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So far

Have not specified type of arrival.

Can do with P only, S only (?!), P and S together, or S-P.

Need velocity model to calculate travel times and travel 
time derivatives

(so earthquakes are located with respect to the assumed 
velocity model, not real earth.

Errors are “formal”, i.e. with respect to model.) 

Velocity models usually laterally homogeneous.
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Problems:
Column of 1’s – if one of the other 
columns is constant (or approximately 
constant) matrix is singular and can’t 
be inverted.
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How can this happen:
- All first arrivals are head waves from 
same refractor 
- Earthquake outside the network
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€ 

∂τk
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= constant ∀ k

All first arrivals are head waves from same refractor

In this case we 
cannot find the 

depth and origin time 
independently.
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≈ constant ∀ k

∂τk
∂y

≈ constant ∀ k

Earthquake outside the network

In this case only the azimuth is constrained.

If using  both P and S, can also get range, but S “noisier” 
than P so is marginal improvement.

Probably also suffering from depth-origin time coupling
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Problem gets worse with addition of noise (changes 
length of red lines – intersection point moves left/

right – change of distance - much more than in 
perpendicular direction – change of azimuth.) 
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Similar problems with depth. 

d/dz column ~equal, so almost linearly dependent on 
last column 

and 

gets worse with addition of noise (changes length of 
red lines – intersection point moves left/right [depth, 

up/down {drawn sideways}] much more than in 
perpendicular direction [position].) 

. 
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Other problems: 

Earthquake locations tend to “stick-on” layers in 
velocity model. 

When earthquake crosses a layer boundary, or the 
depth change causes the first arrival to change from 

direct to head wave (or vice verse or between 
different head waves), there is a discontinuity in the 
travel time derivative (Newton’s method). May move 

trial location a large distance. 

Solution is to “damp” (limit) the size of the 
adjustments – especially in depth. 
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Other problems: 

Related to earthquake location, but bigger problem 
for focal mechanism determination. 

Raypath for first arrival from solution may not be 
actual raypath, especially when first arrival is head 

wave. 
Results in wrong take-off angle. 

Since head wave usually very weak, oftentimes don’t 
actually see head wave. Measure P arrival time, but 

location program models it as Pn. 
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A look at Newton’s method

Want to solve for zero(s) of F(x)

Start with guess, x0.

Calculate F(x0) (probably not zero, unless VERY lucky).

Find intercept          x1 = x0-F(x0)/F’(x0)
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Newton’s method

Want to solve for zero(s) of F(x)

Now calculate F(x1).

See how close to zero.

If close enough – done.
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Newton’s method

If not “close enough”, do again

Find intercept    x2 = x1-F(x1)/F’(x1)

If close enough, done, else – do again.
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Newton’s method

Xn+1 = xn-F(xn)/F’(xn)

What happens when F’(xn)=0?

Geometrically, you get sent off to infinity – method fails.

(Mathematically can’t divide by zero – method fails.)
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Newton’s method

How does convergence depend on starting value?

Some starting values iterate through xn=0 and therefore 
do no converge (limited calculation to 35 iterations).
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Newton’s method

Other problems

Point is “stationary” (gives back itself xn -> xn…).

Iteration enters loop/cycle: xn -> xn+1 -> xn+2  = xn …

Derivative problems (does not exist).

Discontinuous derivative.
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Newton’s method applied to solution of non-linear, 
complex valued, equations

Consider

Z3-1=0.
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Newton’s method applied to solution of non-linear, 
complex valued, equations

Consider

Z3-1=0.

Solutions

Three of them

1 e (i2πn/3)

n=0, 1, 2

Distance = 1

Every 120 degrees
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Newton’s method applied to solution of non-linear, 
complex valued, equations

Consider

Z3-1=0

Solutions

Three of them

1 e (i2πn/3)

n=0, 1, 2

Distance = 1

Every 120 degrees
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Take each point in the complex plane as a starting guess 
and apply Newton’s method.

