
Misc stuff

lookfor command – to look for commands
based on “keyword”

(searches all m files in path, including your files, for the keyword).

what command – lists matlab related files
(returns structure with fields for m, mat, mex, mdl, classes, and packages

files).,

Help window (pull down menu).

Helpdesk (internet)

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

workspace
>> help workspace
 WORKSPACE Open Workspace browser to manage workspace
WORKSPACE Opens the Workspace browser with a view of the
variables in the current Workspace. Displayed variables may
be viewed, manipulated, saved, and cleared.

path
>> help path
 PATH Get/set search path.
 PATH, by itself, prettyprints MATLAB's current search
path. The initial search path list is set by PATHDEF, and is
perhaps individualized by STARTUP.
 P = PATH returns a string containing the path in P.
PATH(P) changes the path to P. PATH(PATH) refreshes MATLAB's
view of the directories on the path, ensuring that any changes
to non-toolbox directories are visible.
 PATH(P1,P2) changes the path to the concatenation of the
two path strings P1 and P2. Thus PATH(PATH,P) appends a new
directory to th current path and PATH(P,PATH) prepends a new
directory. If P is already on the path, then PATH(PATH,P)
moves P to the end of the path, and similarly, PATH(P,PATH)
moves P to the beginning of the path.
 For example, the following statements add another
directory to MATLAB’s search path on various operating
systems:
 Unix: path(path,'/home/myfriend/goodstuff')
 Windows: path(path,'c:\tools\goodstuff’)

format command
>> help format
. . .
FORMAT Set output format.
. . .
FORMAT does not affect how MATLAB computations are done.

To separate multiple commands on one line
use “;” for no output, and ‘,’ for output

Cmd line editing

arrows: move cursor by character

ctrl arrows l and r: move cursor by word

ctrl a, e: move cursor to beginning, end line

ctrl u, d, h, k: clear line, delete char at
cursor, delete char before cursor, delete to

end of line.

Running an m file from the command line
(should not be interactive)

>> matlab < somefile.m

Don’t show output on terminal (send to bit
bucket), run in background to not lock up

terminal
matlab -nosplash < eig_mov.m > /nl &

Global variables

When you define a variable at the matlab
prompt, it is defined inside of matlab's

"workspace.”

Running a script does not affect this, since a
script is just a collection of commands, and

they're actually run from the same
workspace.

If you define a variable in a script, it will
stay defined in the workspace.

Global variables

Functions, on the other hand, do not share
the same workspace.

A function won't know what a variable is
unless

- the function gets the variable as an
argument, or

- the variable is defined as a variable that is
shared by the function and the matlab

workspace, i.e. a global variable.

Global variables

To use a global variable, every place
(function, script, or at the matlab prompt)

that needs to share that variable must have
a line near the top identifying it as a global

variable, ie:

global phi;

Then when the variable is assigned a value in
one of those places, it will have a value in all

the other places that have the global
statement.

Linear Algebra (a la Matlab) Review

>> a=[1 2 3;4 5 6;7 8 9]
a =
 1 2 3
 4 5 6
 7 8 9
>> c=trace(a)
c =
 15

>> a=[.96 -.28; .28 .96]
a =
 0.9600 -0.2800
 0.2800 0.9600
>> inv(a)
ans =
 0.9600 0.2800
 -0.2800 0.9600
>> a'*a
ans =
 1 0
 0 1
>>

Block matrices
>> b=[2 2;1 3]
b =

 2 2
 1 3
c =
 0 2 3
 5 4 7
>> d=[1 0]
d =
 1 0
>> e=[-1 6 0]
e =
 -1 6 0
>> a=[b c;d e]
a =
 2 2 0 2 3
 1 3 5 4 7
 1 0 -1 6 0

Linear Dependence

a b c

2a + 1b = c

Linear Independence

There is no simple, linear combination of a
and b what will produce c.

a b c

Rank of a matrix

>> a=[1 2; 3 4]
a =
 1 2
 3 4
>> rank(a)
ans =
 2
>> rref(a)
ans =
 1 0
 0 1
>> >> a=[1 2 3;4 5 6;7 8 9]
a =
 1 2 3
 4 5 6
 7 8 9
>> rank(a)
ans =
 2
>> rref(a)
ans =
 1 0 -1
 0 1 2
 0 0 0

There are a lot of matrix math functions
>> help matfun
 Matrix functions - numerical linear algebra.

