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We treat a fault as an array of asperities with a prescribed statistical distribution of strengths. When an 
asperity fails, the stress on the failed asperity is transferred to one or more adjacent asperities. For a 
linear array the stress is transferred to a single adjacent asperity and for a two-dimensional array to three 
adjacent asperities. Using a renormalization group (RG) method, we investigate the properties of a scale 
invariant hierarchical model for the stochastic growth of fault breaks through induced failure by stress 
transfer. An extrapolation to arbitrarily large scales shows the existence of a critical applied stress at 
which the solutions bifurcate. At stresses less than the critical stress, virtually no asperities fail on a large 
scale, and the fault is locked. Above the critical stress, asperity failure cascades away from the nucleus of 
failure; we interpret this catastrophic failure as an earthquake and it corresponds to the transition from 
stick to slip behavior on the fault. Thus the stick-slip behavior of most faults can be attributed to the 
distribution of asperities on the fault. We propose our stochastic mechanism as an alternative to the 
traditional hypotheses for the stick-slip behavior of faults. A major advantage of our approach is the 
inclusion of scale invariance. Thus the observed frequency-magnitude relation for seismicity is a natural 
consequence of our basic hypothesis. 

INTRODUCTION 

The worldwide distribution of seismic activity is largely ex- 
plained by the plate tectonic hypothesis. The relative motion 
of two surface plates imposes a constant velocity displacement 
condition on the boundary zone between two plates. This dis- 
placement is accommodated by displacements in near-surface 
fault zones. A fault zone generally includes a number of identi- 
fiable faults. A large fraction of the active faults appear to 
behave in a stick-slip rather than a stable sliding manner. 
Stress on a fault builds up until a critical condition is reached 
and a displacement occurs on the fault; this results in an 
earthquake. 

One approach to the understanding of earthquakes is to 
consider the fracture of a uniform elastic medium subjected to 
an applied deviatoric stress. Since there is a high density of 
faults and joints in the earth's crust, it is clearly not appropri- 
ate to consider the fracture of pristine rock; however, it may 
be argued that faults heal, so that a fracture model may be 
applicable. 

An alternative model for the behavior of faults is a planar 
surface between two elastic half spaces, and the shear resist- 
ance to displacement on the boundary is modeled in terms of 
a coefficient of friction. Several authors have modeled the 

stick-slip behavior of faults in terms of frictional effects. Weert- 
mann [1979] modeled the instability in terms of a frictional 
stress on a fault that decreases with increasing slip velocity. 
Stuart and Mavko [1979] modeled the instability in terms of a 
strain-softening constitutive relation for the fault zone. 

The direct application of the friction coefficient model to 
faults predicts that the shear stress z is given by 

ß =fpz 

where f is the friction coefficient, p the crustal density, g the 
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acceleration of gravity, and z the depth. A wide variety of 
experimental studies on friction predict that the coefficient of 
friction on a fault should be near 0.8 [Byeflee, 1978]. Since 
earthquakes extend to a depth of 15 km on the San Andreas 
fault, a model for the stick-slip behavior of a fault must be 
applicable to this depth. Taking f= 0.8, p = 2.8 x 10 3 kg 
m -3, •/ = 10 m s -2, and z = 15 km, we find • = 340 MPa. 
Any stress associated with fracture and rehealing must be 
larger than the frictional stress. When applied to the San An- 
dreas fault, the stress level given by the friction hypothesis 
gives a heat flow anomaly that is much larger than the ob- 
served values [Lachenbruch and Sass, 1980; Turcotte et al., 
1980]. One way to reduce the frictional stress is to require a 
fluid pressure on the fault that is nearly equal to the lithostatic 
pressure. However, this is a difficult condition to satisfy in a 
porous fault zone. Another alternative is to attribute the loss 
of heat to hydrothermal flows. This alternative has been con- 
sidered by Lachenbruch and Sass [1980] who argue that it is 
unlikely. Another difficulty of the friction hypothesis is the 
prediction of a small fractional stress drop during a slip event. 
Stress drops of about 10 MPa are required by seismic obser- 
vations and studies of strain fields associated with observed 

