
Introduction

MATLAB = MATrix LABoratory

Interactive system.

Basic data element is an array that does not
require dimensioning.

“Efficient” computation of matrix and vector
formulations (in terms of writing code – it is interpreted so looses

efficiency there) relative to scalar non-interactive
language such as C or Fortran.

The 5 parts
-

1 - Desktop Tools and Development

2 - Mathematical Functions

3 - The Language

4 - Graphics

5 - External Interfaces

Desktop Tools & Development

Graphical user interfaces:

- MATLAB desktop and Command Window

- Command history window

- Editor and debugger

- A code analyzer and other reports

- Browsers for viewing help, the workspace,
files, and the search path.

Sample Matlab
Windows

Editor – offers
context sensitive
editing (color
coding – in red if
can’t understand),
automatic
indenting, etc.

Mathematical Functions

Large collection of computational algorithms
including but not limited to:

Elementary functions, like sum, sine, cosine

Complex arithmetic

Matrix math – inverse, eigenvalues/vectors,
etc.

Fast Fourier transforms

Bessel functions

etc.

Interactive help and documentation.

Biggest resource

GOOGLE/WEB

There are trillions of matlab tutorials,
program exchanges, discussions, “toolboxes”,

etc., on the web.

The Language
High-level matrix/array language

Includes control flow statements, functions,
data structures, input/output, and object-

oriented programming features

It allows both “programming in the small” to
rapidly create quick and dirty throw-away

programs, and “programming in the large” to
create large and complex application

programs.

Graphics:

Two-dimensional and three-dimensional data
visualization.

Image processing.

Animation.

Presentation graphics.

Graphics:

It also includes low-level functions that allow
you to fully customize the appearance of

graphics as well as to build complete GUIs
for your own applications.

External Interfaces

Library that allows you to write C and
Fortran programs that interact with

MATLAB.

It includes facilities for calling routines
from MATLAB (dynamic linking), for calling
MATLAB as a computational engine, and for

reading and writing MAT-files.

Toolboxes
Add-on application-specific solutions

Comprehensive collections of MATLAB
functions (M-files) to solve particular

classes of problems.

Examples include:
- Signal processing
- Image processing

- Partial differential equations
- Mapping

- Statistics

Starting MATLAB

Runs on SUNS, MACS, PC’s – same interface.

From CERI unix machines, just type

%matlab

On a PC/Mac, double-click the Matlab icon.

Starting MATLAB

In an X11 window (assuming it is in your path),
type

%matlab

Useful trick from remote machines
%matlab –nojvm

or
%matlab -nodesktop -nosplash

turns off the graphical interface – which is
SLOW and buggy over net.

the Matrix

A matrix is a rectangular array of numbers
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

Vectors are matrices with only one row or
column

 16 3 2 13

Scalars can be thought of as 1-by-1 matrices
 16

Matlab basically thinks of everything as a
matrix.

Handles math operations on

Scalars
Vectors

2-D matricies

With ease

Gets ugly with higher dimension matrices –
as there are no mathematical rules to follow.

Entering Matrices

- Enter an explicit list of elements.

- Load from external data files.

- Generate using built-in functions

- Create with your own functions in M-files

(matlab’s name for a file containing a matlab
program. Same as shell script, sac macro, batch file, commnad file, etc.

but for matlab.)

Entering a matrix from the command line:

Separate the elements (columns) of a row
with blanks or commas.

Use a semicolon, “;” , to indicate the end of
each row.

Surround the entire list of elements with
square brackets, [].

>> A44 = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
A44 =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1
>> A14 = [16 3 2 13]
A14 =
 16 3 2 13
>> A41 = [16; 5; 9; 4]
A41 =
 16
 5
 9
 4
>> whos
 Name Size Bytes Class Attributes
 A14 1x4 32 double
 A41 4x1 32 double
 A44 4x4 128 double
>>

Matrices indexed the same as math (row, column)

whos – reports what
is in memory

Suppressing Output

If you simply type a statement and press
Return or Enter, MATLAB automatically

displays the results on screen.

If you end the line with a semicolon,
MATLAB performs the computation but does

not display any output. This is particularly
useful when you generate large matrices.

Matlab normally prints out results – to stop
printout, end line with semi-colon “;” (this is

general rule).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
A =

 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1
>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1];
>>

The load function

reads binary files containing matrices (generated

by earlier MATLAB sessions), or text files containing
numeric data.

