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So far we have


  

€ 

U  x ( ) = − F  x ( ) • d x 
c
∫

Potential is negative of work, and


  

€ 

 g (  x ) = −∇U(  x )

Force is negative gradient of potential


(can also define with out the negatives on either).
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We looked at case of uniform density sphere


(and hollow, uniform density, spherical shell)


How about potential of shapes other than a sphere?




4


Potential for a thin disk


    

€ 

U(  x ) = −G dm
dV

∫ = Gρ  dV
dV

∫ = −Gρ  ʹ′ r d ʹ′ r dϕ d ʹ′ z 
d0

h

∫
0

2π

∫
0

R

∫

d =
 x − ʹ′ 
 x = z − ʹ′ z ( )2 + ʹ′ r 2

Use cylindrical coord


(“natural” coordinate system)


Let the density be constant.
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Potential for a thin disk


  

€ 

for a thin disk
d ≈ constant over 0 to h,  so

dbottom =
 x − ʹ′ 
 x = z2 + ʹ′ r 2

dtop =
 x − ʹ′ 
 x = z − h( )2

+ ʹ′ r 2

for h << z          dbottom ≈ dtop

and we can use

d ≈  x − ʹ′ 
 x = z2 + ʹ′ r 2

dʼ"
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Potential for a thin disk


    

€ 

using

d ≈  x − ʹ′ 
 x = z2 + ʹ′ r 2

and letting σ = ρ d ʹ′ z 
0

h

∫

where σ is the mass surface density

U(  x ) = −Gρ  ʹ′ r d ʹ′ r dϕ d ʹ′ z 
d0

h

∫
0

2π

∫
0

R

∫ ≈ −Gσ dϕ
0

2π

∫ ʹ′ r 
z2 + ʹ′ r 2

d ʹ′ r 
0

R

∫

U(  x ) = −2π Gσ ʹ′ r 
z2 + ʹ′ r 2

d ʹ′ r 
0

R

∫
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Potential for a thin disk


    

€ 

U(  x ) = −2π Gσ ʹ′ r 
z2 + ʹ′ r 2

d ʹ′ r 
0

R

∫

substitute u = z2 + ʹ′ r 2,  so du = 2 ʹ′ r d ʹ′ r 

U(  x ) = −π Gσ du
uz 2

z 2 +R 2

∫

U(  x ) = −π Gσ2 u
z 2

z 2 +R 2

 or = −2π Gσ z2 + ʹ′ r 2
0

R

U(  x ) = −2π Gσ z2 + R2 − z( )
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Since we previously defined the potential to be the 
negative of the work to bring a test mass in from infinity, 

we would like U to be zero at one end and some finite 
value at the other. 


Let U(z=0) =0.


    

€ 

U(  x ,z = 0) = − 2π Gσ z2 + R2 − z( ) + C⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = 0

U(  x ,z = 0) = R2 = R = −C

so U(  x ) = −2π Gσ z2 + R2 − z + R( )( )
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What about for an infinite thin sheet?


    

€ 

lim R→∞⎯ → ⎯ ⎯ U(  x ) = −2π Gσ z2 + R2 − z( ) = −∞

But remember that U only defined to a constant – so (we 
will see that) by judiciously assigning the constant we can 

“fix” the problem.


Not good.


Problem - if we let R go to infinity – we get infinity.




10
    

€ 

now take the limit R →∞

lim R→∞⎯ → ⎯ ⎯ U(  x ) = −2π Gσ z2 + R2 − z + R( )( ) =

you can expand z2 + R2  and do it "right"

 or just let z2 + R2 →R

lim R→∞⎯ → ⎯ ⎯ z2 + R2 − z + R( ) →R − z + R( ) = −z

so for an infinite thin sheet

U(  x ) = 2π Gσ z
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We can now find g(z) for the thin disk from


    

€ 

 g (z) = −∇U(  x ) = −∇ 2π Gσ z( )

 g (z) = −2π Gσ ˆ z 

It is independent of z!


The gravity field is a constant in all space.


