
Arithmetic operations

Add/Subtract: Adds/subtracts vectors (=>
the two vectors have to be the same length).
>> x=[1 2];
>> y=[1 3];
>> whos
 Name Size Bytes Class Attributes
 x 1x2 16 double
 y 1x2 16 double
>> z=x+y
z =
 2 5
>> whos
 Name Size Bytes Class Attributes
 x 1x2 16 double
 y 1x2 16 double
 z 1x2 16 double
>> x=1+i;
>> y=2+2i;
>> z=x+y
z =
 3.0000 + 3.0000i
>>

But - be careful if not same length will still
give result.

>> x=[1 2];
>> y=1;
>> x+y
ans =
 2 3
>> whos
 Name Size Bytes Class Attributes
 ans 1x2 16 double
 x 1x2 16 double
 y 1x1 8 double
>>

Multiply
Now things get interesting

Scalar*vector
>> x=[1 2];
>> y=3;
>> z=y*x
z =
 3 6
>> x=[1+i 2-i];
>> y=1-i;
>> z=y*x
z =
 2.0000 1.0000 - 3.0000i
>>

Multiply
Vector * Vector

Now have some choices
>> x=[1 2];
>> y=[3 4];
>> z=x*y’
z =
 11
>> w=x.*y
w =
 3 8
>> z=x'*y
z =
 3 4
 6 8
>>

Regular matrix multiplication – in this case
with vectors 1x2 * 2x1 = 1x1 => dot product
Element by element multiplication

Regular matrix multiplication – in this case
with vectors 2x1 * 1x2 = 2x2 matrix

Apostrophe is transpose.

A little more complicated for complex valued
matrices.

>> a=[1-i 2-i;3-i 4-i]
a =
 1.0000 - 1.0000i 2.0000 - 1.0000i
 3.0000 - 1.0000i 4.0000 - 1.0000i
>> a’
ans =
 1.0000 + 1.0000i 3.0000 + 1.0000i
 2.0000 + 1.0000i 4.0000 + 1.0000i
>> a.’
ans =
 1.0000 - 1.0000i 3.0000 - 1.0000i
 2.0000 - 1.0000i 4.0000 - 1.0000i
>> ctranspose(a)
ans =
 1.0000 + 1.0000i 3.0000 + 1.0000i
 2.0000 + 1.0000i 4.0000 + 1.0000i
>>

Complex conjugate
transpose (Hermitian)

Non-complex
conjugate transpose

Dot and Cross products
(using this form – built in functions - don’t have to match dimensions of vectors
– can mix column and row vectors – although they have to be the same length)

>> a=[1 2 3];
>> b=[4 5 6];
>> c=dot(a,b)
c =
 32
>> d=dot(a,b’)
d =
 32
>> e=cross(a,b)
e =
 -3 6 -3
>> f=cross(a,b’)
f =
 -3 6 -3
>> g=cross(b,a)
g =
 3 -6 3
>>

Dot products
For matrices – does dot product of columns.

The matrices have to be the same size.
>> a=[1 2;3 4]
a =
 1 2
 3 4
>> b=[5 6;7 8]
b =
 5 6
 7 8
>> dot(a,b)
ans =
 26 44
>>

Cross products
For matrix – does cross product of columns.

(one of the dimensions has to be 3 and takes other dimension as additional
vectors)

>> a=[1 2;3 4;5 6]
a =
 1 2
 3 4
 5 6
>> b=[7 8;9 10;11 12]
b =
 7 8
 9 10
 11 12
>> cross(a,b)
ans =
 -12 -12
 24 24
 -12 -12

Cross products
>> a=[1 3 5]
>> b=[7 9 11]
>> cross(a,b)
ans =
 -12 24 -12
>> a=[2 4 6]
>> b=[8 10 12]
>> cross(a,b)
ans =
 -12 24 -12
>> cross(a',b’)
ans =
 -12
 24
 -12
>> cross(a',b)
ans =
 -12 24 -12
>> cross(a,b’)
ans =
 -12 24 -12
>>

Output can be row or
column vector

Array and Matrix divide
Even more fun

Element by element divide.

