Satellite Orbits

Keplerian motion Perturbed motion GPS satellites GPS orbits

E. Calais Purdue University - EAS Department Civil 3273 – ecalais@purdue.edu

Orbits?

Igeo Sidney Harris. This cartoon was originally published in American Scientist.

Satellite orbits: What for?

- Principle of GPS positioning:
 - Satellite 1 sends a signal at time t_{e1}
 - Ground receiver receives it signal at time t_r
 - The range measurement ρ_1 to satellite 1 is:
 - $\rho_1 = (t_r t_{e1}) \times \text{speed of light}$
 - We are therefore located on a sphere centered on satellite 1, with radius $\rho 1$
 - 3 satellites => intersection of 3 spheres
- The mathematical model is:

$$\rho_r^s = \sqrt{(X_s - X_r)^2 + (Y_s - Y_r)^2 + (Z_s - Z_r)^2}$$

- GPS receivers measure ρ_r^s
- If the position of the satellites in an Earth-fixed frame (X_s, Y_s, Z_s) is known,
- Then one can solve for (X_r, Y_r, X_r) (if at least 3 simultaneous range measurements)

Dynamics of satellite orbits

- Basic dynamics in an inertial frame described by: $\sum \vec{F} = m\vec{a}$
- Case of two-body problem (two point masses), forces are:
 - Gravitational forces
 - Solar radiation pressure (drag is negligible for GPS)
 - Thruster firings (not directly modeled).
- Neglecting radiation pressure, one can write:

$$\vec{F} = \frac{Gm_sm_E}{r^2}\vec{r} \quad and \quad \vec{F} = m_s\vec{a}$$
$$\Rightarrow \vec{a} - \frac{Gm_E}{r^2}\vec{r} = \vec{0} \Leftrightarrow \frac{d^2\vec{r}}{dt^2} = \frac{Gm_E}{r^2}\vec{r}$$

- *r* = geocentric position vector
- $a = d^2 r/dt^2$, relative acceleration vector
- G = universal gravitational constant
- $-m_E$ = Earth's mass
- $-m_{s}$ = satellite's mass

$$m_{s}\ddot{\vec{r}}_{s} = -G\frac{m_{s}m_{E}}{r^{2}}\vec{r}$$

$$m_{E}\ddot{\vec{r}}_{E} = G\frac{m_{s}m_{E}}{r^{2}}\vec{r}$$

$$m_{E}\ddot{\vec{r}}_{E} = G\frac{m_{s}m_{E}}{r^{2}}\vec{r}$$

$$r = \|\vec{r}_{s} - \vec{r}_{E}\|$$

$$\vec{r} = \frac{\vec{r}_{s} - \vec{r}_{E}}{r}$$

$$\vec{r}_{s} - \vec{r}_{E} = -G\frac{m_{E}}{r^{2}}\vec{r} - G\frac{m_{s}}{r^{2}}\vec{r}$$

$$\Rightarrow \ddot{\vec{r}} = -G(m_{s} + m_{E})\frac{\vec{r}}{r^{2}}$$

$$\vec{\mu} = G(m_{s} + m_{E})$$

Analytical solution to this force model = Keplerian (= osculating) orbit:

- Six integration constants => 6 orbital parameters or Keplerian (= osculating) elements
- In an <u>inertial</u> reference frame, orbits can be described by an ellipse
- The orbit plane stays fixed in space
- One of the foci of the ellipse is the center of mass of the body
- These orbits are described by Keplerian elements:

а	Semi-major axis	Size and shape of orbit	
e	Eccentricity		
Ω	Right ascension of ascending node	Orientation of the orbital plane in the inertial system	
ω	Argument of perigee		
i	Inclination		
T _o	Epoch of perigee	Position of the satellite in the orbital plane	

• Third Kepler's law (period²/*a*³=const.) relate mean angular velocity *n* and revolution period *P*:

$$n = \frac{2\pi}{P} = \sqrt{\frac{GM_E}{a^3}}$$

- M_E = Earth's mass, GM_E = 3,986,005x10⁸ m³s⁻²

- For GPS satellites:
 - Nominal semi-major axis a = 26560,000 m
 - Orbital period = 12 sidereal hours (= 11h28mn UT), v=3.87 km/s
 - Therefore, positions of GPS satellites w.r.t. Earth's surface repeat every sidereal day