Now

Color the starting 
points to identify 
which of the three 
roots each starting 
point converges to 

using Newton’s 
method.

eg. all the red points 
converge to the root 

at 1.
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Let the intensity of 
each starting point’s 
color be related to 

the number of steps 
to converge to that 

root

(brighter - converges 
faster, darker – 

converges slower)
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Notice that any 
starting point on the 
real line converges to 

the root at 1

Similarly points on 
line sloping 60 

degrees converge to 
the other 2 roots.
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Notice that in the 
~third of the plane 
that contains each 

root things are pretty 
well behaved.
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Notice that where any 
two domains of 

convergence meet, it 
looks a little 
complicated.
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Basically – the 
division between any 
two colors is always 

separated by the 
third color.

AT ALL SCALES!
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Zoom in
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Zoom in again
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If you keep doing this (zoom in) the “triple” junctions 
start to look like

Mandlebrot sets!

and you will find points that either never converge or 
converge very slowly.

Quick implication –

linear iteration to solve non-linear inversion problems

(Newton’s method, non-linear least squares, etc.)

may be unstable.
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More inversion pitfalls

Bill and Ted's misadventure.

Bill and Ted are geo-chemists who wish to measure the 
number of grams of each of three different minerals 

A,B,C held in a single rock sample.

Let  
a be the number of grams of A,  
b be the number of grams of B,  
c be the number of grams of C

d be the number of grams in the sample.  

From Todd Will 
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By performing complicated experiments Bill and Ted are 
able to measure four relationships between a,b,c,d which 

they record in the matrix below:

  

€ 

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234
23.2134 −86.3925  44.693

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

a
b
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

34.7177
70.9241
82.9271
−26.222

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

                             Ax = b

Now we have more equations than we need

What to do?
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One thing to do is throw out one of the equations

(in reality only a Mathematician is naïve enough to think 
that three equations is sufficient to solve for three 

unknowns – but lets try it anyway).

So throw out one - leaving

  

€ 

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

a
b
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

34.7177
70.9241
82.9271

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

                                 Ax = b

From Todd Will (different A and b from before)
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Remembering some of their linear algebra the know that 
the matrix is not invertible if the determinant is zero, so 

they check that

  

€ 

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234

≈ −2

OK so far

(or “fat, dumb and happy”)

From Todd Will 
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So now we can compute

From Todd Will 

  

€ 

a
b
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

−1
34.7177
70.9241
82.9271

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0.5
0.8
0.7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

                                 x = A−b

So now we’re done.
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Or are we?

From Todd Will 
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Next they realize that the measurements are really only 
good to 0.1

So they round to 0.1 and do it again 

  

€ 

a
b
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

−1
34.7
70.9
82.9

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

−1.68294
8.92282
−3.50254

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

                                        x = A−b
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€ 

a
b
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

−1.68294
8.92282
−3.50254

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Now they notice a small problem –

They get a very different answer

(and they don’t notice they have a bigger problem that 
they have negative weights/amounts!)

€ 

a
b
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

0.5
0.8
0.7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
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So what’s the problem?

First find the SVD of A.

    

€ 

A =

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

A =
 
h 1 
 
h 2 
 
h 3( ) 

100    0 0
0     100 0
0     0    0.0002

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

 a 1
 a 2
 a 3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Since there are three non-zero values on the diagonal A 
is invertible
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€ 

A =

93.477      10.202 −28.832
1.93          32.816    62.414
26.821      36.816    57.234

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

A =
 
h 1 
 
h 2 
 
h 3( ) 

100    0 0
0     100 0
0     0    0.0002

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

 a 1
 a 2
 a 3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

BUT, one of the singular values is much, much less than 
the others

So the matrix is “almost” rank 2

(which would be non-invertible)
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We can also calculate the SVD of A-1

    

€ 

A−1 =
 a 1 
 a 2 
 a 3( ) 

