
Quotes for the day:

“Software stands between the user and the
machine” - Harlan D. Mills

Software can help the user in their daily
endeavors or stand in the way.

“the UNIX operating system, a unique
computer operating system in the category

of help, rather than hindrance.”
Introducing the UNIX System, McGilton and

Morgan, 1983.

or

The trouble with UNIX: The user interface
is horrid, Norman, D. A. Datamation, 27, No.

12, 139-150.

"Two of the
most famous
products of
Berkeley are
LSD and Unix.
I don't think
that this is a
coincidence.”

Anonymous

Before looking at more Unix commands, we
will first look at the FILE STRUCTURE (how
files [documents on Mac and Windows] are

stored/organized).

Unix uses a hierarchical file system (as does
Mac and Windows).

Looks like an upside down tree.

Starts at top with “/”, called “root”.

Uses “/” to separatedirectories (known as
folders on Mac or Windows)

Top Level
Directories

Levels of sub
Directories

So this file is
 root separators (“/”)

/usr/lib/libc.a
 filename

 path

Some commands:

pwd – print working directory – tells us
where we are. (notice logical command name.)

smalleys-imac-2:usr smalley$ pwd<CR>
/usr

How to move between directories – going up
and down the directory tree–

To go down to the directory doc we “change
directory” = “cd”

smalleys-imac-2:usr smalley$ cd doc<CR>
smalleys-imac-2:doc smalley$

Aside:

Unix sub philosophy –

Minimize typing (on teletype) – so use short
(2, in extreme cases 3 character) command
names constructed from description of the

command.

(this is a “feature” of Unix, compared to
other OSes)

Notice that you have to know where you are
and what subdirectories are contained there

to navigate around.

Unix does not provide a display of the
picture below.

We can also go up the directory structure.

To return to usr

smalleys-imac-2:doc smalley$ cd ..<CR>
smalleys-imac-2:usr smalley$

This is a little strange ---

The double dot (“..”) signifies the directory
directly above you (up) in the directory

structure (tree).

For use later – a single dot (“.”) signifies the
current or working directory.

How do we go from doc to lib?

We have to go up one level; then down one
level. This can be done with one command.

smalleys-imac-2:doc smalley$ cd ../lib<CR>
smalleys-imac-2:lib smalley$

How do we go from doc to lib?

We could also have done this.

smalleys-imac-2:doc smalley$ cd /usr/lib<CR>
smalleys-imac-2:lib smalley$

Say we want to go to “pub”

smalleys-imac-2:lib smalley$
cd ../../home/ftp/pub<CR>

We went up two, then down three.

Say we want to go to “pub”

We could (actually would) also have done (and
is simpler).
smalleys-imac-2:pub smalley$
cd /home/ftp/pub<CR>

I’m doing this on a Mac – notice that the
prompt has been programmed to tell us

where we are! (power of unix.)

smalleys-imac-2:lib smalley$
cd /home/ftp/pub<CR>
smalleys-imac-2:pub smalley$

Go directly to “root” directory (“/”)

smalleys-imac-2:lib smalley$ cd /<CR>
smalleys-imac-2:/ smalley$

Go from anywhere directly to your “home”
directory (assume I’m “joe”).

smalleys-imac-2:/ smalley$ cd ~<CR>
smalleys-imac-2:/home/joe smalley$

uses tilde “~”

Go from anywhere directly to someone else's
home directory

smalleys-imac-2:/ smalley$ cd ~lisa<CR>
smalleys-imac-2:/home/lisa smalley$

also uses tilde “~”

The tilde character “~”

- refers to your home directory when by
itself,

-  or that of another user when used with
their home directory name (the same as

their user name).

(The shell expands the “~” into the
appropriate character string “/home/joe” or

“/home/lisa”)

Specifying file names
full path /usr/lib/libc.a

relative path
(if in directory lib) libc.a

(if in another directory ../lib/libc.a

Specifying file names
abbreviations
(if I am joe) ~/CS171/hello.cc

(if I am not joe) ~joe/CS171/hello.cc

You have to keep track of the file structure
in your head

or have a way to find out what files are in
the working directory.