Direction – towards sheet.
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Lets do another way -


Freshman physics approach


Find gravity due to a ring from 
θ to θ+dθ for a distance z 

above the plane


Then sum the rings (integrate over θ)
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€ 

dgvert (m(z,θ )) = −
Gdm
D2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosθ 

Set up


as before use symmetry to 
simplify


Find gravity due to a ring at 
height z.


From symmetry, force is vertical 
only


So can look at magnitude (scalar) only
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€ 

from geometry

dm(z,θ ) = 2π rdrσ

cosθ =
z
D

so

dgvert (m(z,θ )) = −
Gdm
D2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosθ = −

G2π rdrσ
D2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
z
D

= dgvert (m(z,r))

Set up
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€ 

dgvert (m(z,r)) = −G2π z σ rdr
D3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

gvert = −G2π z σ rdr
D3

0

∞

∫ = −G2π z σ rdr

z2 + r2( )
3
2

0

∞

∫

u = z2 + r2, du = 2rdr

gvert = −Gπ z σ du
u
3
2

z

∞

∫ = Gπ z σ2u− 12

z

∞

= −G2π σ

For whole plane 
integrate over r


Same as we got before.




16


    

€ 

 g (  x ) =
 g (z) = −2π Gσ ˆ z 

In words


- the amount of mass in the ring 
with a fixed width of angle dθ 

goes as D2


- but the force due the mass in 
the ring goes as 1/ D2 


(they both have the same 
functional form)


--- so the distance dependence cancels out!!


As one changes one’s distance 
with respect to the thin sheet
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€ 

 g (  x ) =
 g (z) = −2π Gσ ˆ z 

Interpretation:


No matter your position (horizontally – but this we get 
from simple symmetry, or more important - vertically) – 

the plane “looks” the same.


(We will run into this result again - disguised as Bouguer’s 
formula)


There is no “scale length”
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€ 

 g (  x ) =
 g (z) = −2π Gσ ˆ z 

Remembering back to our 
selection of a constant – I did 

not say why we picked


U(z=0)=0


(for the case of the earth we 
use U(z=infinity)=0)


Since g is a constant, it will take an infinite amount of 
work to move from 0 to infinity (or back in).


Of course an infinite plane would have an infinite total 
mass and is not physically possible. A physically 

realizable g field has to fall off with distance.
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€ 

ring on left  (similar triangles)

−
2π arcos θ( )( ) ar dθ( ) drcosθ

ar( )2
= − 2π cos θ( )( ) dθ( ) drcosθ

                  

ring on right

2π rcos θ( )( ) r dθ( ) drcosθ
r( )2

= 2π cos θ( )( ) dθ( ) drcosθ

Apply same technique to 
gravity inside a spherical 

shell.


No r dependence, same magnitude, 
opposite directions.


Find same effect – mass 
goes as r2, g goes as 1/r2 – 

effects cancel.
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What would you get if you were inside an infinite 
cylinder?
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Potential and force for a line


    

€ 

dm = ρ d ʹ′ l dA

U  x ( ) = G d ʹ′ l ρ dA
x − ʹ′ x A

∫
− R
2

R
2

∫

λ = ρ dA
A
∫

U  x ( ) = Gλ d ʹ′ l 
d2 + ʹ′ l 2− R

2

R
2

∫

dlʼ"
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Potential and force for a line


Let R go to infininty – 
problem – blows up


Fix (again) by adding appropriate constant.


  

€ 

U  x ( ) = Gλ d ʹ′ l 
d2 + ʹ′ l 2− R

2

R
2

∫

U  x ( ) = 2Gλ ln R + R2 + 4d2

2d

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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Notice that this puts 
an R in the 

denominator to 
cancel the pesky R’s 

in the numerator.

  

€ 

U  x ( ) = 2Gλ ln R + R2 + 4d2

2d

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ − 2Gλ ln R( )

U  x ( ) = 2Gλ ln R + R2 + 4d2

2dR

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Potential and force for a line


Add a constant


(no d dependence)
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Potential and force for a line


  

€ 

U  x ( ) = 2Gλ ln R + R2 + 4d2

2dR

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

R→∞⎯ → ⎯ ⎯ 2Gλ ln 1
d
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ = −2Gλ ln d( )

Let R go to infininty again


And for g


  

€ 

 g  x ( ) = −∇U  x ( ) = −2Gλ∇ln d( )

 g  x ( ) =
−2Gλ

d
ˆ d 

Notice that g is infinite on the line (not a problem – 
infinite line also not realizable)




Coordinate Systems


• New issues - Effects that need to be considered for 
accuracies that are achievable with GPS. 