Right array divide.

Left matrix divide

Matrix on top is dividend.
Matrix on bottom is divisor.

>> a=[1 2;3 4]
a =
 1 2
 3 4
>> b=[2 4;6 8]
b=
 2 4
 6 8
>> a./b
ans =
 0.5000 0.5000
 0.5000 0.5000
>> a.\b
ans =
 2 2
 2 2
>>>> b./a
ans =
 2 2
 2 2
>> b.\a
ans =
 0.5000 0.5000
 0.5000 0.5000
>>

Array and Matrix divide
>> a=[1 2;3 4]
a =
 1 2
 3 4
>> det(a)
ans =

 -2
>> b=[5 6]
b =
 5 6
>> c=a*b’
c =
 17
 39
>> d=a\c
d =
 5.0000
 6.0000
>>

Left matrix division.

Dividing a into c.

This is equivalent to inv(a)*c=b.

Note this is the solution to
a*b=c.

Sizes have to be appropriate.

With a matrix for b, get solutions for each
column b’.

(we needed the b’ when b was a vector to get
things to multiply correctly – to get the
same values we have to transpose b also)

>> b=[5 6;7 8]
b =
 5 6
 7 8
>> c=a*b’
c =
 17 23
 39 53
>> d=a\c
d =
 5.0000 7.0000
 6.0000 8.0000
>>

mldivide(A,B) and the equivalent A\B
perform matrix left division (back slash).

A and B must be matrices that have the
same number of rows, unless A is a scalar, in

which case A\B performs element-wise
division — that is,

A\B = A.\B.

mldivide(A,B) and the equivalent A\B
perform matrix left division (back slash).

If A is a square matrix, A\B is roughly the
same as inv(A)*B, except it is computed in a

different way.

If A is an n-by-n matrix and B is a column
vector with n elements, or a matrix with

several such columns, then
X = A\B

is the solution to the equation AX = B.

A warning message is displayed if A is badly
scaled or nearly singular.

mldivide(A,B) and the equivalent A\B
perform matrix left division (back slash).

If A is an m-by-n matrix with m ~= n and B is
a column vector with m components, or a
matrix with several such columns, then

X = A\B
is the solution in the least squares sense to

the under- or overdetermined system of
equations AX = B.

mldivide(A,B) and the equivalent A\B
perform matrix left division (back slash).

In other words, X minimizes
norm(A*X - B),

the length of the vector AX – B.

The rank k of A is determined from the QR
decomposition with column pivoting.

The computed solution X has at most k
nonzero elements per column. If k < n, this is

usually not the same solution as
x = pinv(A)*B,

which returns a least squares solution.

mrdivide(B,A) and the equivalent B/A
perform matrix right division (forward

slash).

B and A must have the same number of
columns.

mrdivide(B,A) and the equivalent B/A
perform matrix right division (forward

slash).

If A is a square matrix, B/A is roughly the
same as
B*inv(A).

If A is an n-by-n matrix and B is a row
vector with n elements, or a matrix with

several such rows, then
X = B/A

is the solution to the equation XA = B
computed by Gaussian elimination with

partial pivoting.

mrdivide(B,A) and the equivalent B/A
perform matrix right division (forward

slash).

A warning message is displayed if A is badly
scaled or nearly singular.

mrdivide(B,A) and the equivalent B/A
perform matrix right division (forward

slash).

If B is an m-by-n matrix with m ~= n and A is
a column vector with m components, or a
matrix with several such columns, then

X = B/A
is the solution in the least squares sense to

the under- or overdetermined system of
equations XA = B.

Note: matrix right division and matrix left
division are related by the equation

B/A = (A'\B')'.