The text file should be organized as a
rectangular table of numbers, separated by
blanks, with one row per line, and an equal

number of elements in each row.
%cat magik.dat
16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0
>>A=load(‘magik.dat’) #places matrix in variable A
>> load magik.dat #places matrix in variable magik

Matlab is particularly difficult with data
files that do not fit this format.

Matlab is also particularly difficult with
processing character data.

Generate matrices using built-in functions.

Complicated way of saying “run commands”
and send output to new matrices.

Also does matrix operations (e.g. -
transpose).

>>magik’ #transpose matrix magik
ans =

16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1

M-Files

Text files with MATLAB code (instructions).
Use MATLAB Editor (or any text editor) to create
files containing the same statements you
would type at the MATLAB command line.

Save the file with a name that ends in .m
%vim magik.m
i
A = [16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0];
(esc)wq

in matlab
>>magik #places matrix in A

Entering long statements

If a statement does not fit on one line, use
an ellipsis (three periods), “...”, followed by

“Carriage Return” or “Enter” to indicate that
the statement continues on the next line.

>>s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
 - 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Subscripts

Matrices consists of rows and columns.
The element in row i and column j of A is

denoted by A(i,j) (same as math).

Example: A(4,2)=15.0

16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0

4th row, 2nd column.

j
i

1 4 3 2

1

2
3

4

If you store a value in an element outside of
the current size of a matrix, the size

increases to accommodate the newcomer:

>>A = [16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0];
>>X = A;
>>X(4,5) = 17
X =
16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17
>>

You can also access the element of a matrix
by referring to it as a single number.

This is because computer memory is
addressed linearly – a single line of bytes (or

words).

There are therefore (at least) two ways to
organize a two dimensional array in memory –
by row or by column (and both are/have been used of course).

MATLAB (and Fortran) store the elements
by columns (called column major order).

>>A = [16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0]
A=
16 3 2 13
5 10 11 8
9 6 7 12
4  15 14 1

The elements are stored in memory by
column.

16, 5, 9, 4, 3, 10, 6, 15, 2, 11, 7, 14, 13, 8, 12, 1.
(1)(2)(3)(4)(5) (6)(7) (8)(9)(10)(11)(12)(13)(14)(15)(16)

So A(11)=7.

A(i,j)

i varies most rapidly
 j varies least rapidly

For 4x4 matrix

(1,1), (2,1), (3,1), (4,1), (1,2), (2,2)…(3,4), (4,4,)
 (1) (2) (3) (4) (5) (6) (15) (16)

This may be important when reading and
writing very large matrices – one wants the
data file to have the same storage order as

memory to minimize time lost to page
faulting.

When you go to 3 dimensions, order of
subscript variation is maintained (1st to last)

A(i,j,k)

i varies most rapidly
 j varies next most rapidly

 k varies least rapidly
For 3x2x2 matrix

(1,1,1), (2,1,1), (3,1,1),
(1,2,1), (2,2,1), (3,2,1),
(1,1,2), (2,1,2), (3,1,2),

(1,2,2), (2,2,2,), (3,2,2),
…

C uses row major order (stores by row).

If mixing Matlab and Fortran there is no
problem as both use column major order.

If mixing Matlab or Fortran and C – one has
to take the array storage order into account.

(one also has to deal with how information is
passed

-  by reference [the address of the
information in memory – Fortran]

- or value [a copy of the information – C].)

The Colon Operator
The colon, “:”, is one of the most important

MATLAB operators

It can be used to

- Create a list of numbers
- Collapse trailing dimensions (right- or left-hand side)

- Create a column vector (right-hand side behavior related

to reshape)
- Retain an array shape during assignment

(left-hand side behavior)

- Work with all entries in specified
dimensions

Creating a List of Numbers

You can use the “:” operator to create a
vector of evenly-spaced numbers.

Here are the integers from -3 to 3.