What files are in working directory?

Use the “list” command, which is actually “ls”.

(Compare this to VAX-VMS which uses “directory” – much
longer)

(but Unix supporters forget to tell you that it can be
shortened, by dropping letters off the back, to

“director”, “directo”, “direct”, “direc”, “dire”, or “dir”

at which point continued shortening stops as “di” is non-
unique as another command also begins with the letters “di”.
This means you can write “com” files – same as shell scripts
or batch files – to be readable using “directory” or cryptic

using “dir”.)

Listing working directory (where we are)
contents with “ls” command.

smalleys-imac-2:~ smalley$ ls<CR>
Adobe SVG 3.0 Installer vel.dat
Desktop heflen_web.dat
Documents isc0463.dat
...
Downloads nuvel-1a.dat
gpsplot.dat
smalleys-imac-2:~ smalley$

Note – this example is from a Mac, where
spaces are allowed in file names. The file

Adobe SVG 3.0 Installer

has spaces in the name.

On Unix this is somewhat of a problem.

Spaces are allowed in filenames in Unix (all
characters but the “/” are allowed in
filenames!) , but spaces, and special

characters

!@#$%^&*()_+|?><`[]{}\’”:;

 are not handled nicely as most of them mean
something special to the shell.

The problem with spaces is that the
command interpreter of the shell parses
(breaks) the command line up into tokens

(individual items) based on the spaces.

So our file name gets broken into 4 small
distinct character strings (“Adobe”, “SVG”,

“3.0”, and “Installer”) which causes
confusion.

So we have to “protect” the spaces from the
interpreter.

This is done with quotes.

We refer to this file using

“ Adobe SVG 3.0 Installer ”
or

‘ Adobe SVG 3.0 Installer ‘

(We will see the difference between single, ‘,
and double, “, quotes later.)

ls: lists files and subdirectories of the
specified path.

%ls /gaia/home/rsmalley<CR>
bin src usr world.dat

%ls<CR
lists everything in the current directory

%ls ~/bin<CR>

lists everything in your directory /bin (not
the system /bin).

ls: getting more information than just file
name.

Tells kind of file – list directories with ‘/’ &
executables with ‘*’

smalleys-imac-2:~ smalley$ ls -F<CR>
Adobe SVG 3.0 Installer vel.dat
Desktop/ heflen_web.dat
Documents / isc0463.dat
mymap.sh* a.out*
. . .
Downloads/ nnr-nuvel-1a.dat
gpsplot.dat
smalleys-imac-2:~ smalley$

This example introduces the switch, or flag,
“-F”, which modifies the output.

The output now identifies if the file is a

“regular file” (nothing appended), a
“directory” (slash appended), or an

“executable file” (asterisk appended, =
program, application).

More switches

list entries beginning with the character dot,
‘.’, which is normally hidden or invisible, using
the –a flag & show the listing in long format

using the –l flag.
smalleys-imac-2:~ smalley$ls -alF<CR>
-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03.cshrc*
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat

Can combine flags as above (-alF) or put
individually (-a –l –F).

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03.cshrc*
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat

What is the extra information

First character, “d” for directory, “-” for
regular file, plus about 10 other things for
other types of files.

The next 9 characters show read/write/
execute privileges for owner, group, and all
(or world or other).

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03.cshrc*
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat

If have read, write or execute privileges has
“r”, “w”, or “x” respectively. If not, has a “-”.

So the owner has read and write privileges
on all the files or directories, and execute
privileges on the executable file (indicated
by the “*”) .cshrc and the directory bin
(although one cannot execute a directory).
Group and world or other have no privileges.

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03.cshrc*
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat

Privileges can also be specified or displayed
in OCTAL (base 8) with each bit of the octal
value representing the permission/privilege.

rwx=111=7
rw-=110=6
r--=100=4
--x=001=1

etc. for owner, group, world.