surface offsets on faults. Since the heat flow studies provide 
evidence that the mean stress on the fault is less than 20 MPa, 
a significant fractional stress drop is required. The apparent 
contradiction between the heat flow observations and the lab- 

oratory friction measurements is the basis for this paper. 
Why might the use of laboratory-derived friction coef- 

ficients be an inadequate basis for fault models? We argue 
that real faults are scale invariant, whereas laboratory friction 
experiments prescribe a scale. The prescribed laboratory scale 
is the size of the asperities on the surfaces in contact or the 
size of the particulate matter placed between the surfaces. An 
actual fault has asperities and barriers on a wide range of 
scales. Evidence for scale invariance comes from the wide 

range of applicability of a power law relationship between 
earthquake frequency and earthquake magnitude. 
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We compare the behavior of faults to the behavior of the 
atmosphere and oceans. The laboratory friction experiments 
may be analogous to laminar flow studies in the laboratory. 
Laminar flow is not applicable to the atmosphere and oceans 
because the flow is turbulent. We argue that the behavior of 
real faults is analogous to the turbulent behavior of the atmo- 
sphere and oceans. Over a wide range of scales, turbulence is 
scale invariant. There are flow eddies with a wide range of 
sizes in turbulent flow just as there are asperities and barriers 
with a wide range of sizes on real faults. 

An expression of scale invariance is the fractal dimension of 
a process [Mandelbrot, 1982]. The simplest example of scale 
invariance is the length of the coast line of a rocky island. The 
length scale I is the length of the rod used to make the 
measurement. The perimeter Pt (length of the coast line) of the 
island obtained using a measuring rod of length l is related to 
the length of the yardstick by 

Pt • I 1 - D (2) 

where D is the fractal dimension of the coast line. Note that 

the length of the coast line increases when measured with a 
smaller rod because many more small indentations are then 
included. The fractal dimension of the coast line of Great 

Britain over a wide range of scales is D _• 1.25 [Mandelbrot, 
1967]. Fractal dimensions have been found for a variety of 
turbulent phenomena. One example is the fractal dimension of 
the surface of clouds in the atmosphere, with D • 2.35 [Hents- 
chel and Procaccia, 1984]. Turbulent atmospheric processes 
apparently lead to scale invariance for clouds. 

Using frequency-magnitude and moment-magnitude re- 
lationships. Aki [1981] has shown that the fractal dimension 
of a fault is D = 3b/c, where b is the slope of the log frequency- 
magnitude relation and c is the slope of the log moment- 
magnitude relation. For c = 1.5 [Hanks and Kanarnori, 1979] 
and b = 1 the fractal dimension is 2, the same as the topologi- 
cal dimension of a plane [Aki, 1981]. 

Recently, renormalization group (RG) techniques have been 
successfully applied to scale invariant natural systems [Wilson 
and Kogut, 1974; Fisher, 1974]; an example is a system under- 
going a continuous phase transition. A characteristic feature 
of a phase transition is a discontinuous (catastrophic) change 
of macroscopic parameters of the system under a continuous 
change in the systems state variables. Clearly, an earthquake is 
a catastrophic change in the macroscopic response of a fault 
system. 

RG techniques have been used by Madden [1983] to relate 
the macroscopic electrical conductivity and fracture of rocks 
to the microcrack population and by Allegre et al. [1982] to 
study the coalescence of fractures. Newman and Knopoff[1982, 
1983] have also studied the coalescence of fractures, and while 
they use the term renormalization in their work, no rescaling 
is done, so their approach is substantially different from the 
usual RG methods. 