Example 1- Suppose A and B are -
A = magic(3)
A =
 8 1 6
 3 5 7
 4 9 2
b = [1;2;3]
b =
 1
 2
 3

To solve the matrix equation Ax = b, enter
x=A\b
x =
 0.0500
 0.3000
 0.0500

You can verify x is the solution to the equation as follows.
A*x
ans =
 1.0000
 2.0000
 3.0000

Magic matrix – square matrix with property
that column, row and diagonal sums add to

same value.
>> tst=magic(3)
tst =
 8 1 6
 3 5 7
 4 9 2
>> sum(tst)
ans =
 15 15 15
>> sum(tst’)
ans =
 15 15 15
>> sum(sum(tst.*eye(3)))
ans =
 15
>> sum(sum(tst'.*eye(3)))
ans =
 15
>>

Example 2 — A Singular

If A is singular, A\b returns the following
warning.

Warning: Matrix is singular to working
precision.

In this case, Ax = b might not have a
solution.

Example 2 — A Singular
A = magic(5);
A(:,1) = zeros(1,5); % Set column 1 of A to zeros
b = [1;2;5;7;7];
x = A\b
Warning: Matrix is singular to working precision.
ans =

NaN
NaN
NaN
NaN
NaN

If you get this warning, you can still attempt
to solve Ax = b using the pseudoinverse

function pinv.

Example 2 — A Singular

If you get this warning, you can still attempt
to solve Ax = b using the pseudoinverse

function pinv.
x = pinv(A)*b
x =
0 0.0209
0.2717
0.0808
-0.0321

The result x is least squares solution to
Ax = b.

Example 2 — A Singular

To determine whether x is a exact solution

 — that is, a solution for which Ax - b = 0 —

 simply compute
A*x-b
ans =

-0.0603
0.6246
-0.4320
0.0141
0.0415

The answer is not the zero vector, so x is
not an exact solution.

Example 3
Suppose that

A = [1 0 0;1 0 0];
b = [1; 2];

Note Ax = b cannot have a solution, because
A*x has equal entries for any x. Entering

x = A\b

returns the least squares solution
x =
1.5000
0
0

along with a warning that A is rank deficient.

Example 3
A = [1 0 0;1 0 0];

b = [1; 2];
x = A\b

x =
1.5000
0
0

Note that x is not an exact solution:

A*x-b
ans =
0.5000
-0.500

Raising array to power
>> a=[1 2;3 4]
a =
 1 2
 3 4
>> a^2
ans =
 7 10
 15 22
>> a*a
ans =
 7 10
 15 22
>> a.^2
ans =
 1 4
 9 16
>>

Array multiplication

Element by element.

Operators

Arithmetic operators.
 plus - Plus +
 uplus - Unary plus +
 minus - Minus -
 uminus - Unary minus -
 mtimes - Matrix multiply *
 times - Array (element by element) multiply) .*
 mpower - Matrix power ^
 power - Array (element by element) power .^
 mldivide - Backslash or left matrix divide \
 mrdivide - Slash or right matrix divide /
 ldivide - Left array (element by element) divide .\
 rdivide - Right array (element by element) divide ./
 kron - Kronecker tensor product kron

>> help kron
 KRON Kronecker tensor product.
 KRON(X,Y) is the Kronecker tensor product of X and Y.
 The result is a large matrix formed by taking all possible
 products between the elements of X and those of Y. For
 example, if X is 2 by 3, then KRON(X,Y) is

 [X(1,1)*Y X(1,2)*Y X(1,3)*Y
 X(2,1)*Y X(2,2)*Y X(2,3)*Y]

 If either X or Y is sparse, only nonzero elements are
multiplied
 in the computation, and the result is sparse.

