one of the great hurdles

that the beginner must overcome in using
the language.

variables called pointers store the address
of other variables.

Pointers

Have to declare them, they are a special kind
of integer.

int *p; /*declared that p is a pointer*/

&x returns address of x, which can be
stored in a variable.

If that variable is a pointer, we can then use
it to access the memory contents at that

address.
p=&x; /*p is the address of x*/

Pointers

Value of pointer is the address in memory.
Value of what is in that address obtained

using *.
x=17;

p=&x; /*p is the address of x*/
p = 17; / same as setting x = 17 */

y=x;
y=*p;

Pointers are used to pass arrays to
functions. (C always passes arguments to

functions by value [a copy], except when it does
not [arrays]. Fortran passes by address)

Strings
You have to think of strings as character

vectors (much like matlab)

Strings are manipulated either via pointers
or via special routines available from the

standard string library string.h
(basic C does almost nothing!).

C strings are null terminated (start at
address of string and to till encounter a null

[zero] byte).
#include <string.h> to work efficiently with strings

char string[20];
char message[] = “Hello, world.”;

main()

{

 char text_2[100];

 char *ta, *tb;

 int i;

/* set message to be an arrray of characters; initialize it

*to the constant string "...” and let the compiler decide its size by using []

*/

 char message[] = "Hello, I am a string; what are you?”;

 printf("Original message: %s\n", message);

 /* use explicit pointer arithmetic to copy the original message to text_2
*/

 ta=message;

 tb=text_2;

 while ((*tb++ = *ta++) != '\0') { ; } /*set the pointers equal at
each element until FALSE (aka ! 0) */

 printf("Text_2: %s\n", text_2);

}

Higher-Level I/O
To read in from external files

main(int argc, char *argv) {
 const char *progname = argv[0];

if (argc==5) { /*argc = number command line files
listed*/
 sscanf(argv[1], "%s", cfile); /*argv stores
the files/values*/
 sscanf(argv[2], "%s", sfile);
 sscanf(argv[3], "%d", &winlen);
 sscanf(argv[4], "%f", &thresh);
}

fl=fopen("outdesc","w");
fc=fopen(cfile,"r");

Here, fl and fc are file handles. If you
include stdio.h, you would declare them as

FILE *fl, *fc;

The if block is an example of reading the
command line input parameters (not a file).
Uses sscanf (read from string) rather than
fscanf (read from file) [fortran also does this – by simply

placing the character string you want to read into the read statement in place

of the unit number in the read statement. It is known as an “internal” read.].
main(int argc, char *argv) {
 const char *progname = argv[0];

if (argc==5) { /*argc = number command line files
listed*/
 sscanf(argv[1], "%s", cfile); /*argv stores
the files/values*/
 sscanf(argv[2], "%s", sfile);
 sscanf(argv[3], "%d", &winlen);
 sscanf(argv[4], "%f", &thresh);
}

fl=fopen("outdesc","w");
fc=fopen(cfile,"r");

#include < stdio.h>

void main()
{
 FILE *fp;
 int i;

 fp = fopen("foo.dat", "w"); /* open foo.dat for
writing */

 fprintf(fp, "\nSample Code\n\n"); /* write some info
*/

 for (i = 1; i <= 10 ; i++)
fprintf(fp, "i = %d\n", i);

 fclose(fp); /* close the file
*/

}

Subroutines (called functions in C) [fortran
has both subroutines and functions – the

difference being that a function returns a
value “y=sin(x)” for example, versus “call

sin(angle,value)”]
A function has the following layout:

return-type function-name (argument-list-if-necessary)
{
 ...local-declarations…
 ...statements…
 return return-value;
}

If return-type is omitted, C defaults to int.

int n_char(char string[])
{

int n; /* local variable in this function */

/* strlen(a) returns the length of string a */
/* defined via the string.h header */

 n = strlen(string);
 if (n > 50)

printf("String is longer than 50 characters\n");

 return n; /* return the value of integer n */
}

Compiling

Your C or Fortran program won’t work unless
you compile (and link) it

The compiler will convert your program to
machine code and the linker (called automatically) will
build your program (connects it to all those i/o, math, etc. library

functions) as an executable file (typically in the current

directory), which you can then invoke and run
just like any other command.

C and Fortran are compiled using different
compilers

The preprocessor
accepts source code
as input and is
responsible for
removing comments
interpreting special
preprocessor
directives

The compiler
translates source to
assembly code.

The assembler
creates object code.

If a source file
references library
functions or functions
defined in other
source files the link
editor combines these
functions to create an
executable file.