FORMULATION OF THE PROBLEM 

In this paper we model a fault as an array of asperities with 
a statistical distribution of strengths. We will consider both 
linear and two-dimensional arrays of asperities. In order to 
illustrate the approach we will first consider a linear array as 
illustrated in Figure 1. This model should be appropriate for 
large-scale asperities (barriers) on a long fault. The fault is 
broken into n elements of length •ix, and each element is as- 
signed an asperity failure strength as; the asperity will fail 
when the stress on the asperity reaches this value. The as- 
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Fig. 1. ]||ustration of the statistical distribution of asperity 
strengths a s for a linear array; a 0 is a reference asperity strength. An 
asperity is assigned to each unit length ax. Also shown are the cell 
sizes for orders r = 1 to 4. 

perities have a distribution of strengths which will be specified 
by a statistical distribution function. When a stress a is ap- 
plied to the fault, all asperities with a failure strength a s < a 
will fail. 

A hierarchical model is now constructed by dividing the 
linear array of n asperities into n/2 cells, each containing two 
asperities as illustrated in Figure 1. The statistics of cell failure 
follow from the statistics of asperity failure, since a cell fails 
only when both asperities in the cell fail. Two alternative pro- 
cesses lead to cell failure. Direct failure results when both 

asperities break under an applied stress a. When only one 
asperity in the cell fails, cell failure may be induced by stress 
transfer to the unbroken asperity. (The strength a s of the un- 
broken asperity must be greater than 2a if it is to survive the 
transfer of stress a from the broken asperity.) The mechanism 
for induced failure simulates the transfer of stress to adjacent 
unbroken regions that occurs when a crack is introduced into 
an elastic solid. By restricting stress transfer to the interior of 
a cell we introduce an approximation which renders the prob- 
lem tractable. A crucial feature included in this approximation 
is that the size of the unbroken region within which stress is 
redistributed is of the order of the size of the failed region. 

Such a simple mechanism for stress redistribution leads to a 
complex behavior if used as a basis for a hierarchical model. 
Subsequent orders in the hierarchy are obtained by treating 
cells of order r as asperities of order r + 1, which are then 
combined into pairs to obtain cells of order r + 1 as illus- 
trated in Figure 1. Confining the redistribution of stress to 
within cells yields cells that are independent. The use of a 
hierarchical model introduces a coupling among adjacent cells 
when they are treated as asperities at the next level of iter- 
ation. The hypothesis of scale invariance implies the existence 
of a unique model description of the system which is indepen- 
dent of length scale except for a prescribed change in the 
pertinent parameters. Such invariance is the basis for the RG 
approach. In this case it is implemented through a statistical 
distribution of asperity strengths which is invariant in that it is 
the same for asperities of all orders except for an overall re- 
normalization of stress. 

The process of stress transfer and induced failure tends to 
increase the lengths of segments Of broken asperities. For a 
given applied stress the length of the maximum segment of 
broken asperities is the correlation length. As the applied 
stress is increased, a value of stress is reached at which the 
correlation length becomes infinite and failure of an infinite 
length of asperities occurs. This stress is the critical stress and 
the value at which the behavior changes catastrophically from 
stick to slip. The stress at which this change occurs is analo- 
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gous to the temperature at which a phase transition occurs. 
The statistical distribution of energies in a solid, liquid, or gas 
is analogous to the statistical distribution of asperity strengths 
in our model. The utilization of the RG method allows us to 

study the development of failed segments as the characteristic 
lengths of the failed segments increase with increased applied 
stress. 

Our model for fault failure is similar to the one for failure of 

a fibrous composite material (or a stranded cable). If one 
strand fails, the stress carried by that strand is transferred to 
adjacent unbroken strands. Extensive numerical simulations 
of the failure of composite materials have been carried out 
[Harlow and Phoenix, 1982-]. Two results are of interest. The 
first is that a composite material will fail catastrophically after 
only a few strands have failed. Second, the load that can be 
carried is less than the load that can be carried if the strands 

had been combined into a single, load carrying member. How- 
ever, an important difference between a fault and a composite 
material is scale invariance. The scale of a composite material 
is prescribed by the size of the fibers. Thus an RG approach 
would not be applicable to its failure. 