0.01    0 0
0     0.01 0
0     0    5000

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

 
h 1 
h 2 
h 3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

From Todd Will 
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So now we can see what happened

(why the two answers were so different)

Let y be the first version of b

Let y’ be the second version of b (to 0.1)

    

€ 

A−1y − A−1 ʹ′ y = A−1 y − ʹ′ y ( ) =

 a 1 
 a 2 
 a 3( ) 

0.01    0 0
0     0.01 0
0     0    5000

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
h 1 
h 2 
h 3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 y − ʹ′ y ( )

So A-1 stretches vectors parallel to h3 and a3 by a factor 
of 5000.
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Returning to GPS
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€ 

PR1 t R ,t1( ) = x1 t1( ) − xR tR( )( )
2

+ y1 t1( ) − yR tR( )( )
2

+ z1 t1( ) − zR tR( )( )
2

+ τR −τ1( ) c

PR 2 t R ,t 2( ) = x 2 t 2( ) − xR tR( )( )
2

+ y 2 t 2( ) − yR tR( )( )
2

+ z2 t 2( ) − zR tR( )( )
2

+ τR −τ 2( ) c

PR 3 t R ,t 3( ) = x 3 t 3( ) − xR tR( )( )
2

+ y 3 t 3( ) − yR tR( )( )
2

+ z3 t 3( ) − zR tR( )( )
2

+ τR −τ 3( ) c

PR 4 t R ,t 4( ) = x 4 t 4( ) − xR tR( )( )
2

+ y 4 t 4( ) − yR tR( )( )
2

+ z4 t 4( ) − zR tR( )( )
2

+ τR −τ 4( ) c

We have 4 unknowns (xR,yR,zR and τR)
And 4 (nonlinear) equations

(later we will allow more satellites)
So we can solve for the unknowns
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Again, we cannot solve this directly

Will solve interatively by

1) Assuming a location

2) Linearizing the range equations

3) Use least squares to compute new (better) location

4) Go back to 1 using location from 3

We do this till some convergence criteria is met (if we’re 
lucky)

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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linearize

So - for one satellite we have

    

€ 

Pobserved = Pmodel +
 
ν 

Pobserved = P x,y,z,τ( ) +
 
ν 

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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linearize

  

€ 

P x,y,z,τ( ) ≈ P x0,y0,z0,τ0( ) + x − x0( )∂P
∂x x0 ,y0 ,z0 ,τ0( )

   + y − y0( )∂P
∂y x0 ,y0 ,z0 ,τ0( )

+ z − z0( )∂P
∂z x0 ,y0 ,z0 ,τ0( )

+ τ −τ0( )∂P
∂τ x0 ,y0 ,z0 ,τ0( )

P x,y,z,τ( ) ≈ Pcomputed +
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z

Δz +
∂P
∂τ

Δτ

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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Residual

Difference between observed and calculated 
(linearized)

    

€ 

Pobserved = P x,y,z,τ( ) +
 
ν 

ΔP = Pobserved − Pcomputed

ΔP = P x,y,z,τ( ) +
 
ν − Pcomputed

ΔP = Pcomputed +
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z

Δz +
∂P
∂τ

Δτ +
 
ν − Pcomputed

ΔP =
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z

Δz +
∂P
∂τ

Δτ +
 
ν 

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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€ 

ΔP =
∂P
∂x

Δx +
∂P
∂y

Δy +
∂P
∂z

Δz +
∂P
∂τ

Δτ +
 
ν 

So we have the following for one satellite

    

€ 

ΔP =
∂P
∂x

∂P
∂y

∂P
∂z

∂P
∂τ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Δx
Δy
Δz
Δτ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

+
 
ν 

Which we can recast in matrix form

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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€ 