–  Coordinate systems on a deformable Earth.

–  Ability to determine polar motion and changes in the 

rotation rate of the Earth

–  Rotations and translations between coordinate 

systems.


Herring
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Differences Between Horizontal Datums


  The two ellipsoid centers called Δ X, Δ Y, Δ Z 

  The rotation about the X,Y, and Z axes in seconds of arc


  The difference in size between the two ellipsoids

  Scale Change of the Survey Control Network ΔS


Z


Y


X


System 1

WGS-84


System 2

NAD-27


ΔX 

Δ Z 
Δ Y 

ω

ψ 
ε 

Datums and Grids -- https://www.navigator.navy.mil/navigator/wgs84_0.ppt 
 26


ΔS




This means, in practice, a given geographical position described as latitude and longitude 
but without a specified datum can actually indicate different physical locations on the 
earth. A physical location can have as many geographical positions as there are datums.


For example, the position of Hornby Light at South Head varies according to whether 
the Australian Geodetic Datum 1966 (AGD66) or the World Geodetic System 1984 datum 
(WGS84). The following diagram shows the WGS84 and AGD66 positions of Hornby 
Light on an extract of chart Aus 201, which is a WGS84 chart. The difference in positions 
represents a distance on the ground of 204 metres ( ~ 1 cable).


                                                             


Fact sheet: Positions and horizontal datums on paper and electronic charts

Australian Maritime Safety Authority

http://www.amsa.gov.au/Shipping_Safety/Navigation_Safety/Positions_and_horizontal_datums_on_paper_and_electronic_charts/index.asp
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WGS84 33° 50.014’ S 151° 16.860’ E

ADG66 33° 50.109’ S 151° 16.791’ E




Herring


Geometric vs Potential based coordinate systems


•  The basic problem is “realization”: Until 
distance measurements to earth-orbiting 

satellites and galactic-based distance 
measurements, it was not possible to actually 
implement (realize) the simple geometric type 

measurement system.


•  But water can run up-hill!
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Level Surfaces – Geopotential Number 

“Geoid” 

PO 

Level Surface = Equipotential Surface (W) 


Ocean 

Mean 
Sea 
Level 

Geopotential Number (CP0) = WP0 –WO


WO 

WP0 

From Pearson, NGS, http://matcmadison.edu/civiltech/htmod/PowerPoint/HM-Primer_files/frame.htm
 http://www.noeticart.com/clipart/madscic.gif


I grew!


P1 

WP1 

Geopotential Number (CP1) = WP1 –WO


Same geopotential 
“size”


Geopotential Number (CP) = WP –WO


vs same geometric size




Herring


Geometric vs Potential based coordinate systems


•  The origin of a potential based physical system 
was hard to define because determining the 

position of the center of mass of the Earth was 
difficult before the development of Earth-

orbiting artificial satellites.

•  The difference between astronomical (physical) 

and geodetic latitude and longitude is called 
“deflection of the vertical”
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Herring


Geocentric relationship to XYZ


•  One of the advantages of geocentric is that the 
relationship to XYZ is easy.  R is taken to be 
radius of the sphere and H the height above 

this radius
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Herring


Problems with Geocentric


•  If the radius of the Earth is taken as b (the 
smallest radius), then Hc for a site at sea-level 
on the equator would be 21km (compare with 

Mt. Everest 28,000feet~8.5km).

•  Geocentric quantities are never used in any 

large scale maps and geocentric heights are 
never used.
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Relationship between ellipsoidal coordinates and XYZ.

This conversion is more complex than for the spherical 

case. 


€ 

X = (N + hg )cos(φg )cos(λg )
Y = (N + hg )cos(φg )sin(λg )

Z = [(1− e2)N + hg ]sin(φg )

where e2 = 2 f − f 2 and N (North - South radius of curvature) is
N 2 = a2 /[1− e2 sin2(φg )]

33




Going from XYZ to geodetic latitude is more complex 
(mainly because to compute the radius of curvature, 

you need to know the latitude).