- Instantaneous position of a satellite on its orbit is defined by angular quantities called "anomalies":
 - Mean anomaly: M(t) = n x (t-To)
 - with n = mean motion = number of orbits in 24 hours, To = time of perigee
 - Eccentric anomaly: $E(t) = M(t) + e \sin E(t)$
 - True anomaly: $v(t) = 2 \operatorname{atan} [((1+e)/(1-e))^{1/2} \operatorname{tan}(E(t)/2)]$
- In the coordinate system defined by the <u>orbital plane</u>:

$$- e1 = r \cos v = a \cos E - ae = a (\cos E - e)$$

- $e^2 = r \sin v = (b/a) a \sin E = b \sin E = a (1-e^2)^{1/2} \sin E$ - $e^3 = 0$

$$\vec{r} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} a(\cos E - e) \\ a\sqrt{1 - e^2}\sin E \\ 0 \end{bmatrix}$$
$$\|\vec{r}\| = a(1 - e\cos E)$$

- GPS orbit in an inertial frame (+Earth rotation)
- To compute site position on the Earth, we need the satellite orbit to an Earth-fixed frame...

GPS orbit, inertial frame

In the **Earth centered inertial system** ($X_1^0, X_2^0 = X_2, X_3^0 = X_3$), ρ relates to *r* through the combination of 3 rotations:

$$\vec{\rho} = R\vec{r}$$

$$R = R_3 \{-\Omega\} R_1 \{-i\} R_3 \{-\omega\} \qquad R = \begin{bmatrix} \cos\Omega \cos\omega - \sin\Omega \sin\omega \cos i & -\cos\Omega \sin\omega - \sin\Omega \cos\omega \cos i & \sin\Omega \sin i \\ \sin\Omega \cos\omega + \cos\Omega \sin\omega \cos i & -\sin\Omega \sin\omega + \cos\Omega \cos\omega \cos i & -\cos\Omega \sin i \\ \sin\omega \sin i & \cos\omega \cos i & \cosi \end{bmatrix}$$

[think of what it takes for (e_1, e_2, e_3) to align with (X_1^0, X_2, X_3)]

- With 3 rotations (Ω,i,ω), we went from orbital plane coordinates (e1,e3,e3) to Earth-centered inertial coordinates (r)
- To convert *r* to an <u>Earth fixed</u> <u>system</u> (X_1, X_2, X_3) , we need an additional rotation of Θ_o (related to the Greenwich Sidereal Time) about X_3 :

$$\vec{\rho} = R'\vec{r} R' = R_3\{\Theta_a\}R = R_3\{\Theta_a\}R_3\{-\Omega\}R_1\{-i\}R_3\{-\omega\}$$

 $defining: l = \Omega - \Theta_o$ $R' = \begin{bmatrix} \cos l \cos \omega - \sin l \sin \omega \cos i & -\cos l \sin \omega - \sin l \cos \omega \cos i & \sin l \sin i \\ \sin l \cos \omega + \cos l \sin \omega \cos i & -\sin l \sin \omega + \cos l \cos \omega \cos i & -\cos l \sin i \\ \sin \omega \sin i & \cos \omega \cos i & \cos i \end{bmatrix}$

GPS Orbits

GPS orbit, Earth-fixed frame

- 1. Broadcast ephemerides (in GPS signal) contain **orbital parameters** M, e, a, Ω , i, ω , n (=angular velocity)
- 2. Orbital parameters are used to compute orbit in **inertial frame**
- 3. Orbit in inertial frame is then **rotated into terrestrial frame** (Earth-fixed)
- In order to do this accurately over long time periods, one need to account for variations in Earth orientation and rotation parameters => use precise UT1, nutations, and polar motion.
- 5. And take into account orbit perturbations (Earth's gravity field, solar pressure, attraction from Sun and Moon): also provided in broadcast ephemerides

GPS Orbits

Other representations of GPS orbits

"sky plot"

Perturbed motion

Central gravitational force = main force acting on GPS satellites, but there are other significant perturbations:

- Gravitational forces:
 - Non sphericity of the Earth gravitational potential:
 - Major contribution from the Earth's flattening (J_2)
 - GPS orbits high (20 000 km) and attraction force attenuates rapidly with altitude => only a few terms of the Earth's gravitational potential are necessary for modeling GPS orbits
 - Third body effect: direct attraction of Moon and Sun => lunar and solar ephemerides necessary to model GPS orbits
 - [Tidal effects of Sun and Moon => deforms Earth => modifies Earth's gravitational potential: negligible for GPS satellites]
- Non-gravitational forces:
 - Solar radiation pressure:
 - Impact on the satellite surfaces of photons emitted by the Sun and reflected by the Earth surface: can be modeled, knowing the 3D geometry and the attitude of the satellite.
 - Effects on GPS satellite position: 5-10 m
 - Eclipse periods = satellite in the Earth's shadow (1-2/year, lasts about 1 hr): transition to Sun light difficult to model, usually this part of the orbit is simply edited out!
 - [Atmospheric drag = negligible for GPS satellites]
 - Satellite maneuvers

Solar radiation pressure

- Results from impact of Sun photons on the satellite's surface.
- Depends on:
 - Effective area (surface normal to the incident radiation)
 - Surface reflectivity
 - Luminosity of the Sun
 - Distance to the Sun
- GPS satellites oriented so that the "Y-axis" is perpendicular to the direction of the Sun (solar sensors)
- For satellites in the Earth shadow region (eclipsing), the solar radiation pressure is zero.
- For precise orbit determination, the shadow region must be carefully determined using the relative positions of the Sun, Earth, and the satellites.

Terminology

Reflectivity (v) – the proportion of radiation incident on a surface that is reflected, the reflected radiation being separated into diffuse (scattered) and specular (beamed) components.

Specularity (μ) – the proportion of reflected radiation that is reflected specularly. Specular reflection implies that the surface behaves like a perfect mirror.

Y-bias – a force acting along the spacecraft BFS Y-axis and believed to derive from NCF effects. A likely mechanism for the Y-bias is due to non-orthogonality of the solar panels with respect to the solar photon flux, as a result of attitude bias or variations. However, another possible contribution could come from heat dissipation effects of payload components.

Reflected radiation from a spacecraft may be separated into diffuse and specular components. If a spacecraft's solar panels are not oriented precisely orthogonal to the photon flux, an anomalous bias force is generated along the spacecraft Y-axis.

Perturbed motion

Term	Acceleration (m/sec²)	Perturbation (after 2 days)
Central	0.6	-
J ₂	5x10 ⁻⁵	14 km
Other gravity harmonics	3x10 ⁻⁷	0.1-1.5 km
Third body	5x10 ⁻⁶	1-3 km
Earth tides	10 ⁻⁹	0.5-1 m
Ocean tides	10 ⁻¹⁰	0-2 m
Drag	~0	-
Solar radiation	10 ⁻⁷	0.1-0.8 km
Albedo radiation	10 ⁻⁹	1-1.5 m

GPS orbits

- Orbit characteristics:
 - Semi-major axis = 26,400 km
 - Period = 12 sidereal hour
 - 6 orbital planes
 - Inclination = 55.5 degrees (except old block I sats = 63 deg., but all dead)
 - Eccentricity nearly 0 (largest 0.02) => quasi-circular orbits
- Full constellation = 24 satellites, completed March 9, 1994

GPS Orbital Constellation

- 27 satellites (24 operational + 3 spares = nominal constellation)
- 6 evenly spaced orbital planes (A to F), inclination 55°
- 4-6 satellites per plane, spacing for optimized visibility
- Period = 12 sidereal hours (= 11h58mn "terrestrial" hours) => in a terrestrial frame, the constellation repeats every 23h56mn.
- As Earth orbits around the Sun
 => eclipse periods (solar
 radiation pressure = 0, transition
 to shadow difficult to model,
 often simply edited out)

y-axis =longitude at which the satellite crosses the equator in the eastern hemisphere

GPS satellite visibility

- Satellite visible up to 6 hours in a row (from rising to setting)
- In practice, 6-12 satellites are visible simultaneously, depending on:
 - Constellation geometry
 - User location
 - Elevation cut-off angle (chosen by the user)
- Problematic environments:
 - Forest
 - "urban canyons"
 - Mission planning may become necessary: determine best time of day to make measurements
- Site selection:
 - Must account for masks (minimal)
 - A! masks can grow (trees, houses)