ΔP1

ΔP1

ΔP1


ΔPm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

=

∂P1

∂x
∂P1

∂y
∂P1

∂z
∂P1

∂τ
∂P 2

∂x
∂P 2

∂y
∂P 2

∂z
∂P 2

∂τ
∂P 3

∂x
∂P 3

∂y
∂P 3

∂z
∂P 3

∂τ
   

∂Pm

∂x
∂Pm

∂y
∂Pm

∂z
∂Pm

∂τ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

Δx
Δy
Δz
Δτ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

+

ν1

ν 2

ν 3


ν n

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

For m satellites (where m≥4)

  

€ 

 
b = A x +  ν 

Which is usually written as

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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€ 

∂PRS

∂xR
= xS t S( ) − xR tR( )( )

2
+ yS t S( ) − yR tR( )( )

2
+ zS t S( ) − zR tR( )( )

2
+ τR −τ1( ) c

∂PRS

∂xR
=

−1( ) 12( ) 2( ) xS t S( ) − xR tR( )( )
xS t S( ) − xR tR( )( )

2
+ yS t S( ) − yR tR( )( )

2
+ zS t S( ) − zR tR( )( )

2

∂PRS

∂xR
=

xR tR( ) − xS t S( )( )
ρR ,  similarly for y and z

∂PRS

∂τR
= c

Blewitt, Basics of GPS in “Geodetic Applications of GPS”

Calculate the derivatives
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€ 

A =

x0 − x
1

ρ1
y0 − y

1

ρ1
z0 − z

1

ρ1
c

x0 − x
2

ρ2

y0 − y
2

ρ2

z0 − z
2

ρ2
c

x0 − x
3

ρ3

y0 − y
3

ρ3

z0 − z
3

ρ3
c

   
x0 − x

m

ρm

y0 − y
m

ρm

z0 − z
m

ρm
c

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

So we get

Is function of direction to satellite

Note last column is a constant
Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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Consider some candidate solution x’

Then we can write

  

€ 

 
ν = b − A ʹ′ 

 x 

We would like to find the x’ that minimizes the ν hat

b are the observations

ν hat are the residuals

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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So the question now is how to find this x’

One way, and the way we will do it,

Least Squares

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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Since we have already done this – we’ll go fast

  

€ 

ˆ v =
 
b − Aˆ ʹ′ x 

  

€ 

J  x ( ) =
 
ν i
2

i=1

m

∑ =
 
ν T
 
ν =

 
b − A x ( )

T  
b − A x ( )

Vary value of x to minimize

Use solution to linearized form of observation equations 
to write estimated residuals

Blewitt, Basics of GPS in “Geodetic Applications of GPS”
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€ 

δ J ˆ x ( ) = 0

δ 
 
b − Aˆ x ( )

T  
b − Aˆ x ( )⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0

δ
 
b − Aˆ x ( )

T⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 
b − Aˆ x ( ) +

 
b − Aˆ x ( )

T
δ
 
b − Aˆ x ( ){ } = 0

−Aδ ˆ x ( )T  b − Aˆ x ( ) +
 
b − Aˆ x ( )

T
−Aδ ˆ x ( ) = 0

−Aδ ˆ x ( )T  b − Aˆ x ( ) +
 
b − Aˆ x ( )

T
−Aδ ˆ x ( ) = 0

Aδ ˆ x ( )T  b − Aˆ x ( ) = 0

δ ˆ x T AT( ) 
 
b − Aˆ x ( ) = 0

δ ˆ x T AT
 
b − AT Aˆ x ( ) = 0

AT
 
b = AT Aˆ x 

ˆ x = AT A( )  −1
AT
 
b 

Normal equations

Solution to normal equations
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€ 

ˆ x = AT A( )  −1
AT
 
b 

Assumes

Inverse exists

(m greater than or equal to 4, necessary but not 
sufficient condition)

Can have problems similar to earthquake locating (two 
satellites in “same” direction for example – has effect of 

reducing rank by one)
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GPS tutorial Signals and Data

http://www.unav-micro.com/about_gps.htm
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GPS tutorial Signals and Data

http://www.unav-micro.com/about_gps.htm
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Elementary Concepts

Variables:

things that we measure, control, or manipulate in 
research. They differ in many respects, most notably in 
the role they are given in our research and in the type of 

measures that can be applied to them. 
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Observational vs. experimental research.