A common scheme is iterative:


34




From http://www.colorado.edu/geography/gcraft/notes/datum/gif/xyzllh.gif	



Closed form 
expression for small 
heights
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Herring


Astronomical latitude and longitude


• There is no direct relationship between XYZ and 
astronomical latitude and longitude because of 
the complex shape of the Earth’s equipotential 
surface.

• In theory, multiple places could have the same 
astronomical latitude and longitude.
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Herring


Coordinate axes directions


•  Origin of XYZ system these days is near center 
of mass of Earth (deduced from gravity field 

determined from orbits of geodetic satellites).


•  Direction of Z-axis by convention is near mean 
location of rotation axis between 1900-1905.


At the time, it was approximately aligned with the 
maximum moments of inertia of the Earth.


review:

http://dept.physics.upenn.edu/courses/gladney/mathphys/java/sect4/

subsubsection4_1_4_2.html
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Herring


Motion of rotation axis


•  rotation axis has moved ~10 m since 1900 
(thought to be due to post-glacial rebound).


•  It also moves in circle with a 10 m diameter with 
two strong periods: Annual due to atmospheric 

mass movements and 433-days which is a 
natural resonance frequency of an elastic 

rotating ellipsoid with a fluid core like the Earth.
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Herring


Problems with ellipsoid and ellipsoidal heights are:


– They are new:

– Geometric latitude and longitude have been 

around since Snell (optical refraction) developed 
triangulation in the 1500’s.


– Ellipsoidal heights could only be easily 
determined when GPS developed (1980’s)


– Fluids flow based on the shape of the equipotential 
surfaces.  If you want water to flow down hill, you 
need to use potential based heights.
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Herring


Geoid height

•  Difference between ellipsoidal and orthometric 

height allows geoid height to be determined, 
but can only do since GPS available.


•  Determining the geoid has been historically 
done using surface gravity measurements and 

satellite orbits.

(Satellite orbit perturbations reveal the forces 
acting on the satellite, which if gravity is the only 

effect is the first derivative of the potential 
[atmospheric drag and other forces can greatly 

effect this assumption])
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h
 -
  Geodetic Height

(Height above 

Ellipsoid)


H
-
  Orthometric Height 
 (Height above Mean Sea Level)


N
 - Geoid Separation


H is measured traditionally   
h  is approximately = N+H 

N is modeled using Earth Geoid Model 96 or 180


Defining the Vertical Position"

{

{
{
h
 H


N


Datums and Grids -- https://www.navigator.navy.mil/navigator/wgs84_0.ppt 




Sam Wormley 
http://www.edu-observatory.org/gps/height.html 
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A. Ganse, U. Washington , http://staff.washington.edu/aganse/




1.  Basic Concepts of GPS. 


Space/Control/User segment

GPS measurement characteristics


selective availability (SA), antispoofing (AS) 
Satellite Orbits


GPS force and measurement models for orbit 
determination


tracking networks

GPS broadcast ephemeris, precise GPS ephemeris. 

Reference Systems 

Transformation between Keplerian Elements & Cartesian 

Coordinates

time system and time transfer using GPS
 45




2. GPS Observable.


Measurement types (C/A code, P-Code, L1 and L2 
frequencies, pseudoranges)


atmospheric delays (tropospheric and ionospheric)


data combination (narrow/wide lane combinations, 
ionosphere-free combinations, single-, double-, triple-

differences)


integer biases

cycle slips


clock error. 
46




3. Processing Techniques.


Pseudorange and carrier phase processing

ambiguity removal


least squares method for state parameter determination

relative positioning 

47




4. Earth Science GPS Applications.


Surveying

Geophysics


Geodesy

Active tectonics


Tectonic modeling

meteorological and climate research


Geoid
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•  Coordinate and time systems:

– When working at the millimeter level 

globally, how do you define a coordinate 
system


– What does latitude, longitude, and height 
really mean at this accuracy


– Light propagates 30 cm in 1 nano-second, 
how is time defined 


(Herring) 
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•  Satellite motions

– How are satellite orbits described and how do 

the satellites move

– What forces effect the motions of satellites


(i.e What do GPS satellite motions look like)