-700 1 rsmalley rsmalley 1201 Jul 10 15:03 .cshrc*
d700 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/
-600 1 rsmalle yrsmalley 186668405 Jul 31 2007 world.dat

This is “much better” as it uses fewer
characters

-rwx------ 1 rsmalle yrsmalley 1201 Jul 10 15:03 .cshrc*
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat

Temporarily skipping the next 3 columns, we
then have the file size in bytes, the date the

file was last modified, and the file name.

Switches/flags and manual pages:

Most Unix commands have switches/flags
that can be specified to modify the default

behavior of the command.

How do we find what switches are available
and what they do?

But first – a little more about files on
Unix.

Files on Unix are “flat”

Just strings of bytes with the information
contained in the file.

What do we mean by this?

The files do not have headers or tailers with
metadata about the file, icons, etc.

Unix does not provide

Indexed

or relational database

files.
(but you can write a program to provide

them! Oh the power of Unix.).

To Unix

EVERYTHING is a file, which is a string of
bytes.

All equal.

Returning to the question of finding out
about available switches.

The developers of Unix thought of this and
provided documentation through the manual
command – “man”. To read the man page for

the list command.

alpaca.ceri.memphis.edu/rsmalley 160:> man ls
Reformatting page. Please Wait... done

User Commands ls(1)

NAME
ls - list contents of directory

SYNOPSIS
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

DESCRIPTION
 For each file that is a directory, ls lists the contents of
 the directory. For each file that is an ordinary file, ls
 repeats its name and any other information requested. The

This goes on for quite a while. Note the
--More-- (9%) at the bottom – says we are

9% done (oh joy on a teletype!)
 output is sorted alphabetically by default. When no argument
 is given, the current directory is listed. When several
 arguments are given, the arguments are first sorted
 appropriately, but file arguments appear before directories
 and their contents.

 There are three major listing formats. The default format
 for output directed to a terminal is multi-column with
 entries sorted down the columns. The -1 option allows single
 column output and -m enables stream output format. In order
 to determine output formats for the -C, -x, and -m options,
 ls uses an environment variable, COLUMNS, to determine the
 number of character positions available on one output line.
 If this variable is not set, the terminfo(4) database is
 used to determine the number of columns, based on the
 environment variable, TERM. If this information cannot be
 obtained, 80 columns are assumed.

 The mode printed under the -l option consists of ten charac-
 ters. The first character may be one of the following:

--More--(9%)

continuing
 d The entry is a directory.

 D The entry is a door.

 l The entry is a symbolic link.

 b The entry is a block special file.

 c The entry is a character special file.

 p The entry is a FIFO (or "named pipe") special file.

 s The entry is an AF_UNIX address family socket.

 - The entry is an ordinary file.

 The next 9 characters are interpreted as three sets of three
 bits each. The first set refers to the owner's permissions;
 the next to permissions of others in the user-group of the

SunOS 5.9 Last change: 19 Nov 2001 1

User Commands ls(1)

 file; and the last to all others. Within each set, the three
 characters indicate permission to read, to write, and to
 execute the file as a program, respectively. For a direc-
 tory, ``execute'' permission is interpreted to mean permis-
 sion to search the directory for a specified file. The char-
 acter after permissions is ACL indication. A plus sign is
 displayed if there is an ACL associated with the file. Noth-
 ing is displayed if there are just permissions.

 ls -l (the long list) prints its output as follows for the
 POSIX locale:

--More--(16%)

This goes on for several pages.

Try the manual command on a number of
commands.

Now for some more commands.

Making & removing directories

mkdir: make directory

% mkdir bin src Projects Classes<CR>

Makes 4 directories: bin, src, Projects, and
Classes in the working directory.

Making & removing directories

rmdir: remove directory - only works with
empty directories so is safe.

% rmdir bin src Projects Classes

Removes the 4 directories bin, src, Projects,
and Classes in the working directory -- if

they are EMPTY.

(from here on, will drop the <CR> at end).

Removing files and directories

rm: remove files or directories

A very straightforward and potentially
dangerous command.

There is no trash can on a unix machine.

Once you hit the <CR> it is GONE.