Most empirical research belongs clearly to one of those 
two general categories. 

In observational research we do not (or at least try not 
to) influence any variables but only measure them and 
look for relations (correlations) between some set of 

variables. 

In experimental research, we manipulate some variables 
and then measure the effects of this manipulation on 

other variables.
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Observational vs. experimental research.

Dependent vs. independent variables.

Independent variables are those that are manipulated

whereas dependent variables are only measured or 
registered. 



61From G. Mattioli

Variable Types and Information Content

Measurement scales.

Variables differ in "how well" they can be measured. 

Measurement error involved in every measurement, which 
determines the "amount of information” obtained. 

Another factor is the variable’s "type of measurement 
scale."
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Variable Types and Information Content

Nominal variables

allow for only qualitative classification.

That is, they can be measured only in terms of whether 
the individual items belong to some distinctively different 

categories, but we cannot quantify or even rank order 
those categories. 

Typical examples of nominal variables are gender, race, 
color, city, etc.
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Variable Types and Information Content

Ordinal variables 

allow us to rank order the items we measure 

in terms of which has less and which has more of the 
quality represented by the variable, but still they do not 

allow us to say "how much more.” 

A typical example of an ordinal variable is the 
socioeconomic status of families.
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Variable Types and Information Content

Interval variables

allow us not only to rank order the items that are 
measured,

but also to quantify and compare the sizes of 
differences between them.

For example, temperature, as measured in degrees 
Fahrenheit or Celsius, constitutes an interval scale.
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Variable Types and Information Content

Ratio variables

are very similar to interval variables; 

in addition to all the properties of interval variables, 

they feature an identifiable absolute zero point, thus 
they allow for statements such as x is two times more 

than y. 

Typical examples of ratio scales are measures of time or 
space.
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Systematic and Random Errors

Error: 

Defined as the difference between a calculated or 
observed value and the “true” value
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Systematic and Random Errors

Blunders:

Usually apparent

either as obviously incorrect data points or results that 
are not reasonably close to the expected value.  

Easy to detect (usually).

Easy to fix (throw out data).
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Systematic and Random Errors

Systematic Errors:

Errors that occur reproducibly from faulty calibration of 
equipment or observer bias. 

Statistical analysis in generally not useful,

but rather corrections must be made based on 
experimental conditions.
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Systematic and Random Errors

Random Errors:

Errors that result from the fluctuations in observations. 

Requires that experiments be repeated a sufficient 
number of time to establish the precision of 

measurement.

(statistics useful here)
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From G. Mattioli

Accuracy vs. Precision
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From G. Mattioli

Accuracy vs. Precision

Accuracy: A measure of how close an experimental result 
is to the true value.

Precision: A measure of how exactly the result is 
determined.  It is also a measure of how reproducible the 

result is.
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From G. Mattioli

Accuracy vs. Precision

Absolute precision:

indicates the uncertainty in the same units as the 
observation

Relative precision:

indicates the uncertainty in terms of a fraction of the 
value of the result
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Uncertainties

In most cases,

cannot know what the “true” value is unless there is an 
independent determination

(i.e. different measurement technique).
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Uncertainties

Only can consider estimates of the error. 

Discrepancy is the difference between two or more 
observations.  This gives rise to uncertainty.

Probable Error:
Indicates the magnitude of the error we estimate to have 

made in the measurements. 
Means that if we make a measurement that we will be 

wrong by that amount “on average”.
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Parent vs. Sample Populations

Parent population:

Hypothetical probability distribution if we were to make 
an infinite number of measurements of some variable or 

set of variables.
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Parent vs. Sample Populations

Sample population:

Actual set of experimental observations or 
measurements of some variable or set of variables.