GPS constellation

- Current status posted daily on <u>ftp://tycho.usno.navy.mil/pub/</u> <u>gps/gpstd.txt</u>
- Notice Advisories to NAVSTAR Users (NANUs) posted on: <u>http://tycho.usno.navy.mil/</u> gps_datafiles.html
- Or: http:// www.navcen.uscg.gov/ navinfo/Gps/ActiveNanu.aspx

CURRENT BLOCK II/IIA/IIR/IIR-M SATELLITES

LAUNCH			LAUNCH	FREQ		US SPACE
ORDER	PRN	SVN	DATE	STD	PLANE	COMMAND **
*TT_1		14	14 FEB 1989			19802
*TT-2		13	10 JUN 1989			20061
*TT_3		16	18 AUG 1989			20185
*TT-4		19	21 OCT 1989			20302
*TT-5		17	11 DEC 1989			20361
*TT-6		18	24 JAN 1990			20452
*TT=7		20	26 MAR 1990			20533
*TT-8		21	02 AUG 1990			20724
*TT-9		15	01 OCT 1990			20830
TTA-10	32	23	26 NOV 1990	Rb	E 5	20959
TTA-11	24	24	04 JUL 1991	Cs	D5	21552
TTA-12	25	25	23 FEB 1992	Bb	A5	21890
*TTA-13		28	10 APR 1992			21930
TTA-14	26	26	07 JUL 1992	Rb	F5	22014
TTA-15	27	27	09 SEP 1992	Cs	A4	22108
*TTA-16		32	22 NOV 1992	00	F6	22231
*TTA-17		29	18 DEC 1992			22275
*TTA-18		22	03 FEB 1993			22446
*TTA-19		31	30 MAR 1993			22581
*TTA-20		37	13 MAY 1993			22657
TTA-21	09	39	26 JUN 1993	Cs	A1	22700
*TTA-22		35	30 AUG 1993	Bb	85	22779
TTA-23	04	34	26 OCT 1993	Rb	D4	22877
TTA-24	06	36	10 MAR 1994	Rb	C5	23027
TTA-25	03	33	28 MAR 1996	Cs	C2	23833
TTA-26	10	40	16 JUL 1996	Cs	E3	23953
TTA-27	30	30	12 SEP 1996	Cs	B2	24320
TTA-28	08	38	06 NOV 1997	Cs	A3	25030
***IIR-1		42	17 JAN 1997			
IIR-2	13	43	23 JUL 1997	Rb	F3	24876
IIR-3	11	46	07 OCT 1999	Rb	D2	25933
IIR-4	20	51	11 MAY 2000	Rb	E1	26360
IIR-5	28	44	16 JUL 2000	Rb	B3	26407
IIR-6	14	41	10 NOV 2000	Rb	F1	26605
IIR-7	18	54	30 JAN 2001	Rb	E4	26690
IIR-8	16	56	29 JAN 2003	Rb	B1	27663
IIR-9	21	45	31 MAR 2003	Rb	D3	27704
IIR-10	22	47	21 DEC 2003	Rb	E2	28129
IIR-11	19	59	20 MAR 2004	Rb	C3	28190
IIR-12	23	60	23 JUN 2004	Rb	F4	28361
IIR-13	02	61	06 NOV 2004	Rb	D1	28474
IIR-14M	17	53	26 SEP 2005	Rb	C4	28874
IIR-15M	31	52	25 SEP 2006	Rb	A2	29486
IIR-16M	12	58	17 NOV 2006	Rb	в4	29601
IIR-17M	15	55	17 OCT 2007	Rb	F2	32260
IIR-18M	29	57	20 DEC 2007	Rb	C1	32384
IIR-19M	07	48	15 MAR 2008	Rb	A6	32711
IIR-20M	01	49	24 MAR 2009	Rb	B2	34661
IIR-21M	05	50	17 AUG 2009	Rb	E6	35752

Satellite is no longer in service.

** US SPACE COMMAND, previously known as the NORAD object number; also referred to as the NASA Catalog number. Assigned at successful launch. Catalog numbers retrieved from SPACEWARN Bulletins: http://nssdc.gsfc.nasa.gov/spacewarn/ *** Unsuccessful launch.