 Class support for inputs X,Y:
 float: double, single

 Reference page in Help browser
 doc kron

>> x=[1 2 3;4 5 6]
x =
 1 2 3
 4 5 6
>> y=[7 8;9 10]
>> y=[7 8]
y =
 7 8
>> kron(x,y’)
ans =
 7 14 21
 8 16 24
 28 35 42
 32 40 48
>>
>> kron(x,y)
ans =
 7 8 14 16 21 24
 28 32 35 40 42 48a

 = (1 2 3)*7
 = (1 2 3)*8
 = (4 5 6)*7
 = (4 5 6)*8

(3 6)*8
(3 6)*7
(2 5)*8
(2 5)*7
(1 4)*8
(1 4)*7

Operators

 Relational operators.
 eq - Equal ==
 ne - Not equal ~=
 lt - Less than <
 gt - Greater than >
 le - Less than or equal <=
 ge - Greater than or equal >=

 Logical operators.
 and - Logical AND &
 or - Logical OR |
 not - Logical NOT ~
 xor - Logical EXCLUSIVE OR
 any - True if any element of vector is nonzero
 all - True if all elements of vector are nonzero

Exclusive or
>> a=[0 0 1 1]
>> b=[0 1 0 1]
>> xor(a,b)
ans =
 0 1 1 0
>>

Matrix Maniputlation

A few things to remember:

- Cannot use spaces in names of matrices
(variables, everything in matlab is a matrix)

cool x = [1 2 3 4 5]

- Cannot use the dash sign (-) because it
represents a subtraction.

cool-x = [1 2 3 4 5]

- Don’t use a period (.) unless you want to
created something call a structure.

cool.x = [1 2 3 4 5]

A few things to remember:

- Your best option, is to use the underscore
(_) if you need to assign a long name to a

matrix

 my_cool_x = [1 2 3 4 5]

Changing and adding elements in existing
matrix:

>> a=[1 2 3]
a =
 1 2 3
>> a(1,2)=4
a =
 1 4 3
>> a(2,4)=5
a =
 1 4 3 0
 0 0 0 5
>>

Sizes of matrices:
a =
 1 4 3 0
 0 0 0 5
>> size(a)
ans =
 2 4
>> sizea=size(a);
>> whos
 Name Size Bytes Class Attributes

 a 2x4 64 double
 ans 1x2 16 double
 sizea 1x2 16 double
>> sizea
sizea =
 2 4
>> size(a,1)
ans =
 2
>> size(a,2)
ans =
 4

Dimension of matrix
(mathematically)

Can do by individual
dimensions

Sizes of matrices:
>> length(a)
ans =
 4
>> length(a(:))
ans =
 8
>>

Linear size (as vector –
amount memory

Building matrices from other matrices:
(have to match dimensions)

>> a=[1 2; 3 4]
a =
 1 2
 3 4
>> b=[1 2]
b =
 1 2
>> c=[a b’]
c =
 1 2 1
 3 4 2
>> d=[a;b]
d =
 1 2
 3 4
 1 2
>>

Some predefined matrix making tools:
>> rand(3)
ans =
 0.8147 0.9134 0.2785
 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575
>> rand(1,3)
ans =
 0.9649 0.1576 0.9706
>> rand(3,1)
ans =
 0.9572
 0.4854
 0.8003
>> eye(3)
ans =
 1 0 0
 0 1 0
 0 0 1
>>

Also – ones, zeros, magic, hilb

Aside:
Some predefined values:

pi

i, j

eps

To see what variables are defined

who, who vari_name

To clear variables

clear vari_name, clear (does all of them)

Functions:

Many of them.
Here are a few -

How they work is context sensitive.
max
min
sum
mean

These functions work on vectors, or columns
for matrix input (matrix is treated like

group of column vectors)

Functions:

Work element by element when appropriate
sin
cos
(Other trig fns)
exp
log
abs
…

Perform matrix operations
(output can be same size matrix, different size matrix or matrices, scalar,

other.)

inv
eig
triu
tril
…

Round/truncate
round(f)
fix(f)
ceil(f)
floor(f)

>> help round
 ROUND Round towards nearest integer.
 ROUND(X) rounds the elements of X to the nearest integers.
>> help fix
 FIX Round towards zero.
 FIX(X) rounds the elements of X to the nearest integers
 towards zero.
>> help ceil
 CEIL Round towards plus infinity.
 CEIL(X) rounds the elements of X to the nearest integers
 towards infinity.
>> help floor
 FLOOR Round towards minus infinity.
 FLOOR(X) rounds the elements of X to the nearest integers
 towards minus infinity.
>>

Logical operations on matrix:
(is element by element)

>> a=[1 2 3 4 5]
a =
 1 2 3 4 5
>> b=[5 4 3 2 1]
b =
 5 4 3 2 1
>> a==b
ans =
 0 0 1 0 0
>>

==, >, >=, <, <=, ~, &, |

any determines if a matrix has at least one
nonzero entry.

all determines if all the entries are nonzero,.