Removing files

rm: remove files or directories

CERI accounts are set up so that rm is
aliased to rm –i (more on aliases later),

which means the computer will ask you if
you really want to remove the file(s) one at

a time
% which rm

rm: aliased to /bin/rm –i

Removing files

rm: remove files or directories

%rm f1

remove f1? yes<CR>

%

and bye-bye file.

Removing files

%rm f1

remove f1?

Valid answers.
Yes, yes, Y, y – to accept and erase.

No, no, N, n – to not erase.
<CR> - does not erase.

Something it does not understand – does not
erase.

Removing files

Remember that Unix is lean and mean.

It is a multi-user system and once the disk
space associated with your file is released,
the system can write somebody elses file

into it immediately.

There is NO RECOVERING removed files.

Removing files

Without the –i option set – this is what we
would get.

%rm f1

%

and bye-bye file.
So if you made a typo – tough.

Removing files

If the –i option was not set – you can get it
by typing –i yourself (but sooner or later

you will mess up and forget on one!).

%rm –i f1

remove f1? yes<CR>

%

and bye-bye file.
So if you made a typo – tough.

Removing files

Say you are 100% sure and don’t want to
have to answer the question. You can

return to the original definition of rm using
the “\”.

%\rm f1

%

and bye-bye file without prompting.
So if you made a typo – tough.

General Unix behavior.

The “\” undoes an alias and gives you the
default version of the command.

Removing files

We will see more potential rm disasters
when we get to wildcards.

(If you have sufficient privilages, it is
possible to accidently erase the whole

operating system!!!)

Making & removing files and directories

rm –d: also removes directories
(rm does not otherwise remove directories.)

rm –r: removes directory and all
subdirectories and files; implies –d

can be very dangerous… one typo could
remove months of files

% rm -r Classes

Making & removing files and directories

% rm -r Classes

With the CERI alias for rm to rm –i, this
command will prompt you for each file!

Gets tedious – and makes you want to do

%\rm -r Classes

Which is VERY, VERY DANGEROUS.

Manipulating files

cat: concatenate files and sends output to
Standard OUT.

 If you want the concatenated files in
another file – you have to redirect the

output.

Manipulating files

cat: Since it dumps the entire file contents
to the screen

– we can use it to “print out” or ”type out” a
file.

Manipulating files

cat: Since it dumps the entire file contents
to the screen

– we can use it to “print out” or ”type out” a
file.

Another Unix philosophy issue – use of side
effects.

We don’t need another command to print or
type the contents of a file to the screen as

it is a side effect of the cat command.

Manipulating files

cat: make one file out of file1, file2 and file3
and call it alltogether.

%cat file1 file2 file3 > alltogether

This command (does not need input
redirection, exception to regular rule that
input comes from Standard IN) takes files
file1, file2, and file3 and puts them into file

alltogether.

Manipulating files

OK, what does this do?

%cat > myfile

Manipulating files

OK, what does this do?

%cat > myfile

It takes Standard IN (the keyboard) and
puts it into the file myfile.

Looking at files

OK, what does this do?

%cat > myfile

How does one get it to stop?

Enter “^D” or “^Z”, where “^” is the control
(ctrl) key and you hold it down and then

press the D or Z.

Notice the logic associated with the input,
output, and use of the command.

This type of thinking, or logic, permeates
Unix.

When you cat a long file it flies by on the
screen (and off the top).

On newer GUIs there are scroll bars and you
can scroll up and down.

On the older interactive terminals the text
disappeared off the top.

Not good.

This problem was fixed by another Unix
program that takes Standard IN and puts it
to Standard OUT a screenful at a time. (has

to know about screens).

(This way, following the Unix philosophy, the
cat program could be lean and mean. It did
not have to figure out if it was going to the
screen, etc., it just sends stuff to Standard

OUT.)

So we pipe the output into another program
that handles the screen display.

This program is called more.

%cat myfile | more

The program more puts up a screens worth
of text and then waits for you to tell it to

continue (using the space bar for a new page
worth and <CR> for a new lines worth of the

file. ^Z to quit more.)