GPS satellites

- Solar powered
- S-Band (SGLS) communications for control and telemetry + UHF crosslink between spacecraft.
- Two L-Band navigation signals at 1575.42 MHz (L1) and 1227.60 MHz (L2).
- Each spacecraft carries 2 rubidium or 2 cesium clocks.
- Several generations of GPS satellites have been built and launched (next slide):
 - Different masses and phase center
 - Different capabilities

Block IIR satellite

Dec. 20, 2007, launch

GPS satellites

- Block I: "proof-of-concept", 1978 to 1985.
 - 11 satellites launched between 1978 and 1985 Life expectancy = 4.5 years, actual mean life = 7.1 years
 - Signal entirely accessible to civilian users
 - Last block I satellite died on Feb. 28, 1994
- Block II (II,IIA,IIR, IIR-M)
 - First launch 1989, latest launch December 20, 2007
 - Possibility to degrade the signal for civilian users (= selective availability)
- Next generation: Block III, 2010
 - Selective availability eliminated
 - Additional navigation signals
- Details on: http:// www.spaceandtech.com/spacedata/ constellations/navstargps_consum.shtml

Satellite transmissions

- GPS satellites broadcast continuously on 2 frequencies in the L-band
 - 1575.42 MHz (L1)
 - 1227.60 MHz (L2)
- GPS antennas point their transmission antenna to the center of the Earth (controlled by solar sensors).
- Main beam = 21.4/23.4 (L1/L2) half width.
- Phase center of antenna does not coincide with center of gravity of satellite.

Transmission antenna of a block II-R GPS satellite

Satellite clocks

- Frequencies broadcast by GPS satellites are derived from a fundamental frequency of 10.23 Mhz
- Fundamental frequency provided by 2 or 4 atomic clocks (Ce/Rb)
 - Clocks run on GPS time = UTC not adjusted for leap seconds
 - Clock stability over 1 day = 10^{-13} (Rb) to 10^{-14} (Ce), ~ 1 ns/day
 - Clocks synchronized between all satellites
- Relativistic effects:
 - Clocks in orbit appear to run faster (38.3 microsec/day = 11.5 km/day!) => tuned at 10.22999999543 MHz before launching (g.)
 - Clocks speed is a function of orbit eccentricity (45 nsec = 14 m) => corrected at the data processing stage (s.):

$$\Delta t_R = -\frac{2}{c^2} \sqrt{a\mu} \quad e \quad \sin E$$

GPS control segment

- Monitor stations:
 - Monitor behavior of satellite orbit and clock, health of satellites
 - Uploads data to satellites according to orders from Master station.
- Master station:
 - Located at Falcon Air Force Base in Colorado Springs, Colorado
 - Calculates position and clock errors for each individual satellite based on information received from the monitor stations
 - Orders appropriate ground antennas to relay information back to satellites
 - Order maneuvers when necessary
 - Ensure clock synchronization = defines GPS time
- Computes and uploads broadcast
 ephemerides into the satellites

The GPS control segment

GPS broadcast ephemeris

- Distributed to users as part of the GPS signal in the navigation message included in the signal sent by the satellites.
- Following parameters are included:
 - Keplerian elements with periodic terms added to account for solar radiation and gravity perturbations.
 - Periodic terms are added for argument of perigee, geocentric distance and inclination.
 - Reference system is WGS84.
- Navigation message:
 - Updated every 2 hours
 - Considered valid from 2 hours before Time of Ephemeris (TOE) until 2 hours after TOE
 - Decoded by all GPS receivers from GPS signal
 - Distributed in ASCII format in *Receiver Independent Exchange* format (RINEX): [4-char][Day of year] [Session].[yy]n (e.g. brdc0120.02n)

svprn	satellite PRN number
<i>m</i> ₀	mean anomaly
t _{oe}	time of ephemeris
sqrt(a)	sqrt(semi-major axis)
Δn	variation of mean angular velocity
е	eccentricity
ω_0	argument of perigee
i ₀	inclination
idot	rate of inclination
$arOmega_0$	right ascension
Ω dot	rate of right ascension
$\begin{array}{c} C_{wc} \ C_{ws} \ C_{rc} \ C_{rs} \ C_{ic} \\ C_{is} \end{array}$	correction coefficients