– Where do you obtain GPS satellite orbits


(Herring) 
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•  GPS observables

– GPS signal structure and its uniqueness

– Pseudo-range measurements

– Carrier phase measurements

– Initial phase ambiguities 

– Effects of GPS security: Selective availability (SA) 

and antispoofing (AS)

– Data formats (RINEX)


(Herring) 
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•  Estimation procedures

– Simple weighted-least-squares estimation

– Stochastic descriptions of random variables and 

parameters

– Kalman filtering 

– Statistics in estimation procedures

– Propagation of variance-covariance information


(Herring) 
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•  Propagation medium

– Neutral (electrically) atmosphere delay 

– Hydrostatic and water vapor contributions

– Ionospheric delay (dispersive)

– Multipath 


(Herring) 
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•  Mathematic models in GPS

– Basic theory of contributions that need be to 

included for millimeter level global positioning

– Use of differenced data

– Combinations of observables for different 

purposes


(Herring) 
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•  Methods of processing GPS data

– Available software

– Available data (International GPS service, IGS; 

University NAVSTAR Consortium (UNAVCO) 
Facility.


– Cycle slip detection and repair

– Relationship between satellite based and 

conventional geodetic systems (revisit since this is 
an important topic)


(Herring) 
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•  Applications and examples from GPS

– Tectonic motions and continuous time series.

– Earth rotation variations; measurement and origin.

– Response of earth to loading.

– Kinematic GPS; aircraft and moving vehicles.

– Atmospheric delay studies.


(Herring) 
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The Global Positioning System 
(GPS)


What is it?


Conceived as a positioning, navigation and time transfer 
system for the US military
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The Global Positioning System 
(GPS)


GPS is one of the most fantastic utilities ever devised by 
man.


GPS will figure in history alongside the development of 
the sea-going chronometer.


This device enabled seafarers to plot their course to an 
accuracy that greatly encouraged maritime activity, and 

led to the migration explosion of the nineteenth century.

http://www.ja-gps.com.au/whatisgps.html
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The Global Positioning System 
(GPS)


GPS will effect mankind in the same way.


There are myriad applications, that will benefit us 
individually and collectively. 


http://www.ja-gps.com.au/whatisgps.html


Trimble calls GPS the “next utility”
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Stone age


Star age


Radio age


Satellite age


Brief History of Navigation


http://www.javad.com/index.html?/jns/gpstutorial/
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  PreHistory - Present:  Celestial Navigation

 Ok for latitude, poor for longitude until accurate 

clock invented ~1760

  13th Century:  Magnetic Compass


  1907:  Gyrocompass

  1912:  Radio Direction Finding


  1930’s:  Radar and Inertial Navigation

  1940’s:  Loran-A


  1960’s:  Omega and Navy Transit Doppler (SatNav)

  1970’s:  Loran-C


  1980’s:  GPS


A. Ganse, U. Washington , http://staff.washington.edu/aganse/
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Radio Navigation


Radio (AN) Ranges


NDB


VOR plus TACAN-DME, Localizer and ILS.


OMEGA, LORAN


Doppler
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Radio Navigation


Radio (AN) Ranges


Build a network of 
these all over


2-D only
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Radio Navigation


NDB


Build a network of 
these all over


2-D only
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Radio Navigation


VOR plus TACAN-DME, Localizer and ILS.


Build a network of 
these all over


2-D only




66


Radio Navigation


LORAN


LORAN (LOng RAnge Navigation)

5% surface, not global


250 m

Transmitters on surface – gives 2D, not 3D location


Uses difference of arrival time from Master and several 
slave transmitters


(like using s-p times to 
locate earthquakes)


Build a network of 
these all over
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Radio Navigation


LORAN

Time differences of 
signal from Master 
(M) and Slave (X) 

give hyperbolas


For given time 
difference (TD) you 
are on one of them


Called Line of 
Position (LOP)
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Radio Navigation


LORAN


Locating yourself with 
LORAN


M – Master (same one)


Y – another secondary


TD puts you somewhere 
on LOP between these 

two stations
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Radio Navigation


LORAN


Locating yourself 
with LORAN


Combine


M – Master (same 
one)


X and Y –
secondaries


You are at 
intersection of LOPs
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Radio Navigation


LORAN


Locating yourself 
with LORAN


Good location when 
the 2 LOP are 

perpendicular (or 
close to it)
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Radio Navigation


LORAN


Locating yourself 
with LORAN


Problem when the two 
LOPs cross at small 

angle or are tangent.
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From J. HOW, MIT
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From J. HOW, MIT
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Disadvantages of other navigation systems


Landmarks:


Only work in local area.

