MULTIPROD TOOLBOX
[MATLAB ® evolves becoming ARRAYLAB ©)]

Multiple matrix multiplications, with array expansion enabled

Paolo de Leva
University of Rome — Foro Italico, Rome, IT

Summary

Multiple products between matrices, pages
vectors, or scalars contained in two
block arrays (fig. 1), with automatic

virtual array expansion enabled. 083 083 030 032 037
0.01 0.50 0.18 0.54 0.86
068 0.70 0.19 0.15 0:85
0.37 042 0.68 0.690.59

Description
. . 0.05 0.13 0.27 0.44 0.84
MULTIPROD is a powerful, quick and 0357020 019 003 052
1C1 1 1 _ 0.81 0.19 0.01 0.46 06.20
memory efficient generalization for N D 250 060 o7t oao b
arrays of the MATLAB matrix .
multiplication operator (*). While the 095 083 084 0.18 0.95
0.237 0.71 0.44 0.72 0.91 COlumnS
latter operates only on 2-D arrays, 060 045 054 063 0.41

048 0.01 0.79 0.40 0.89

MULTIPROD also operates on multi-
dimensional arrays.

Besides the element-wise multiplication
operator (.*), MATLAB includes only
two functions which can perform |
products between multidimensional

arrays: DOT and CROSS. However, Figure 1. A 3-D array, with size 4x5x3, may be described as a
these functions can only perform two "block array" containing three 4x5 matrices (one per page), or also
. . four 5x3 matrices (one per row). With MULTIPROD, these
kinds of product: the dot product and the : : - :

matrices can be automatically multiplied by matrices, vectors or

cross product, respectively. Also, they gcalars contained in another array.

cannot apply array expansion.

Conversely, MULTIPROD can perform any kind of multiple scalar-by-matrix or matrix
multiplication:

rows

1) Arrays of scalars by arrays of scalars, vectors * or matrices.
2) Arrays of vectors * by arrays of scalars, vectors * or matrices.
3) Arrays of matrices by arrays of scalars, vectors ' or matrices.
() internally converted by MULTIPROD into row or column matrices.

In short, with MULTIPROD the "matrix laboratory" MATLAB ® evolves becoming
ARRAYLAB ©, an "array laboratory". Moreover, MULTIPROD is capable of automatically
applying virtual “array expansion” (AX), which allows you, for instance, to multiply a single matrix
A by an array of matrices B, by virtually replicating the matrix to obtain an array compatible with
B.

Multidimensional arrays may contain matrices or vectors or even scalars along one or two of their
dimensions. For instance, a 4x5x3 array A contains three 4x5 matrices along its first and second
dimension (fig. 1). Thus, array A can be described as a block array the elements of which are
matrices, and its size can be denoted by (4x5)x3.

MULTIPROD can be also described as a $ Building A and B
generalization of the built-in function A = rand(2, 5);
TIMES. While TIMES operates element- B = rand(5, 3, 1000, 10);

by-element multiplications (e.g. A . * B), , , , ,
% Multiplying A by all the matrices in B

MULTIPROD operates block-by-block for i = 1:1000
matrix multiplications. for j = 1:10
C(:p:,1,3) = A * B(:,:,1,3);
end
Examples end

Let's say that Figure 2. This loop is equivalent to the single instruction
£ Ais (2><5)><6, and C= MULTIPROD(A,. B), but MULTIPROD performs the

+ B is (5x3)x6 same task about 380 times faster. You can test this example on

) your system by running function timing_MX, included in this

With MULTIPROD the six matrices in A toolbox.
can be multiplied by those in B in a single
intuitively appealing step:

C = MULTIPROD(A, B).
where C is (2x3)x6.

By automatically applying AX, MULTIPROD can multiply a single matrix by each of the blocks of
a block array. So, if

£ A is 2x5 (single matrix), and
#+ B is (5x3)x1000x10,

then C = MULTIPROD(A, B) yields a (2x3)x1000x10 array. A is virtually expanded to a
(2x5)x1000x10 size, then multi-multiplied by B. This is done without using loops, and without
actually replicating the matrix (see Appendix A). We refer to this particular application of AX as
virtual matrix expansion. In a system running MATLAB R2008a, MULTIPROD performs it about
380 times faster than the simple loop shown in Fig. 2 (see Appendix B). AX generalizes matrix
expansion to multidimensional arrays of any size. For instance, if

+ A is (2x5)x10, and
+ B is (5x3)x1x6,

then C = MULTIPROD(A, B) multiplies each of the 10 matrices in A by each of the 6 matrices in
B, obtaining 60 matrices stored in a (2x3)x10x6 array C. It does that by virtually expanding A to
(2x5)x10x6, and B to (5%3)x10x6. A detailed definition of AX will be given in a separate section.

Here are a few other examples of block arrays on which MULTIPROD can operate, including
arrays with 1-D blocks (D and E), and scalar blocks (C and E):

£ A isa2x5x(6x3) array containing matrices along dimensions 3 and 4.
+ B isa2x5%x(3x4) array containing matrices along dimensions 3 and 4.

+ C isa2x5x(1x1) array containing scalars along dimensions 3 and 4.
+ D isa2x5x(3) array containing vectors along dimension 3.
+ E isa2x5x(1) array containing scalars along dimension 3.

For instance, MULTIPROD can multiply the 10 matrices in A by the 10 matrices, vectors or scalars
occupying the same position in B, C, D, or E (in this case, the vectors in D are regarded as 3x1
matrices).