 Matrix analysis.
 norm - Matrix or vector norm.
 normest - Estimate the matrix 2-norm.
 rank - Matrix rank.
 det - Determinant.
 trace - Sum of diagonal elements.
 null - Null space.
 orth - Orthogonalization.
 rref - Reduced row echelon form.
 subspace - Angle between two subspaces.

 Linear equations.
 / and / - Linear equation solution; use "help slash".
 linsolve - Linear equation solution with extra control.
 inv - Matrix inverse.
 rcond - LAPACK reciprocal condition estimator
 cond - Condition number with respect to inversion.
 condest - 1-norm condition number estimate.
 normest1 - 1-norm estimate.

 cholinc - Incomplete Cholesky factorization.
 ldl - Block LDL' factorization.
 lu - LU factorization.
 luinc - Incomplete LU factorization.
 qr - Orthogonal-triangular decomposition.
 lsqnonneg - Linear least squares with nonnegativity
constraints.
 pinv - Pseudoinverse.
 lscov - Least squares with known covariance.

 Eigenvalues and singular values.
 eig - Eigenvalues and eigenvectors.
 svd - Singular value decomposition.
 gsvd - Generalized singular value decomposition.
 eigs - A few eigenvalues.
 svds - A few singular values.
 poly - Characteristic polynomial.
 polyeig - Polynomial eigenvalue problem.
 condeig - Condition number with respect to eigenvalues.
 hess - Hessenberg form.
 schur - Schur decomposition.
 qz - QZ factorization for generalized eigenvalues.

 ordschur - Reordering of eigenvalues in Schur
decomposition.
 ordqz - Reordering of eigenvalues in QZ factorization.
 ordeig - Eigenvalues of quasitriangular matrices.

 Matrix functions.
 expm - Matrix exponential.
 logm - Matrix logarithm.
 sqrtm - Matrix square root.
 funm - Evaluate general matrix function.

 Factorization utilities
 qrdelete - Delete a column or row from QR factorization.
 qrinsert - Insert a column or row into QR factorization.
 rsf2csf - Real block diagonal form to complex diagonal
form.
 cdf2rdf - Complex diagonal form to real block diagonal
form.
 balance - Diagonal scaling to improve eigenvalue
accuracy.
 planerot - Givens plane rotation.
 cholupdate - rank 1 update to Cholesky factorization.
 qrupdate - rank 1 update to QR factorization.

>>

Data Analysis

 Flow Charts

2 tasks

Understanding How a Process Works

Communicating How a Process Works
(translating it into computer code,
communicating to the computer.)

A flow chart can therefore be used to:

Define and analyze processes;

Build a step-by-step picture of the process
for analysis, discussion, communication, and

coding;

and

Define, standardize or find areas for
improvement in a process.

Also

by conveying the information or processes in
a step-by-step flow, you can then

concentrate more intently on each individual
step,

without feeling overwhelmed by the bigger
picture.

Most flow charts are made up of three main
types of symbol:

 Elongated circles, signify start or end of a
process;

 Rectangles, show instructions or actions;

 Diamonds, show decisions to be made

Within each symbol, write down what the
symbol represents. This could be the start
or finish of the process, the action to be

taken, or the decision to be made.

Symbols are connected one to the other by
arrows, showing the flow of the process.

Worlds most famous Flowchart:
General Flowchart For Problem Resolution -

Don’t Fool with it!

YES NO

YES

YOU IDIOT!
NO

Will it blow up
in your hands?

NO

Look the other way

Anyone else
know? You’re SCREWED!

YES YES

NO

Hide it
Can you blame
someone else?

NO

NO PROBLEM!

Yes

Is it working?

Did you fool
with it?

Coding and Flow Charts

Today’s presentation will focus on
understanding Chuck’s matlab script for
polarization analysis using 3 component

recordings of body and/or surface waves

Chucks example codes:

http://www.ceri.memphis.edu/people/langston/matlab/programming.html

GOAL: solve for polarization using 3
component seismic data

Starting data: 3 component single station
SAC formatted data

Result: Identify the azimuth(s) of the
primary wave(s) recorded in the data

How to we get from A to B?