Subject to movement or destruction by environmental 

factors. 
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Disadvantages of other navigation systems


Dead Reckoning:


Very complicated.

Accuracy depends on measurement tools which are 

usually relatively crude.

Errors accumulate quickly.


(actually is from “deduced” reckoning and should be 
“ded”-reckoning


.

Not from “you're dead if you don't reckon right ”) 
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Disadvantages of other navigation systems


Celestial:


Complicated.

Only works at night in good weather.


Limited precision. 
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Disadvantages of other navigation systems 


OMEGA:


Based on relatively few radio direction beacons.

Accuracy limited and subject to radio interference. 


LORAN:


Limited coverage.

Accuracy variable, affected by geographic and weather 

situation.

Easy to jam or disturb. 
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Disadvantages of other navigation systems 


SatNav (Transit doppler):


Based on low-frequency doppler measurements so it's 
sensitive to small movements at receiver.

Few satellites so updates are infrequent.
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  Original concept developed around 1960

  In the wake of Sputnik & Explorer


  Preliminary system, Transit (doppler based), 
operational in 1964


 Developed for nuke submarines

 5 polar-orbiting satellites, Doppler measurements 

only


  Timation satellites, 1967-69, used the first onboard 
precise clock for passive ranging


A. Ganse, U. Washington , http://staff.washington.edu/aganse/
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  Fullscale GPS development begun in 1973


 Renamed Navstar, but name never caught on


  First 4 SV’s launched in 1978


  GPS IOC in December 1993 (FOC in April 1995)

A. Ganse, U. Washington , http://staff.washington.edu/aganse/




82

From J. HOW, MIT
From J. HOW, MIT




83


  Development costs estimate ~$12 billion


  Annual operating cost ~$400 million


A. Ganse, U. Washington , http://staff.washington.edu/aganse/
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  3 Segments:

 Space:  Satellites

 User:  Receivers

 Control:  Monitor & Control stations


A. Ganse, U. Washington , http://staff.washington.edu/aganse/
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  Prime Space Segment contractor: Rockwell 
International


  Coordinate Reference:  WGS-84 ECEF


  Operated by US Air Force Space Command (AFSC)

 Mission control center operations at Schriever 

(formerly Falcon) AFB, Colorado Springs


A. Ganse, U. Washington , http://staff.washington.edu/aganse/
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  Everyone!

  Merchant, Navy, Coast Guard vessels


 Forget about the sextant, Loran, etc.

  Commercial Airliners, Civil Pilots


  Surveyors

 Has completely revolutionized surveying


  Commercial Truckers

  Hikers, Mountain Climbers, Backpackers


  Cars now being equipped

  Communications and Imaging Satellites


 Space-to-Space Navigation

  Any system requiring accurate timing


A. Ganse, U. Washington , http://staff.washington.edu/aganse/
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  GEOPHYSICISTS and GEODESISTS


(not even mentioned by Ganse!)
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Advantages of One-Way Ranging


Receiver doesn’t have to generate 
signal, which means


•We can build inexpensive portable receivers


•Receiver cannot be located (targeted)


•Receiver cannot be charged


http://www.geology.buffalo.edu/courses/gly560/Lectures/GPS
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Determining Range (Distance)


•Measure time it takes for radio signal to reach receiver,


use speed of light to convert to distance.


•This requires


•Very good clocks


•Precise location of the satellite


•Signal processing over background


http://www.geology.buffalo.edu/courses/gly560/Lectures/GPS
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we will break the process into five conceptual pieces


step 1: using satellite ranging

step 2: measuring distance from satellite

step 3: getting perfect timing

step 4: knowing where a satellite is in space

step 5: identifying errors


Mattioli-http://comp.uark.edu/~mattioli/geol_4733.html