C compilers
One extremely popular Unix compiler, which
happens to be of extremely high quality, and

also happens to be free, is the Free
Software Foundations's gcc, or GNU C

Compiler.

at CERI:
%which gcc

/opt/local/bin/gcc

%gcc –v
gcc version 3.4.2

Another C compiler available at CERI is the
SUN distribution cc

/opt/Studio/SUNWspro/bin/cc

There are differences, beyond the scope of
this class, but in general gcc is a good option

(both come with Mac developer tools)

C++ compilers

The GNU compiler for C++ is g++

The SUN compiler for C++ is CC (versus cc
for regular C)

At the level of this class, they will work the
same as gcc and cc, but they have a

different set of flags.

Simple example
%gcc -o hello hello.c

hello.c : text file with C program
hello : executable file

The -o hello part says that the output, the
executable program which the compiler will

build, should be named “hello”

if you leave out the “-o hello” part, the
default is usually to leave your executable

program in a file named a.out (which will get overwritten
the next time you do compile something without the –o part)

Example with math, need math library.

If you're compiling a program which uses any
of the math functions declared in the header
file <math.h>, you'll typically have to request
explicitly that the compiler (actually linker)

include the math library:
 % gcc -o myprogram myprogram.c -lm

Notice that the -lm option which requests
the math library must be placed after all the

source code elements.
% gcc myprogram.c -lm-o myprogram

Also works.

Finding out library information requires a
trip to the local unix wizard.

It is poorly documented.

It is non standard (each power user does
their own – the power of unix).

It varies between machines.

Some Useful Compiler Options (switches)

-g : invoke debugging option. This instructs
the compiler to produce additional symbol

table information that is used by a variety of
debugging utilities.

-llibrary : Link with object libraries. This
option must follow the source file arguments.
The object libraries are archived and can be

standard, third party or user created
libraries

-c : Suppress the linking process and
produce a .o file for each source file listed.
Several can be subsequently linked by the cc

command, for example:
cc file1.o file2.o -o executable

-Ipathname : Add pathname to the list of
directories in which to search for #include
files with relative filenames (not beginning
with slash /). By default, the preprocessor

first searches for #include files in the
directory containing source file, then in

directories named with -I options (if any),
and finally, in /usr/include.

-Olevel : performs some optimization of the
executable and can lead to significant
increases in execution speed. Example

gcc -o hello hello.c –O2

But oftentimes optimization only increases
the speed at which it is doing something

incorrectly.

Fortran compilers
The GNU project also supplies Fortran
compilers

at CERI:
%which g77

/opt/local/bin/g77

%g77 –v

gcc version 3.4.2 !this is not a typo. gcc
comes with Fortran 77 compilers.
However, on the Mac, g77 has some
problems with some codes. Always
check for platform dependence.

Another Fortran compiler available at CERI
is the SUN distribution

 /opt/Studio/SUNWspro/bin/f77
/opt/Studio/SUNWspro/bin/f90
/opt/Studio/SUNWspro/bin/f95

File names ending in .f90 and .f95 are
assumed to be free source form - suitable

for Fortran 90/95 compilation.

File names ending in .f and .for are assumed
to be assumed fixed form source -

compatible with old Fortran 77 compilation.

Simple example
%g77 hello.f -o hello

hello.f : text file with Fortran 77
hello : executable file

The -o hello part says that the output, the
executable program which the compiler will

build, should be named hello

if you leave out the -o hello part, the default
is usually to leave your executable program

in a file named a.out

Example with include files

The path of include files can be given with
the -I option, for example:

 g77 myprog.f -o myprog -I/home/fred/fortran/inc

or
 g77 myprog.f -o myprog -I$MYINC

where the environment variable MYINC is
set with:

MYINC=/home/hdeshon/fortran/inc/

Some Useful Compiler Options

-Olevel : performs some optimization of the
executable and can lead to significant
increases in execution speed. Example:

g77 myprog.f -o myprog -O2

-Wlevel : enables most warning messages
that can be switched on by the programmer.

Such messages are generated at compile-
time warning the programmer of, for

example, unused or unset variables. Example:

 g77 myprog.f -o myprog -O2 -Wall

Various run-time options can be selected,
these options cause extra code to be added

to the executable and so can cause
significant decreases in execution speed.

However these options can be very useful
during program development and debugging.

Example

g77 myprog.f90 -o myprog -O2 -fbounds-check

This causes the executable to check for
"array index out of bounds conditions” (and slows

your code way down).

Recommended options

g77 myprog.f -o myprog -Wuninitialized -Wimplicit-none -
Wunused-vars -Wunset-vars -fbounds-check

 -ftrace=full -O2

If speed of execution is important then the
following options will improve speed:

g77 myprog.f -o myprog -Wuninitialized -Wimplicit-none -
Wunused-vars -Wunset-vars -O2

Compiling subprogram source files.