GPS broadcast ephemeris

2	NAVIGATION DATA			RINEX	VERSION /	′ TYPE
comb_nav.pl	SOPAC H	ri Jan 11 0	4:00:16 GMT 2	2002 PG	M / RUN E	BY / DATE
	BROADCAST EPHEN	MERIS FILE		CO	MMENT	
				CO	MMENT	
SOPAC - S	cripps Orbit and	Permanent A	rray Center	CO	MMENT	
IGPP - Inst	itute of Geophysi	ics and Plan	etary Physic:	s CO	MMENT	
SIO -	Scripps Instituti	ion of Ocean	ography	CO	MMENT	
UCSD -	University of Cal	lifornia, Sa	n Diego	CO	MMENT	
	email: archive@1	lox.ucsd.edu		CO	MMENT	
	ftp://lox.ucs	sd.edu		CO	MMENT	
	http://lox.uc	csd.edu		CO	MMENT	
				CO	MMENT	
				EN	ID OF HEAD	DER
1 02 1 10 0	0 0.0 2.1088542	241669D-04 1	.59161572810	3D-12 0	.00000000	00000D+00
1.740000000	000D+02-6.6250000	00000D+01 3	.99445209924	9D-09 2	.45391334	5123D+00
-3.4/9421138	/63D-06 5.2/42683	332869D-03 I	.06636434793	5D-05 5	.153/08/3	2605D+03
3.456000000	000D+05 1.3/835/4	10431D-07-2	.98/56629830	0D-01-2	.2351/41/	9077D-08
9.6/6350812	908D-01 1./893/50	000000D+02-1	./2/93301562	0D+00-/	.5/388691	1362D-09
3.507288949	806D-10 0.0000000		.148000000000	0D+03 0	.00000000	00000D+00
2.800000000	000D+00 0.00000000 000D+05	J00000D+00-3	.22962901115	4D-09 4	.30000000	10000D+02
1 02 1 10 2		003780_04 1	59161572810	12 0_1	00000000	00000+00
1 75000000	0 0.0 2.1009000	0000000±01 3	028377018/2	20 00 7	77903365	32210+00
-3.810971975	327D-06 5.2741825	347777D-03 1	.07120722532	3D-09-2 3D-05 5	15370874	9771D+03
3 528000000	0000+05 4 2840838	2432310_08_2	98810636376	05 05 5 1 01 1	86264514	97710-09
9.676374409	777D-01 1.7481250	00000D+02-1	.72801546568	3D+00-7	.53245661	4195D-09
3.014411276	615D-10 0.0000000	000000D+00 1	.14800000000	0D+03 0	.00000000	0000D+00
4.000000000	0000+00 0.0000000	00000D+00-3	.25962901115	4D-09 4	.31000000	0000D+02
3.456000000	000D+05					
1 02 1 10 4	0 0.0 2.10907775	59087D-04 1.	591615728103	D-12 0.	000000000	000D+00
1.76000000	000D+02-6.7812500	00000D+01 3	.97337979293	1D-09-1	.72898246	6237D+00
-3.568828105	927D-06 5.2741682	215692D-03 1	.09281390905	4D-05 5	.15370797	1573D+03
3.60000000	000D+05 1.1920928	395508D-07-2	.98864670718	9D-01 1	.04308128	3569D-07
9.676391291	852D-01 1.6984375	500000D+02-1	.72791179599	3D+00-7	.61603152	3997D-09
2.378670509	746D-10 0.000000	00000D+00 1	.14800000000	0D+03 0	.00000000	0000D+00
4.00000000	000D+00 0.000000	00000D+00-3	.25962901115	4D-09 4	.3200000	0000D+02
3.528000000	000D+05					
1 02 1 10 6	0 0.0 2.1091895	517796D-04 1	.59161572810	3D-12 0	.00000000	0000D+00
1.77000000	000D+02-6.1312500	000000D+01 4	.09767068443	2D-09-6	.78759117	2017D-01
2 200024266	2700 06 5 2746003	201100 02 1	00162002015		15270002	95000+02