Programming

Relational Operators

Returns 1 if true and 0 if false.
(opposite of shell)

All relational operators are left to right
associative.

Make element-by-element comparisons.

Relational Operators (review)

< : test for less than

<= : test for less than or equal to

>: test for greater than

>= : test for greater than or equal to

== : test for equal to

~= : test for not equal

Relational Operators with matrices
Relational operators may not behave like you

think with matrices, so be careful.

Some useful relational operators for
matrices include the following commands:

isequal : tests for equality
isempty: tests if an array is empty

all : tests if all elements are nonzero
any: tests if any elements are nonzero;

ignores NANs

These return 1 if true and 0 if false

Logical Operators

Logical array operators return 1 for true and
0 for false

Work element-by-element

& : logical AND; tests that both expressions
are true

| : logical OR ; tests that one or both of
the expressions are true

~ : logical NOT; tests that expression is
true

Logical Operators w/ Short-circuiting

If the first tested expression will
automatically cause the logical operator to
fail, the remainder of the expression is not

evaluated.

&& : short-circuit logical AND

|| : short-circuit logical OR

Logical Operators w/ Short-circuiting

(b ~= 0) && (a/b > 18.5)

if (b ~= 0) evaluates to false, MATLAB
assumes the entire expression to be false

and terminates its evaluation of the
expression early.

This avoids the warning that would be
generated if MATLAB were to evaluate the

operand on the right.

if/elseif/else/end

If expression is true, then run the first set
of commands. Else if a second expression is
true, run the second set of commands. Else

if neither is true, run a third set of
commands. End the if command

if rem(n,2) ~= 0 %calculates remainder of n./2
M = odd_magic(n)

elseif rem(n,4) ~= 0 % ~= is ‘not equal to’ test
M = single_even_magic(n)

else
M = double_even_magic(n)

end

Often indented for readability.

switch, case, and otherwise
switch executes the statements associated
with the first case where switch_expr ==

case_expr

If no case expression matches the switch
expression, then control passes to the

otherwise case (if it exists).
switch switch_expr
case case_expr

statement, ..., statement
otherwise

statement, ..., statement
end

Often indented for readability.

For

one of the most common loop structures is
the for loop, which iterates over an array of

objects

for x values in array, do this
for m = 1:m

for n = 1:n
 h(i,j) = 1/(i+j);
end

end

Often indented for readability.

Try to avoid using i and j as loop counters
(matlab uses them for sqrt(-1))

while/end

while: continues to loop as long as condition
exited successfully

n= 1;
while (1+n) > 1, n= n/2;, end
n= n*2

Note the use of the “,” rather than a newline
(carriage return) to separate the parts of this loop
(the semicolon “;” is for “silence” – else it prints out n/2 each time through).

This can be done with any type of loop
structure.

Break

break: allows you to break out of a for or
while loop

exits only from the loop in which it occurs

while condition1 # Outer loop
while condition2 # Inner loop
 break # Break out of inner loop only
end
… # Execution continues here after break

end

Often indented for readability.

Continue

continue: pass control to next iteration of
for or while loop

passes to the next iteration of the loop in
which it occurs

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,'%',1)
 continue
end
count = count + 1;

end
disp(sprintf('%d lines',count));

Often indented for readability.

Return

return: returns to invoking function

allows for termination of program before it
runs to completion

%det(magic)
function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)

d = 1;
return %exit the function det at this point

else
…

end