In General:
(Parent Parameter) = limit (Sample Parameter)

When the number of observations, N, goes to infinity.
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mode:

value that occurs most frequently in a distribution

               (usually the highest point of curve)

may have more than one mode
(eg. Bimodal – example later)

in a dataset

From G. Mattioli

some univariate statistical terms:
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median:

value midway in the frequency distribution
…half the area under the curve is to right and other to 

left

mean: 

arithmetic average
…sum of all observations divided by # of observations

the mean is a poor measure of central tendency in 
skewed distributions

From G. Mattioli

some univariate statistical terms:
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€ 

E x( ) = µ = lim
n→∞

1
n

xi
i=1

n

∑

Average, mean or expected value for random variable

(more general) if have probability for each xi

€ 

E x( ) = µ = lim
n→∞

pixi
i=1

n

∑
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range: measure of dispersion about mean

(maximum minus minimum)

when max and min are unusual values, range may be
a misleading measure of dispersion

From G. Mattioli

some univariate statistical terms:
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from: Jensen, 1996 

From G. Mattioli

Histogram
useful graphic representation of information content of 

sample or parent population

many statistical tests 
assume 

values are normally 
distributed

not always the case!
examine data prior

to processing
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Distribution vs. Sample Size

http://dhm.mstu.edu.ru/e_library/statistica/textbook/graphics/
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From G. Mattioli

Deviations

The deviation, δi, of any measurement xi from the mean m 
of the parent distribution is defined as the difference 

between xi and m
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From G. Mattioli

Deviations

Average deviation, α, 

is defined as the average of the magnitudes
of the deviations,

Magnitudes given by the absolute value of the
deviations.
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€ 

RMS = lim
n→∞

1
n

xi
2

i=1

n

∑

Root mean square

€ 

σ = lim
n→∞

1
n

δ i
2

i=1

n

∑

Of deviations or residuals – standard deviation
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From G. Mattioli

Sample Mean and Standard Deviation

For a series of n observations, the most probable 
estimate of the mean µ is the average  of the 

observations. 

We refer to this as the sample mean  to distinguish it from 
the parent mean µ.

€ 

µ ≈ x = 1
n

xi
i=1

n

∑
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Sample Variance
From G. Mattioli

Sample Mean and Standard Deviation

€ 

σ2 = lim
n→∞

1
n

xi − µ( )2
i=1

n

∑ ≈
1
n

xi − µ( )2
i=1

n

∑

Our best estimate of the standard deviation σ would be 
from:

But we cannot know the true parent mean µ so the best 
estimate of the sample variance and standard deviation 

would be:

€ 

σ2 = s2 =
1

n −1
xi − x ( )2

i=1

n

∑
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€ 

σ2 = VAR x( ) =
1

n −1( )
xi − E x( )( )2

i=1

n

∑ =
1

n −1( )
xi
2

i=1

n

∑ − Nx 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

σ2 =VAR x( ) = pi xi − E x( )( )2
i=1

n

∑

Some other forms to write variance

If have probability for each xi

  

€ 

δxi = xi − x                    σ 2 =
1

n −1( )
δxi

2

i=1

n

∑
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€ 

σ = VAR x( ) =
1

n −1( )
δxi

2

i=1

n

∑

The standard deviation

For a scalar random variable or measurement with a 
Normal (Gaussian) distribution,

the probability of being within one σ of the mean is 68.3%

(Normalization decreased from N to (N – 1) for the 
“sample” variance, as µ is used in the calculation)
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small std dev:

observations are clustered tightly about the mean

large std dev:

observations are scattered widely about the mean
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From G. Mattioli

Distributions

Binomial Distribution: Allows us to define the 
probability, p, of observing x a specific combination of n 
items, which is derived from the fundamental formulas for 

the permutations and combinations.

Permutations: Enumerate the number of permutations, 
Pm(n,x), of coin flips, when we pick up the coins one at a 

time from a collection of n coins and put x of them into 
the “heads” box.