We next consider the distribution of asperity strengths. 
Clearly, a wide variety of strengths on a wide variety of scales 
must exist on any real fault. For example, fault bends and 
offsets correspond to strong asperities. However, data on 
actual distributions of asperity strengths are not available. It is 
possible that studies of the type given in this paper may allow 
asperity distributions to be inferred from such seismic obser- 
vations as the dependence of earthquake frequency on mag- 
nitude. In the absence of applicable data we assume a qua- 
dratic Weibull distribution for the probability Pa that the fail- 
ure strength aœ of an asperity is less than the stress art 

Prob (aœ < aa) -- Pa = 1 - e -(•x)2 (3) 
where 

X -- G/G O 

and a 0 is a reference asperity strength. Wiebull distributions 
are often used to represent a statistical distribution of failure 
strengths [Harlow and Phoenix, 1982]. It should be empha- 
sized that our approach can be applied to any continuous 
distribution of asperity strengths. The probability 

Pi= 1--e-X2 (4) 

that aœ < a is shown in Figure 2a as a function of a/ao. Ten 
percent of the asperities have failed when a/ao = 0.32, fifty 
percent of the asperities have failed when a/ao = 0.83, and 
ninety percent of the asperities have failed when a/ao = 1.52. 
Since the relation between P• and a is invertible, P• can be 
used as a measure of the applied stress. The probability den- 
sity that failure will occur at the applied stress a/ao is given by 
dP•/dx and is shown in Figure 2b. The probability density 
that aœ = a is zero at zero stress and increases to a maximum 
at a-0.71 a 0. The mean strength of an asperity is d = 
(x/•/2)a0 = 0.8862 a0. 

An essential feature of our model is the transfer of stress 

from a failed asperity to its nearest neighbors. Without this 
transfer of stress the behavior of the system is simple and 
uninteresting. Since strong asperities will not break until large 
stresses are applied, they can block the propagation of broken 
segments, and there is no change from stick to slip behavior 
on the fault. It is the transfer of stress from broken asperities 
onto the remaining unbroken asperities that leads to cata- 
strophic behavior at an applied stress that is less than the 
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Fig. 2. (a) Dependence of the probability P1 that failure of an 
asperity will have occurred on the normalized stress a/a o. (b) Depen- 
dence of the probability that failure will occur at the normalized 
stress a/a o. This is the change in the probability of failure gP1 when 
there is a change in the normalized stress rS(a/ao). 

average strength of the asperities. It is clear that stress transfer 
to the adjacent unbroken sections of a fault will occur on a 
real fault. 

In order to quantify the failure of asperities due to the 
transfer of stress we introduce the conditional probability 
that failure will occur when a stress (a-b)a is transferred to an 
unbroken asperity supporting a stress ba, so that the final 
stress on the asperity is aa. This conditional probability is 
related to the probability that aœ is both larger than ba and 
smaller than aa by [Meyer, 1970] 

Prob (ba < aœ < aa) 
Pa,b = (5) 

Prob (aœ > ha) 

A simple geometrical interpretation of both probabilities 
needed to obtain Pa,b follows from the identity 

a,/,o dP•(x) Pa = • dx 
j0 dx 

which identifies Pa as the area under the dP•/dx curve between 
x = 0 and x = aa/ao, shown in Figure 3a. Then 

I a./.o dP •(x) Prob (ha < a f < aa)= dx = Pa- Po (6) 
d•/•o dx 

is the area under the dP1/dx curve between x = ba/ao and 
x = aa/ao, shown in Figure 3b' and 

Prob (% > ba) = 1 - Prob (% < ba)= 1 - Po (7) 
is the area under the dPi/dx curve between x = ba/ao and 
infinity, shown in Figure 3c. Substituting (6) and (7) into (5) 
yields 

P"'o = 1-- Pb (8) 
Note that for a probability function of the form (3), 

P, = 1 -- (1 -- P•)": (9) 

In principle, this problem could be solved without the use of 
the RG technique. However, the range of scales that could be 
studied is quite limited even with the largest computers avail- 
able. Although we will utilize the RG method in the standard 
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manner, it should be recognized that the approach is semiem- 
pirical and has been principally justified by its success in solv- 
ing a variety of fundamental unsolved problems in physics. 
These problems fall in a broad class in which a continuous 
system on the microscopic scale exhibits discontinuous behav- 
ior on the macroscopic scale. We argue that the stick-slip 
behavior of faults falls in this general classification of physical 
problems. 