Principal Component Analysis

Principal component analysis (PCA) is a
vector space transform often used to reduce

multidimensional data sets to lower
dimensions for analysis.

Principal Component Analysis

PCA involves the calculation of the
eigenvalue decomposition of a data
covariance matrix or singular value

decomposition of a data matrix, usually after
mean centering the data for each attribute.

Its operation can be thought of as revealing
the internal structure of the data in a way

which best explains the variance in the data.

What we are looking for:

New set of axis (basis) that maximizes the
correlation of HT(Z) with R, and minimizes
the correlations between both HT(Z) and R

with T.

We are not using the full power of PCA,
since we already have some model for the

result of the analysis
(and have therefore preprocessed the data by taking the Hilbert transform of

the z component).

What is the idea?

Seismic waves are polarized

P wave longitudinal (V and R)

S wave transverse with SH and SV
polarizations (T, V and R)

Rayleigh waves (V and R)

Love waves (T).

If we take a short time period we can think
of each component as a vector of n terms.

If we take the dot product of each vector
with itself and with the other two

components we can find the “angle” between
tnem.

We can also make these dot products by
making a 3xn arrary using each seismogram

as a row.

Multiplying this array with its transpose
results in a 3x3 matrix with the various dot

products in the elements of the matrix.

Now find the eigenvectors and eigenvalues
of this matrix.

From the eigenvectors we can make a
rotation matrix that will rotate our matrix

to a diagonal matrix.

The off diagonal elements are now all zero
and from the geometric interpretation of
the dot product this means that the two

vectors used to make that dot product are
perpendicular.

So we can rotate the original horizontal
components into a new set of seismograms
rotated to the principal directions defined

by the eigenvectors.

The dot products of the off diagonal terms
will now be zero, indicating the vectors are

perpendicular.

• load SAC data 

• remove mean 

• plot waveforms 

• filter waveforms to 
highlight waves of 
interest 

• plot filtered waveforms 

Data 
Preparation 

•  principal component 
analysis using 3‐
component data 

• note, this technique 
requires zero‐mean data 

Main Code 
• plot azimuths of 
eigenvectors 

• plot azimuths exceeding 
50% of maximum value 

Results 

GOAL: Solve for polarization

Plot filtered waveforms 

Filter waveforms to highlight waves of interest 
Design a filter; allow flexible input of corner info  Work on 3 files…suggests a subroutine 

Plot waveforms vs time 

Remove the mean 

Load SAC data 
3 files (Z,E,N)…. suggests using a subroutine  Provide station name 

Step 1: Data Preparation

Create function ‘polarize’
function polarize(station,delt,ttot,twin,hilb,flp,fhi)
%
% function polarize(station,delt,ttot,twin,hilb,flp,fhi)
%
% Program to read in 3 component waveform data
% Create the covariance matrix for a moving time window
% Find the principal components and infer polarization
%
% input:
% station = station name for sacfile prefix
% delt = sampling interval
% ttot = total number of seconds to analyze in traces
% twin = time window length, each time shift will be 1/2 of the
% window length
% hilb = 0, no hilbert transform of vertical component
% = 1, hilbert transform
% flp = low passband corner frequency of a 2nd order butterworth
% filter used to filter the data, if 0, then no filtering
% fhi = hi passband corner frequency of the filter

Loading SAC data

Many matlab scripts exist to read in sac
data.

I modified one so it is

- not sensitive to byte order
- returns the data, plus: npts, delta, and

begin point of the SAC file

- data is a column vector

Read the data
[e,npts,delt,date,hour,minu,seco,fname]=get_sac_fn('../

 2007.308.20.37.16.3856.IU.SBA.00.BHE.R.SAC');

[n,npts,delt,date,hour,minu,seco,fname]=get_sac_fn('../
 2007.308.20.37.16.3856.IU.SBA.00.BHN.R.SAC');

[z,npts,delt,date,hour,minu,seco,fname]=get_sac_fn('../
 2007.308.20.37.16.3856.IU.SBA.00.BHZ.R.SAC');

Removing the data mean
We need to remove the mean of the data for

principal component analysis (PCA).