It is sometimes useful to place sub-programs
into separate source files especially if the

sub-programs are large or shared with other
programs or programmers.

If a Fortran project contains more than one
program source file, then to compile all

source files to an executable program you
can use the following command:

g77 main.f sub1.f sub2.f sub3.f -o myprog

You can also build your own libraries

(same idea as with subroutines on last
example, but compile and build library
once, and then link to to library with

the –l switch.)

Makefiles

Makefiles are special format files that
together with the make unix utility will help
you to automatically build and manage your

projects.

make utility

If you run make, this program will look for a
file named makefile in your directory, and

then execute it.

If you have several makefiles, then you can
execute them with the command:

make -f MyMakefile

Example of a simple makefile
The basic makefile is composed of:

target: dependencies
[tab] system command

All:
g++ main.cpp hello.cpp
factorial.cpp -o hello

Dependencies
Sometimes is useful to use different

targets. This is because if you modify a
single file in your project, you don't have to
recompile everything, only what modified.

all: hello

hello: main.o hello.o
g++ main.o hello.o -o hello

main.o: main.cpp
g++ -c main.cpp

hello.o: hello.cpp
g++ -c hello.cpp

clean:
rm -rf *o hello

I am a comment, the variable CC will be the compiler to use.

CC=g++

Hey!, I’m comment number 2. CFLAGS are options for compiler.

CFLAGS=-c -Wall

all: hello

hello: main.o hello.o

$(CC) main.o hello.o -o hello

main.o: main.cpp

$(CC) $(CFLAGS) main.cpp

hello.o: hello.cpp

$(CC) $(CFLAGS) hello.cpp

clean:

rm -rf *o hello

Typical example

Combining C and Fortran
CMD = hypoDD
CC = gcc #Specified the C compiler
FC = g77 #Specified the Fortran compiler
SRCS = $(CMD).f \ #List the main program first…in this
case hypoDD.f
 aprod.f cluster1.f covar.f datum.f \
 delaz.f delaz2.f direct1.f dist.f dtres.f exist.f \
 freeunit.f getdata.f getinp.f ifindi.f \
 indexxi.f juliam.f lsfit_lsqr.f lsfit_svd.f \
 lsqr.f matmult1.f matmult2.f matmult3.f mdian1.f \
 normlz.f partials.f ran.f redist.f refract.f \
 resstat.f scopy.f sdc2.f setorg.f skip.f \
 snrm2.f sort.f sorti.f sscal.f \
 svd.f tiddid.f trialsrc.f trimlen.f \
 ttime.f vmodel.f weighting.f
CSRCS = atoangle_.c atoangle.c datetime_.c hypot_.c rpad_.c
sscanf3_.c

#The underscore is added prior to the .c to indicate that
these are C programs to the fortran assembler

INCLDIR = ../../include
LDFLAGS = -O

Flags for GNU g77 compiler
FFLAGS = -O -I$(INCLDIR) -g -fno-silent -ffixed-line-length-none

–Wall -implicit

#Flags for the GNU gcc compiler
CFLAGS = -O -g -I$(INCLDIR)

OBJS = $(SRCS:%.f=%.o) $(CSRCS:%.c=%.o)

all: $(CMD) #make all makes hypoDD and all dependencies

$(CMD): $(OBJS) #To make hypoDD, link all OBJS with
the fortran comp

 $(FC) $(LDFLAGS) $(OBJS) -o $@

#%.o: %.f #long version of the shortcut under OBJS
$(FC) $(FFLAGS) -c $(@F:.o=.f) -o $@

CC = g++

FC = gcc

CFLAGS = -g -DDEBUG -Wall

FFLAGS = -Wall

OBJS1 = bcseis.o \

 sacHeader.o sacSeisgram.o distaz.o readSacData.o \

 mathFuncs.o fourier.o complex.o \

 stas.o evData.o seisData.o tmDelay.o calcTravTm.o \

 getMaxShiftLag.o calcTmDelays.o calcCCTmDelay.o calcSubTmDelay.o calcBSTmDelay.o \

ttime.o direct1.o refract.o vmodel.o tiddid.o #These are fortran, the others are c

BIN = ../../bin

PROG = bcseis

.c.o:

 ${CC} $(CFLAGS) -c $<

.f.o:

 ${FC} $(FFLAGS) -c $<

all: ${PROG}

bcseis: ${OBJS1}

 ${CC} ${CFLAGS} -lm -o $@ ${OBJS1}

 mv $@ ${BIN}

Web page
Excel/spreadsheets