Looking at files

more can also be used directly (and should
be, there is not need for the cat on the last
slide, which was only to demonstrate pipes).

%more myfile

Or
%more < myfile

(more was written outside UNIX “club” and
borrowed by UNIX, does not strictly follow

UNIXphilosophy.)

Looking at files

less: same as more but allows forward and
backward paging.

(in OSX, more is aliased to less because less
is more with additional features.)

(We will discuss aliases later.)

Manipulating files

paste: concatenate files with each file a new
column; when used on a single file, it dumps

the entire file contents to the screen

Looking at files

head -nX: prints the first X number of lines
to the screen; default is 10 lines if -n is not

specified.

tail -nX: prints the last X number of lines to
the screen; default is 10 lines if -n is not

specified.

Piping and Redirect

Input and output on the command line are
controlled by the |, >, <, and ! Symbols.

| : pipe function; sends the output from
command on left side as input to the

command on the right side.

(We have seen these actions already.)

Piping and Redirect

Example pipe

% ls | head -n5
1002
1019
1023
1045
1046

Piping and Redirect
“>” redirects standard output (screen) to a

specific file*
% ls | head -n5 > directory.list
% more directory.list
1002
1019
1023
1045
1046

* In tcsh, this will not overwrite (clobber)
a pre-existing file with the same name. In
the bash shell, the > overwrites (clobbers)

any pre-existing file with no warning

Piping and Redirect
>! : redirects standard output (screen
output) to a specific file and overwrite
(clobber) the file if it already exists *

%ls | head –n5 >! directory.list

%more directory.list

1002

1019

1023

1045

1046

*This syntax is specific to tcsh, your
default CERI shell (in bash this will put the output into a file
named “!”, what you told it to do, not what you wanted it to do.)

Piping and Redirect
>> : redirects and concatenates standard

output (screen output) to the end of a
specific file

%ls | head -n2 >! directory.list

%ls | tail -n2 >>directory.list

%more directory.list

1002

1019

Tmp

tmp.file

Piping and Redirect
< : redirects input from Standard input to

the file on right of the less-than sign to
be used as input to command on the left

% head –n1 < suma1.hrdpicks

1  51995 31410273254 30870 958490

Copying files & directories

cp: copy files

cp -r: copy directory and all files &
subdirectories within it

Copying files & directories

% cp file1 ESCI7205/homework/HW1

Makes a copy with a new name – “HW1”

% cp file1 ESCI7205/homework/.

Makes a copy with same name (file1) in the
new directory – specified by the dot

“.” (period) to save typing.

Moving files & directories
mv: move files or directories

% mv file1 file2 ESCI7205/HW/.

Moves file1 and file2 to new directory
(relative) ESCI7205/HW with same

names.

Move differs from copy in that it erases the
original file, you only have 1 copy of it

when done (what move does actually depends on whether or not the
destination is on the same file system – if so, it just changes the directory

entry, it does not actually do anything to the file itself).

Moving files & directories
mv: move files or directories

% mv file1 ESCI7205/HW/HW1

% mv file2 ESCI7205/HW/HW2

If you want to change the names when you
move them, you have to do them one at a

time

Renaming files & directories

Uses a side-effect of move!!!

% mv file1 HW1

% mv file2 HW2

There is NO RENAME command. One uses
the side-effect of move!!!!

(We keep seeing this kind of logic in Unix.)

Linking files & directories

ln -s: creates a symbolic link between two
files.

This makes the file show up in the new
directory (the target) listing, but the file

really only exists in the original place.

% ln –s f1 ESCI7205/HW/.

Linking files & directories

Doing an ls command in the directory
ESCI7205/HW produces the following

% ls

f1 f2

% ls -1

-rw-r--r-- 1 smalley smalley 10 Sep 20:26 f1

lrw-r-xr-x 1 smalley smalley 2 Sep 20:42 f2->f2

The leading “l” (lower case L) in the long ls output
says it is a link.

Linking files & directories

This allows us to “have” the file in more than
one place.

We can therefore access it locally from the
directory where it is a symbolic link.