We also need to transpose the column vector
data into row vectors.

e=dmean(e’); % remove the mean from each
n=dmean(n’); % and transpose the data
z=dmean(z’);

subroutine: dmean
function [a]=dmean(b)
%
% [a]=dmean(b)
%
% Remove the mean from a row vector
m=mean(b);
a=b-m;
return;

Make Love and Rayleigh waves (Z, R and T)

Rayleigh R and Z related by Hilbert X-form
(90° phase shift, blue trace is Hilbert Transformed to green trace, then

overlays red trace.).

n=512;
a=sin(2*pi*[0:(n-1)]/n);
b=hilbert(a);
clf
plot(a)
hold
plot(-imag(b),'r')
plot(real(b),'g--')
grid

Hilbert Transform
if hilb ==1; % hilbert transform the vertical component
 zh=hilbert(z); % to make Rayleigh wave in phase on vert

 and horz
 z=-imag(zh); % if present (z constructed from HT, so

 used +imag to make overlay for last
 figure)

 else;
end;

Make Love and Rayleigh waves (Z, R and T)

Rotate horizontals into seismograms @ 30°.

Plot the data

% plot the raw data

f1=figure('name','DATA SEISMOGRAMS');

subplot(3,1,1);

plot(t,e);

xlabel('time sec');

ylabel(strcat('EW Comp at ',station));

subplot(3,1,2);

plot(t,n);

xlabel('time sec');

ylabel(strcat('NS Comp at ',station));

subplot(3,1,3);

plot(t,z);

xlabel('time sec');

ylabel(strcat('Z comp at ',station));

Filtering

Filtering is a two step process in Matlab

Design the filter
Apply the filter

There is a filter design GUI you can use to
design the perfect filter called fdatool

Or you can design filters using pre-built
filter types (Butterworth, Bessel, etc.)

function [d]=bandpass(c,flp,fhi,npts,delt)
%
% [d]=bandpass(c,flp)
%
% bandpass a time series with a 2nd order butterworth filter
%
% c = input time series
% flp = lowpass corner frequency of filter
% fhi = highpass corner frequency
% npts = samples in data
% delt = sampling interval of data
%
n=2; % 2nd order butterworth filter
fnq=1/(2*delt); % Nyquist frequency
Wn=[flp/fnq fhi/fnq]; % non-dimensionalize the corner
frequencies
[b,a]=butter(n,Wn); % butterworth bandpass non-
dimensional frequency
d=filtfilt(b,a,c); % apply the filter: use zero
phase filter (p=2)
return;

Filter & plot the filtered data

% filter the data

%

if flp > 0;

 e1=bandpass(e,flp,fhi,npts,delt);

 n1=bandpass(n,flp,fhi,npts,delt);

 z1=bandpass(z,flp,fhi,npts,delt);

 e=e1;

 n=n1;

 z=z1;

 %

 % plot the filtered data

 f2=figure('name','FILTERED SEISMOGRAMS');

 subplot(3,1,1);

 …… removed for clarity

 else;

end;

*The vertical channel has also
had a Hilbert transform applied
so that the Rayleigh wave is in
phase on the NS and Z
components

•  Recognize that incoming seismic phases should 
represent the principal components, or the 
strongest signal, on the 3 component data 

• The principal components, in turn, are equal to 
the eigenvectors of the covariance matrix of the 3 
component matrix.  This can be derived using PCA 
techniques 

• Eigenvectors/values represent a spatial 
transformation which maximizes covariance 
between the 3 components, and they contain 
information on the azimuth from which the 
primary signal is derived 

• Since multiple phases may be present, we 
would prefer to look at short time windows of 
the 3 component data, or in other words, 
perform PCA on a running window through the 
continuous waveforms 