We will first illustrate the application of the RG technique 
to the failure of a linear array of asperities, using a basic cell 
composed of two "asperities" and the probability distribution 
given in (2). Note that the (r + 1)th-order "asperities" which 
result from r iterations of the RG transformation contain 2 • 

actual first-order asperities. The first three renormalizations 
are illustrated in Figure 1. For a cell containing two asperities 
which are either broken or unbroken, four states are possible: 
(1) [bb], (2) [bu], (3) [ub], and (4) [uu], where b represents a 
broken asperity and u represents an unbroken asperity. Note 
that states 2 and 3 are equivalent and can be combined into a 
single state with a multiplicity of 2. The probabilities for each 
of these states, neglecting any interactions between asperities, 
are given by 

[bb] [ub] [uu] 

2 2P•(1 P•) (1 V•)2 (10) P! • • 

where the probability of the failure of an individual asperity is 
P1. 

Next, it is necessary to consider the influence of a broken 
asperity on an adjacent unbroken asperity. We use the con- 
ditional probability P2.x that an unbroken asperity already 
supporting a stress a will fail when an additional stress a is 
transferred to it from an adjacent broken asperity. This mech- 
anism for transfer of stress leads to induced cell failures. We 

must prescribe a condition for determining whether an rth 
order cell is broken or unbroken. We assume that an rth order 

cell is broken only if both "asperities" in the cell are broken. 
Probabilities for asperity and cell behavior with stress interac- 
tions are 
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Fig. 3. (a) The probability P. that the failure strength a s of a 
given asperity is less than aa corresponds to the area under the dPx/ 
dx curve between x = 0 and x = aa/a o. (b) The probability P,- Pb 
that the failure strength a s of a given asperity lies between ba and aa 
corresponds to the area under the dP•/dx curve between x- ba/a o 
and x = aa/a o. (c) The probability 1 - Pb that the failure strength a s 
of a given asperity exceeds ba corresponds to the area under the 
dP•/dx curve between x + ba/a o and infinity. 

determine P• (• + i) from P• (•), where r is the order of the cell 
being considered. The general form of (15) is 

Pz(•+ z) = 2Pl(')[1 - (1 - pz(•))4] _ (p•(r))2 (16) 

Equation (16) implies that a relation of the form (9) between 
P• and P2 is valid at all orders r, as follows from the assump- 
tion of invariance of the statistical distribution of asperity 
strengths. The probability Px (•) for failure of an rth-level as- 
perity is given by a Weibull relation of the form (4) in terms of 
a renormalized stress a (•) = x(•)ao if 

[bb] [ub] [bb] [ub] [uu] 

p12 2P(1 -- P)P2, 2P(1 -- P1)(1 -- P2,) (1 -- p)2 

[bb] + {[ub]-, [bb]} [ub] + [uu] 
+ 2P(1 -- Vl)V2, (1 -- V)2 + 2P(1 -- P•X1 - V2,1) 

(11) 

The conditional probability from (8) is given by 

P2- P• 
- P2,• -- 1 - P• 

Substitution of (12) into (11) gives the probability that a cell 
has failed [b2] or not failed [u2] 

[b2] [u2] (13) 
2p•p 2 _ p12 1 + p•2 _ 2p•p 2 

Under this condition the probability that a first-order cell is 
broken, P •(2), is given by 

p•(2) = 2plp 2 _ p•2 (14) 

and substitution of P2 from (9) gives 

p•(2) = 2P•[1 -- (1 -- P•)4] -- p12 (15) 

For higher order cells, (15) is used as an iteration equation to 

(x(• + •))2 = _ In {2 exp [ -- 4(x(•)) 2] 

-- 2 exp [-5(x(•)) 2] + exp [-2(X(r))2]} (17) 

Thus the functional form of the probability distribution is 
preserved except for an overall stress renormalization, as re- 
quired by the hypothesis of scale invariance. Our use of a scale 
invariant model is motivated by evidence of scaling in the 
nucleation and growth of cracks [Allegre et al., 1982]. 