>>list1 = -3:3
list1 =
 -3 -2 -1 0 1 2 3

Creating a List of Numbers

Here are the first few odd positive integers.
>>list2 = 1:2:10
list2 =
 1 3 5 7 9

Negative increment
>>100:-7:51
100 93 86 79 72 65 58 51

syntax for this use of color operator -
start:[increment:]end
(default increment = 1)

Creating a List of Numbers

Here's how to divide the interval between 0
and pi (Matlab knows about pi) into equally

spaced samples.
>>nsamp = 5;
>>sliceOfPi = (0:1/(nsamp-1):1)*pi
sliceOfPi =
 0 0.7854 1.5708 2.3562 3.1416

(Note – can also define single dimension row matrix with colon operator by ()’s
or no delimiters rather than []’s. Does not work when try to use “;” for another

row or by specifying elements.)
a=(1:3)
a =
 1 2 3
a=1:3
a =
 1 2 3

Aside – for languages that (unlike Matlab)
don’t have PI predefined, how can one get

the “best” representation of pi (most precise
on that computer)?

Collapsing Trailing Dimensions
Suppose have the following 4-dimensional

array.
>> b=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
b =
 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16
>> b4d=reshape(b,2,2,2,2)
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16
>>

1-d vector
2-d matrix
3-d stack of 2-d matrices
>3-d something hard to
visualize – but fine
mathematically (4-d is 2-d
matrix with each element
itself a matrix)

>> x=[1 2 3]
x =
 1 2 3
>> sum(x)
ans =
 6
>> xt=[1;2;3]
xt =
 1
 2
 3
>> sum(x)
ans =
 6
>> y=[1 2; 4 4]
y =
 1 2
 4 4
>> sum(y)
ans =
 5 6
>> sum(sum(y))
ans =
 11
>>

Matlab “sum” command.

Sums elements in vector (row
or column) – result is a scalar.

For a matrix, sums elements by
column (the order stored in memory) –

result is a vector of the column
sums.

To sum whole matrix, call twice
(once to sum columns, then

second time to sum resulting
vector) – result is a scalar.

>> b=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]
b =
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
>> b4d=reshape(b,2,2,2,2)
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16
>> sum(b4d(:,:,1,1))
ans =
 3 7
>> sum(b4d(:,:,2,1))
ans =
 11 15
>>

Summing parts of the
4-d matrix.

Same as summing on
the 2-d matrices.
b11=
 1 3
 2 4
b21=
 5 7

 6 8

b =
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
>> b4d=reshape(b,2,2,2,2)
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16
>> b4d(1,1,:)
ans(:,:,1) =
 1
ans(:,:,2) =
 5
ans(:,:,3) =
 9
ans(:,:,4) =
 13
>>

Colon gives us

- Full range of index

- At end of list it
“compresses” all the
remaining indices into a
single index (indexed as in
memory – by single
subscript - linearly). This
is called “collapsing”
trailing dimensions.

>> b4d(1,1,:)
ans(:,:,1) =
 1
ans(:,:,2) =
 5
ans(:,:,3) =
 9
ans(:,:,4) =
 13
>> sum(b4d(1,1,:))
ans =
 28
>>

Sum – adds them.

b =
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
>> b4d=reshape(b,2,2,2,2)
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16
>> b4d(:,1,1)
ans =
 1
 2
>> b4d(1,:,1,1)
ans =
 1 3
>>

Works differently from
front or in middle.

>>b4d(1,1,1,:)
ans(:,:,1,1) =
 1
ans(:,:,1,2) =
 9
>> b4d(1,1,:)
ans(:,:,1) =
 1
ans(:,:,2) =
 5
ans(:,:,3) =
 9
ans(:,:,4) =
 13
>> b4d(1,:,1)
ans =
 1 3

Works differently from
front or in middle.

>> b4d=reshape(b,2,2,2,2)
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16

>> b4d(1,1,:,:)
ans(:,:,1,1) =
 1
ans(:,:,2,1) =
 5
ans(:,:,1,2) =
 9
ans(:,:,2,2) =
 13
>> b4d(1,1,:)
ans(:,:,1) =
 1
ans(:,:,2) =
 5
ans(:,:,3) =
 9
ans(:,:,4) =
 13
>>

Are equivalent

>> b4d=reshape(b,2,2,2,2)
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16

>> b4d(1,:,:,1)
ans(:,:,1) =
 1 3
ans(:,:,2) =
 5 7
>> b4d(:,1,1,:)
ans(:,:,1,1) =
 1
 2
ans(:,:,1,2) =
 9
 10
>> b4d(1,:,1,:)
ans(:,:,1,1) =
 1 3
ans(:,:,1,2) =
 9 11
>>b4d(:,1,:,1)
ans(:,:,1) =
 1
 2
ans(:,:,2) =
 5
 6
>>

Get 4
elements
back on
each
reference
with two
colons. May
be 1 row or
column
vector, or
two row or
column
vectors.