Main Code 

•  plot azimuths of 
eigenvectors 

•  plot azimuths 
exceeding 50% of 
maximum value 

Results 

GOAL: Solve for polarization

Create a 
running window 

Create a matrix 
of the 3 

component 
data in the 
window 

Calculate the 
correlation 
matrix 

Find the 
eigenvectors 

and eigenvalues 

Reorder the 
eigenvectors/
eigenvalues 

Calculate the 
azimuth for each 

eigenvalue 

Step 2: Main Code

npts1
nwin

npshift

Moving window using loops
% Moving window loop
%
npts1=fix(ttot/delt) + 1; % total number of samples to
analyze
nwin=fix(twin/delt) + 1; % number of samples in a time
window
npshift=fix(twin/(2*delt))+1; % number of samples to shift
over
kfin=fix((npts1-nwin)/(npshift+1))+1; % number of time windows
considered

mxde1=0.;
mxde2=0.;
mxde3=0.;

overlap

k=
1

k=
2

k=
3

…
k=kfin

for k=1:kfin;
 nwinst=(k-1)*(npshift-1)+1; % start of time window
 nwinfn=nwinst+nwin-1; % end of time window
 …….. missing code to be supplied later
 t2(k)=delt*(nwinst-1); % assign time for this window to
the window start
end;

Eigenvalues/Eigenvectors

Missing code from inside our loop
a=csigm(e,n,z,nwinst,nwinfn); % signal matrix
c=a'*a; % covariance matrix
[v1,d1]=eig(c); % eigenvalue/eigenvectors
[v,d]=order(v1,d1); % put eigenvalues & eigenvectors

 in ascending order

% azimuth for each of the 3 eigenvalues
ang1(k)=atan2(v(1,1),v(2,1)) * 180/pi;
ang2(k)=atan2(v(1,2),v(2,2)) * 180/pi;
ang3(k)=atan2(v(1,3),v(2,3)) * 180/pi;

% incidence angle of the 3 eigenvalues
vang1(k)=acos(abs(v(3,1)))* 180/pi; %angle from the vertical
vang2(k)=acos(abs(v(3,2)))* 180/pi;
vang3(k)=acos(abs(v(3,3)))* 180/pi;

Still in loop
de1(k)=d(1);
de2(k)=d(2);
de3(k)=d(3);

mxde1=max(mxde1,de1(k)); % find the maximum values
mxde2=max(mxde2,de2(k));
mxde3=max(mxde3,de3(k));

Outside of Loop again
f3=figure('name','Eigenvalues and Inferred Azimuth');
subplot(3,1,1);
plot(t2,de1,'-or',t2,de2,'-dg',t2,de3,'-+b');
xlabel('time sec');
ylabel('eigenvalues');

subplot(3,1,2);
plot(t2,ang1,'-or',t2,ang2,'-dg',t2,ang3,'-+b');
xlabel('time sec');
ylabel('Azimuth ');

subplot(3,1,3);
plot(t2,vang1,'-or',t2,vang2,'-dg',t2,vang3,'-+b');
xlabel('time sec');
ylabel('incidence angle ');

•   

Main Code 

•  plot azimuths of 
eigenvectors 

•  plot azimuths 
exceeding 50% 
of maximum 
value 

Results 

GOAL: Solve for polarization

Rose Diagrams
% Rose plots
f4=figure('name','Azimuth Distribution');
subplot(2,3,1);
title('Azimuth - Largest Eigenvalue');
rose(ang1*pi/180,100);

subplot(2,3,2);
title('Azimuth - Intermediate Eigenvalue');
rose(ang2*pi/180,100);

subplot(2,3,3);
title('Azimuth - Smallest Eigenvalue');
rose(ang3*pi/180,100);

nskip=1; 

if nskip == 1; 

   else; 

neig1=0; 

neig2=0; 

neig3=0; 

for k=1:kfin; 

   if de1(k) >= 0.5*mxde1; 

      neig1=neig1+1; 

      angm1(neig1)=ang1(k); 

   else; 

   end; 

   if de2(k) >= 0.5*mxde2; 

      neig2=neig2+1; 

      angm2(neig2)=ang2(k); 

   else; 

   end; 

   if de3(k) >= 0.5*mxde3; 

      neig3=neig3+1; 

      angm3(neig3)=ang3(k); 

   else; 

   end; 

end; 

subplot(2,3,4); 

title('Azimuth ‐ Largest Eigenvalue,50% 
Threshold'); 

rose(angm1*pi/180,100); 

subplot(2,3,5); 

title('Azimuth ‐ Intermediate Eigenvalue,
50% Threshold'); 

rose(angm2*pi/180,100); 

subplot(2,3,6); 

title('Azimuth ‐ Smallest Eigenvalue,50% 
Threshold'); 

rose(angm3*pi/180,100); 

end;  