The dependence of Px('+ x) on Px(') is given in Figure 4. The 
points 0 and 1 are stable fixed points of the system. The 
straight line corresponding to Pl•'+ •= P•'• is also included 
in Figure 4. The iterative relation crosses this straight line at 
Px•'•= P*= 0.2063. We now show that P* is an unstable 
fixed point that separates the region of stick behavior from the 
region of slip behavior. The RG iteration can be performed 
graphically using Figure 4. For example, we take P• = 0.6 and 
from (15) find pl(2)= 0.8093. This cell behavior at order 1 
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Fig. 4. Dependence of the probability of failure for the r + 1 cell 
P•('+ •) on the probability of failure of the r cell P•(') for cells contain- 
ing two asperities with a quadratic Weibull distribution of strengths. 
The procedure described in the text for determining the probability 
of cell failure for successive iterations is illustrated for P• = 0.6, 0.1. 
The critical probability of failure P* gives the bifurcation point for 
catastrophic failure of the system. If P1 < P*, the solution iterates to 
P•= 0 and no failure occurs. If P• >P*, the solution iterates to 
P• • = 1, and the system has failed. 

now becomes the asperity behavior at order 2. To do this 
graphically, a horizontal line is extended to the line P•{'+ •) - 
P•{') to reflect the total cell behavior at order 1 into the as- 
perity behavior at order 2. Thus the probability of cell failure 
at order 2 is p•{3) = 0.9615. This procedure is repeated to give 
p•{4) = 0.9985, etc., and the probability of failure rapidly ap- 
proaches unity as the order is increased. On the other hand, if 
we take P• = 0.1, we find p•(2)= 0.05878, p•(3)= 0.02184, 
p•m= 0.00322, etc., and the probability of failure decreases 
towards zero as the order is increased. If P• > P*, failure 
occurs for infinite length scales, and slip behavior results. If 
P• < P*, the behavior is stable, and failure occurs only on the 
smallest scales. Bifurcation of the solution occurs at P• = 
P*-0.2063, and the critical stress leading to failure is 
a*= 0.4807 ao from (3). The corresponding value of x*= 
a*/ao - 0.4807 is the fixed point solution to the iterative rela- 
tion (17) for the renormalization of stress. The dependence of 
P•(') on r for several values of P1 is given in Figure 5. The 
bifurcation of the solution at P• - P* = 0.2063 is clearly illus- 
trated. Note that the value of the critical stress is considerably 
less than the value of the mean strength of an asperity ff = 
0.8862 ao. 

The stable behavior of the system at a < a* can be 
characterized by a correlation length L which measures the 
maximum length over which failure occurs for P• < P*. The 
rapid increase of L as the threshold is approached from below 
is described by a power law 

L oc (P* - p•)-v (18a) 

or equivalently, 

L oc (a* -- a)- v, (18b) 

where v is the correlation length exponent [Wilson and Koqut, 
1974]. According to this result the magnitude of precursory 
seismicity would be expected to increase as the critical stress 
on the fault is approached. The onset of catastrophic behavior 
at a = a* corresponds to the divergence of the correlation 
length L. 