The help text of MULTIPROD was written with extreme care, and should be enough for those who
just want to use the function. Details on the algorithm are provided in Appendices A, B, and C.

Internal and external dimensions

In this context, a block array is defined as an array the elements of which are matrices, vectors or
scalars (fig. 1). Each of these elements is referred to as a block.

The one or two adjacent dimensions of the block array along which the blocks are contained are
called internal dimensions (IDs), while all its other dimensions are called external dimensions
(EDs).

For instance, if A is a (4x5)x3 array of matrices, its first two dimensions are internal (IDs = [1 2]),
and the third is external (ED = 3).

Array expansion

AX is a generalization to N-D of the concept of scalar expansion. Indeed, A and B may be scalars,
vectors, matrices or multi-dimensional arrays.

In MATLAB, scalar expansion is the virtual replication or annihilation of a scalar which allows you
to combine it to an array X of any size, including empty arrays. For instance, if X is 2x5x6, the
operation X * 10 multiplies each element of X by the scalar 10, which is virtually equivalent to an
element-by-element multiplication X .* Y, where Y is a 2x5x6 matrix filled with tens. On the other
hand, if X is empty, X * 10 =X, which is virtually equivalent to annihilating the scalar and
multiplying X element-wise by another empty array Y of the same size.

Similarly, in MULTIPROD, the purpose of AX is to virtually match the size of the external
dimensions (EDs) of A and B, so that block-by-block products can be performed. ED matching is
achieved by means of a dimension shift followed by a singleton expansion:

1) Dimension shift (see SHIFTDIM).

Whenever 1D ~= IDgy, a shift is applied to impose IDa; == IDg; (IDy; is the first
ID of A, and IDyg; is the first ID of B; e.g., if the size of A is 6x(2x5), then its IDs are
[2 3] and IDg; is 2).

If IDA; > IDgy, B is shifted to the right by ID4; - IDg; steps.

If IDg; > ID41, A is shifted to the right by IDg; - IDa; steps.

2) Singleton expansion (SX).

Whenever an ED of either A or B is singleton and the corresponding ED of the other
array is not, the mismatch is fixed by virtually replicating the array (or diminishing it
to length 0) along that dimension.

For instance,

b AT A IS o 6X(2x5),
e ANA B IS e (5%3)x5,
+ then B is shifted by 1 dim. and becomes 1x(5x3)x5,
+ and C = MULTIPROD(A, B, ID,, IDp) is 6x(2x3)x5.

where IDA = [2 3] and IDg = [1 2] are the internal dimensions of A and B, respectively.

Applications

MULTIPROD has a broad field of potential applications. By calling MULTIPROD, multiple
geometrical transformations such as rotations or roto-translations can be performed on large arrays
of vectors in a single step and with no loops. Multiple operations such as normalizing an array of
vectors, or finding their projection along the axes indicated by another array of vectors can be
performed easily, with no loops and with two or three rows of code.

Sample functions performing some of these tasks by calling MULTIPROD are included in the
separate toolbox "Vector algebra for multidimensional arrays of vectors" (MATLAB Central, file
#8782). A sample function (LOC2LOC) performing a multiple roto-translation by calling
MULTIPROD is included in this package. This function uses 3-element translation vectors and 3x3
rotation matrices. If you prefer to work with homogeneous coordinates and 4x4 roto-translation
matrices, you can obtain the same result just by calling MULTIPROD twice.

Optimization and testing

Since I wanted to be of service to as many people as possible, MULTIPROD was designed,
debugged, and optimized for speed and memory efficiency with extreme care. Precious advices by
Jinhui Bai (Georgetown University) helped me to make it even faster, more efficient and more
versatile. Suggestions to improve it further will be welcome. The code ("testMULTIPROD.m") I
used to systematically test the function output is included in this package.

The ARRAYLAB toolbox

In sum, MULTIPROD is a generalization for N-D arrays of the matrix multiplication function
MTIMES, with AX enabled. Vector inner, outer, and cross products generalized for N-D arrays and
with AX enabled are performed by DOT2, OUTER, and CROSS2 (MATLAB Central, file #8782).
Element-by-element multiplications (see TIMES) and other element-by-element binary operations
(such as PLUS and EQ) with AX enabled are performed by BAXFUN (MATLAB Central, file
#23084).

Together, these functions make up the “ARRAYLAB toolbox”. I hope that The MathWorks will
include it in the next version of MATLAB.

Requirements

The users of MATLAB releases prior to R2007a must install Douglas Schwarz’s substitute for
bsxfun, a function which is builtin in MATLAB R2007a and later releases, and which represents
the core of one of the two main engines of MULTIPROD.

MULTITRANSP
This package includes the function MULTITRANSP, performing multiple matrix transpositions.
B = MULTITRANSP(A, DIM)

transposes all the matrices contained along dimensions DIM and DIM+1 of A.

Acknowledgements

I wish to express my gratitude to Jinhui Bai (Georgetown University, Washington, D.C.) for his
invaluable suggestions to optimize the engines used by MULTIPROD, for writing some of the
engines tested by the m-function timing_arraylab_engines, and for patiently running the infinitely
many versions of that function on his laptop computer.

On behalf of all the users of pre-R2007a MATLAB releases (including me), I also wholeheartedly
thank Douglas Schwarz for making the latest version of MULTIPROD fully compatible with those
releases. He did so by generously granting my request to publish on MATLAB Central (file
#23005) a memory efficient replacement for bsxfun, a builtin function introduced in MATLAB
R2007a which I exploited to assemble one of the two main engines of MULTIPROD.