€ 

Pm n,x( ) =
n!

n − x( )!
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From G. Mattioli

Combinations:

Relates to the number of ways we can combine the 
various permutations enumerated above from our coin 

flip experiment.

Thus the number of combinations is equal to the number 
of permutations divided by the degeneracy factor x! of 

the permutations (number indistinguishable 
permutations) .

€ 

C n,x( ) =
Pm n,x( )

x!
=

n!
x! n − x( )!

=
n
x
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
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Probability and the Binomial Distribution

Coin Toss Experiment: If p is the probability of success 
(landing heads up) 

is not necessarily equal to the probability q = 1 - p for 
failure 

(landing tails up) because the coins may be lopsided!

The probability for each of the combinations of x coins 
heads up and 

n -x coins tails up is equal to pxqn-x.

The binomial distribution can be used to calculate the 
probability:
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From G. Mattioli

Probability and the Binomial Distribution

The binomial distribution can be used to calculate the 
probability of x “successes 

 in n tries where the individual probabliliyt is p:

€ 

PB n,x, p( ) =
n
x
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ pxqn−x =

n!
x! n − x( )!

pxqn−x

p + q( )n =
n
x
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ pxqn−x

x=0

n

∑

The coefficients PB(x,n,p) are closely related to the 
binomial theorem for the expansion of a power of a sum



95

From G. Mattioli

Mean and Variance: Binomial Distribution

€ 

µ = x n!
x! n − x( )!x=0

n

∑ px 1− p( )n−x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = np

The average of the number of  successes will approach a 
mean value µ 

given by the probability for success of each item p times 
the number of items.

For the coin toss experiment p=1/2,  half the coins should 
land heads up on average.
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From G. Mattioli

Mean and Variance: Binomial Distribution

The standard deviation is

€ 

σ2 = x − µ( )2 n!
x! n − x( )!

px 1− p( )n−x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x=0

n

∑ = np 1− p( )

If the the probability for a single success p is equal to the 
probability for failure p=q=1/2,

the final distribution is symmetric about the mean,

and mode and median equal the mean.

The variance, σ2 = m/2.
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µ = 1.67 
σ = 1.29 

µ = 10.0 
σ = 3.16	


From G. Mattioli

Other Probability Distributions: Special Cases
Poisson Distribution: Approximation to binomial 

distribution for special case when average number of 
successes is very much smaller than possible number i.e.

µ << n because p << 1. 
Distribution is NOT necessarily symmetric! Data are 

usually bounded on one side and not the other. 
Advantage σ2 = m.
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Gaussian or Normal Error Distribution

Gaussian Distribution: Most important probability 
distribution in the statistical analysis of experimental 

data.  

Functional form is relatively simple and the resultant 
distribution is reasonable.

Γ = 2.354σ	

P.E. = 0.6745σ = 0.2865 Γ	
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Γ = 2.354σ	

P.E. = 0.6745σ = 0.2865 Γ	


From G. Mattioli

Gaussian or Normal Error Distribution
Another special limiting case of binomial distribution 

where the number of possible different observations, n, 
becomes infinitely large yielding np >> 1.

Most probable estimate of the mean µ from a random 
sample of observations is the average of those 

observations!
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Gaussian or Normal Error Distribution

Probable Error (P.E.) is defined as the absolute value of 
the deviation such that PG of the deviation of any 

random observation is < ½
Tangent along the steepest portionof the probability 

curve intersects at e-1/2 and intersects x axis at the points
x = µ ± 2σ	


Γ = 2.354σ	

P.E. = 0.6745σ = 0.2865 Γ	
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For gaussian / normal error distributions:

Total area underneath curve is 1.00 (100%)

68.27% of observations lie within ± 1 std dev of mean
95%      of observations lie within ± 2 std dev of mean
99%      of observations lie within ± 3 std dev of mean

Variance, standard deviation, probable error, mean, and 
weighted root mean square error are commonly used 

statistical terms in geodesy. 

compare (rather than attach significance to numerical 
value)

From G. Mattioli