The correlation length exponent v is easily obtained from 

I0 

p•(r) 

0 • O• 
øo I 2 3 4 5 

Fig. 5. Dependence of the probability of failure P•(') on the order 
r for several values of P•. The bifurcation of the solution at P• = P* 
= 0.2063 is clearly illustrated. 

the RG transformation (16). Given the dependence of P•('+ •) 
on P•{'), the slope of the curve in Figure 4 at P• = P* is given 
by 

dP•(r+ •)1 A -- .... (19) 
dP • 09 t' • = 1', 

As long as (P*-P•'•)<< 1, a linear approximation to (16) is 
valid, and 

p, _ p•(r+ •) 
A= P*-P•(r) (20) 

It then follows that [Wilson and Ko•7ut, 1974] 

A = b •/v (21) 

where b is the linear rescaling factor. For the b = 2 RG trans- 
formation that led to (16) we obtain A = 1.6189, so that 
v = 1.4388. 

So far, we have considered only a linear array of asperities. 
We will next consider a two-dimensional array of asperities 
distributed uniformly on a planar fault as illustrated in Figure 
6. We will divide the two-dimensional array of n asperities 
into n/4 cells each containing four asperities. The failure of 
individual asperities will be treated in the same way as in the 
linear case, and (3) is assumed to be applicable. When one or 
more asperities in a cell fail, we assume that the stress on 
those asperities is transferred equally to the remaining as- 
perities in the cell. That is, if one asperity fails, the stress on 
the three remaining asperities is 4a/3. We choose four as- 
perities in a cell so that the stress in the field region is applied 

1 

Fig. 6. Illustration of the two-dimensional array of asperities with 
four asperities per cell. Second (2), third (3), and fourth (4) order cells 
are also shown. 
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over a length which is of the order of the length of the failed 
region. We again assume that the cell fails when all asperities 
in the cell fail. 

A second-order cell is composed of four first-order cells or 
second-order asperities and therefore sixteen primary as- 
perities, as illustrated in Figure 6. The statistics of failure of 
the second-order asperities and cells is the same as that of the 
first-order asperities and cells. Again, the process is repeated 
by iteration to infinite order. The RG transformation thus 
constructed corresponds to a linear rescaling factor b = 2 on a 
two-dimensional array. This case is considerably more com- 
plex than the linear array example considered above. Follow- 
ing the same procedure illustrated in (10), (11), and (13) and 
using the definition of the conditional probability, we find that 
the probability that a cell fails is given by 

= {4) + 4P 3(1 -- P•)P4, + 6p•2( 1 -- P•)2[P2,•2 p•(2) p• • • 

+ 2P2,•(1 - P2,•)P4,23 + 4P•(1 -- e•)3{e4/3,13 

+ 3P4/3,•2(1- P4/3,•)P4,4/3 + 3P4/3,•(1- P4/3,•) 2 

[P2,•/32 + 2P2,•/3(1- P2,•/,)P4,2]} (22) 
and introducing (8), we obtain 

= 4 3(e 4 e•) + 6p•2(e2 _ p1)2 p•(2) P• + 4P• -- 

+ 12p•2(P2 - P•)(P4- P2) 

+ 4P•(P4/3 - p•)3 + 12P•(P4/3 - P•)2(P4- P4/3) 

+ 12P•(P4/3 - P•)(P2 - P4/3) 2 

+ 24P•(P4/3 - P•)(P2 - P4/3)(P4- P2) (23) 
The dependence of P•{•+ •) on P•{•) shown in Figure 7 follows 
from introducing Pa from (8) and using (23) as an iterative 
relation. 

The general behavior of this two-dimensional case is the 
same as that of the linear example considered above. Again, 
an S-shaped curve is generated. The points 0 and 1 are stable 
fixed points. The crossing at P* = 0.1707 separates stick from 
slip behavior. From (3) the bifurcation of the solution occurs 
at a*= 0.4327 ao. This is just about one half the mean 
strength of the asperities a = 0.8862 ao. We also find that 
A = 2.357; the correlation length exponent v = 0.8084 follows 
from (20) with b = 2. The quantitative differences between 
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Fig. 7. Dependence of the probability of failure for the r + 1 cell 
p•e+ •) on the probability of failure of the r cell P•(r) for cells contain- 
ing four asperities with a quadratic Weibull distribution of strengths. 
The critical probability of failure P* gives the bifurcation point for 
the system. If P• < P*, the solution iterates to P• © - 0 and no failure 
occurs. If P• > P*, the solution iterates to P• © = 1 and the system has 
failed. 