-3.200024366379D-06 5.274690338410D-03 1.081638038158D-05 5.153708938599D+03 3.67200000000D+05-1.154839992523D-07-2.98920595400D-01 6.146728992462D-08 9.676398972172D-01 1.71125000000D+02-1.727978344137D+00-7.836397845996D-09 2.517962026082D-10 1.000000000D+00 1.14800000000D+03 0.0000000000D+00 4.000000000D+00 0.00000000D+00-3.259629011154D-09 4.3300000000D+02 3.64638000000D+05

TABLE A4 NAVIGATION MESSAGE FILE - DATA RECORD DESCRIPTION OBS. RECORD DESCRIPTION FORMAT PRN / EPOCH / SV CLK | - Satellite PRN number т2. - Epoch: Toc - Time of Clock year (2 digits) 513, month day hour minute second F5.1, 3D19.12 - SV clock bias (seconds) - SV clock drift (sec/sec) - SV clock drift rate (sec/sec2) 3X,4D19.12 BROADCAST ORBIT - IODE Issue of Data, Ephemeris - Crs (meters) - Delta n (radians/sec) - MO (radians) BROADCAST ORBIT - 2 (radians) 3X,4D19.12 - Cuc - e Eccentricity - Cus (radians) - sqrt(A) (sqrt(m)) _____ BROADCAST ORBIT - 3 | - Toe Time of Ephemeris 3X,4D19.12 (sec of GPS week) - Cic (radians) – OMEGA (radians) - CIS (radians) BROADCAST ORBIT - 4 | - 10 3X,4D19,12 (radians) - Crc (meters) - omega (radians) - OMEGA DOT (radians/sec) BROADCAST ORBIT - 5 | - IDOT 3X,4D19.12 (radians/sec) - Codes on L2 channel - GPS Week # (to go with TOE) - L2 P data flag BROADCAST ORBIT - 6 - SV accuracy (meters) 3X,4D19.12 - SV health (MSB only) - TGD (seconds) - IODC Issue of Data, Clock BROADCAST ORBIT - 7 | - Transmission time of message 3X,4D19.12 (sec of GPS week, derived e.g. from Z-count in Hand Over Word (HOW) - spare - spare - spare

…etc

GPS broadcast ephemeris

- · Accuracy of broadcast ephemeris:
 - ~10 m
 - Can be degraded by the DoD to 300 m
 - δs/s = δr/r => if δr = 200 m (r = 20 000 km):
 - $s = 100 \text{ km} \Rightarrow \delta r = 1 \text{ m}$, not sufficient for geophysical applications
 - $s = 1 \text{ km} \Rightarrow \delta r = 1 \text{ cm}$, sufficient for surveying
- Broadcast ephemerides are not accurate enough for most geophysical applications.
- Requirements for geophysical applications (mm cm level):
 - Accurate orbits: e.g. 10 cm orbit error
 => 0.5 mm error on a 100 km baseline
 - Independent from the DoD

For a given satellite orbit error, δr , the error in the estimated baseline vector length, δs , in relative GPS positioning, is roughly proportional to the ratio of baseline length to the distance to the satellite.

IGS: The International GNSS Service for Geodynamics

- International service of the IAG (International Association of Geodesy)
- Coordinates data archiving and processing of a global control network of >350 dual-frequency permanent GPS stations
- Test campaign in 1992, routine operations since 1994
- Provides precise GPS products, in particular satellite orbits

Map of IGS station distribution - http://igscb.jpl.nasa.gov/

IGS orbits

- Core network of globally distributed, high-quality, continuous GPS stations
- Data processed by IGS analysis centers
- Analysis center coordinator produces weighted average
 = final IGS orbit
- Process takes 2 weeks (to ensure best station distribution and solution quality)
- IGS also provides satellite clock corrections
- Other products:
 - Rapid
 - Predicted

Graph courtesy Analysis Coordinator G. Gendt, GFZ Potsdam

Orbits Type	Accuracy/clock accuracy	Latency	Updates	Sample interval
Broadcast	~260 cm/~7 ns	Real-time		daily
Final	< 5 cm/0.1 ns	14 days	Weekly	15 min
Rapid	5 cm/0.2 ns	17 hours	Daily	15 min
Predicted (ultra- rapid)	~10 cm/~7 ns	Real-time	Twice daily	15 min

Orbit comparison: IGS - broadcast