>> a=[1 2 3 4]
a =
 1 2 3 4
>> at=a(:)
at =
 1
 2
 3
 4
>> a22=[1 2; 3 4]
a22 =
 1 2
 3 4
>> a22c=a22(:)
a22c =
 1
 3
 2
 4
>>

Creating a column
vector from another

vector or matrix.
(note first example

would usually be
done using

transpose operator
at=a’)

Retaining Array Shape During
Assignment – color operator is
on left side = “pours” value into

elements defined on lhs.

>> b4d
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 13 15
 14 16

>> b4d(:,:,2,2)=20
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 10 12
b4d(:,:,2,2) =
 20 20
 20 20
>>

>> b4d(2,:,:,2)=21
b4d(:,:,1,1) =
 1 3
 2 4
b4d(:,:,2,1) =
 5 7
 6 8
b4d(:,:,1,2) =
 9 11
 21 21
b4d(:,:,2,2) =
 20 20
 21 21
>>

Working with All the Entries in Specified
Dimensions

To manipulate values in some specific
dimensions, use the “:” operator to specify

the dimensions.

A “:” by itself indicates all elements of that
index position (usually rows or columns)

>>a(:,1)

Means “all rows, in column 1”

Refers to range of values for indices
(portions) of a matrix

>>k=2;
>>a(1:k,1)

‘rows 1 through 2, and column 1’

Same as

>>a(1:2,1)

Can be pretty tricky. For example, suppose I
want to perform a left shift on the values in
the second dimension of my 3-D array. Let
me first create an array for illustration.

a3 = zeros(2,3,2);
a3(:) = 1:numel(a3)
a3(:,:,1) =
 1 3 5
 2 4 6
a3(:,:,2) =
 7 9 11
 8 10 12

a3 = zeros(2,3,2);
a3(:) = 1:numel(a3)
a3(:,:,1) =
 1 3 5
 2 4 6
a3(:,:,2) =
 7 9 11
 8 10 12

Now shift columns all over to the left, and
have the left-most one “wrap” to become the
right most column. Columns are dimension 2.

Here's a way (there are others) to do it.
a3r1 = a3(:,[2:size(a3,2) 1],:)
a3r1(:,:,1) =
 3 5 1
 4 6 2
a3r1(:,:,2) =
 9 11 7
 10 12 8

For all rows, put columns 2 to end (get from
2nd element of size – the middle dimension),
then column 1, for all “planes” (2-d matrices

in 3rd dimension).
a3r1 = a3(:,[2:size(a3,2) 1],:)
a3r1(:,:,1) =
 3 5 1
 4 6 2
a3r1(:,:,2) =
 9 11 7
 10 12 8

Variables

MATLAB does not require any type
declarations

(actually all variables are double precision
floating point – you can declare them to be

other things if needed – however many/most
Matlab routines [such at FFT, filtering, etc.]
will not work with anything other than double

precision floating point data)

or dimension statements.

Variables

When MATLAB encounters a new variable
name, it automatically creates the variable

and allocates the appropriate amount of
storage.

If the variable already exists, MATLAB
changes its contents and, if necessary,

allocates new storage.

MATLAB is case sensitive. (“A” is not the same as “a”)

Concatenation

You can concatenate using the square
brackets, [] (same as making a matrix, but

using other matrices as the elements)

>>B = [A A+32; A+48 A+16]
B =
16 3 2 13 48 35 34 45
5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33
64 51 50 61 32 19 18 29
53 58 59 56 21 26 27 24
57 54 55 60 25 22 23 28
52 63 62 49 20 31 30 17

Deleting rows and columns

You can also use [] to remove rows, columns,
or elements (again – variation on theme of

assigning elements in a matrix – have a
syntax rule and read it like a lawyer for all
possible interpretations and implications.)

e.g. Remove the second column
>>X=A;
>>X(:,2) = [];

Create vector from X; removes every 2nd
element from 2 to 10

>>X(2:2:10) = []
X =
16 9 2 7 13 12 1

Stuff you will need for homework:

FOR loop – matlab syntax
for cnt=1:2

Stuff
end

To plot – use plot command.

To find out how to use the plot command, use
help

help plot