TABLE 1. Renormalization Group Results for the Critical 
Probability P*, the Critical Stress a*/a o, and the Correlation 

Length Exponent v in One and Two Dimensions 

d P* a*/a o v 

1 0.2063 0.4807 1.4388 

2 0.1707 0.4327 0.8084 

these results and those for the linear array, as listed in Table 1, 
illustrate the effect of the physical dimensionality d on the 
critical behavior of the system. Note the decrease in both the 
critical probability P* and the correlation length exponent v 
with increasing d. Simpler percolation models exhibit the same 
trend when d is increased from two to three [Stauffer, 1979]. 

CONCLUSIONS 

We have proposed a model for the behavior of faults that is 
based on the hypothesis of scale invariance. We postulate that 
fault behavior is controlled by a distribution of asperities and 
barriers on all scales. In addition to the frictional behavior of 

fault gouge on the smallest scale, the barriers include bends in 
the fault and offsets of fault strands. We also lump con- 
centrations of stress and variations of material properties into 
our statistical approach. We postulate that the asperities and 
barriers have a statistical distribution of strengths. Scale in- 
variance requires that the same statistical distribution of 
strengths be applicable at all scales. This is the basis for the 
applicability of the RG approach. We introduce a mechanism 
for transfer of stress when an asperity fails. This transfer of 
stress to adjacent asperities is an essential feature of our ap- 
proach. However, our results are not qualitatively sensitive to 
the details of the transfer process, i.e., to how many asperities 
the stress is transferred to. 

The stick-slip behavior of faults is a natural consequence of 
the renormalization group approach to the statistical model 
presented here for asperity failure. A critical stress is found at 
which the catastrophic failure occurs on a macroscopic scale. 
Below this critical stress, very few precursory fault breaks have 
occurred. This is in agreement with observations. There is 
virtually no seismic activity on the locked southern section of 
the San Andreas fault. We predict that there will be no signifi- 
cant precursory activity on the fault prior to the next great 
earthquake. We also find that the value of the critical stress is 
less than the mean strength of the asperities. We believe that 
this is an explanation for the low stress levels associated with 
displacements on the San Andreas fault. 

Clearly, the model presented in this paper involves many 
simplifying assumptions and certainly does not predict all as- 
pects of real fault behavior. Some examples are the following: 

1. Our analysis predicts that the catastrophic failure ex- 
tends to infinity. That is, a fault rupture does not terminate. 
Also, we do not predict the transition from stable sliding to 
stick-slip behavior. Preliminary studies indicate that both of 
these difficulties can be overcome by introducing a more com- 
plex form for the asperity strength distribution. For instance, a 
mechanism for blocking the growth of fault breaks can be 
incorporated into the model by allowing for several peaks 
rather than a single peak in the probability of failure for a 
single asperity shown in Figure 2b. 

2. Our analysis does not predict the fractional stress drop 
in an earthquake. Obviously, our simple assumption of com- 
plete stress transfer to an adjacent asperity neglects any re- 
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sidual asperity strength and is an oversimplification which can 
be modified. The failure of a small asperity is equivalent to the 
introduction of a small dislocation pair on the fault. This will 
result in a small displacement on the fault whose magnitude is 
dependent upon the "stiffness" of the adjacent media. When 
adjacent asperities fail, the size of the dislocation patch grows. 
This, in turn, allows a larger displacement to occur as long as 
the failed asperities do not lock. 

We would like to emphasize that the approach presented in 
this paper can be expanded and improved. We consider it to 
be a preliminary effort to introduce a new approach to the 
understanding of fault behavior. Our primary purpose is to 
introduce the concept of scale invariance and some of its im- 
plications. Some of the features found in laboratory friction 
experiments are incorporated through our simple model for 
asperity behavior, but it is the concept of scale invariance 
introduced by the RG approach which leads to the results 
discussed here for the macroscopic behavior of faults. 
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