
MULTIPROD TOOLBOX

[MATLAB ® evolves becoming ARRAYLAB ☺]

Multiple matrix multiplications, with array expansion enabled

Paolo de Leva

University of Rome – Foro Italico, Rome, IT

Summary

Multiple products between matrices,

vectors, or scalars contained in two

block arrays (fig. 1), with automatic

virtual array expansion enabled.

Description

MULTIPROD is a powerful, quick and

memory efficient generalization for N-D

arrays of the MATLAB matrix

multiplication operator (*). While the

latter operates only on 2-D arrays,

MULTIPROD also operates on multi-

dimensional arrays.

Besides the element-wise multiplication

operator (.*), MATLAB includes only

two functions which can perform

products between multidimensional

arrays: DOT and CROSS. However,

these functions can only perform two

kinds of product: the dot product and the

cross product, respectively. Also, they

cannot apply array expansion.

Conversely, MULTIPROD can perform any kind of multiple scalar-by-matrix or matrix

multiplication:

1) Arrays of scalars by arrays of scalars, vectors
(
*

)
 or matrices.

2) Arrays of vectors
(
*

)
 by arrays of scalars, vectors

(
*

)
 or matrices.

3) Arrays of matrices by arrays of scalars, vectors
(
*

)
 or matrices.

(
*

)
 internally converted by MULTIPROD into row or column matrices.

In short, with MULTIPROD the "matrix laboratory" MATLAB ® evolves becoming

ARRAYLAB ☺, an "array laboratory". Moreover, MULTIPROD is capable of automatically

applying virtual “array expansion” (AX), which allows you, for instance, to multiply a single matrix

A by an array of matrices B, by virtually replicating the matrix to obtain an array compatible with

B.

Multidimensional arrays may contain matrices or vectors or even scalars along one or two of their

dimensions. For instance, a 4×5×3 array A contains three 4×5 matrices along its first and second

dimension (fig. 1). Thus, array A can be described as a block array the elements of which are

matrices, and its size can be denoted by (4×5)×3.

0.83 0.83 0.30 0.32 0.37
0.01 0.50 0.18 0.54 0.86
0.68 0.70 0.19 0.15 0.85
0.37 0.42 0.68 0.69 0.59

0.05 0.13 0.27 0.44 0.84
0.35 0.20 0.19 0.93 0.52
0.81 0.19 0.01 0.46 0.20
0.00 0.60 0.74 0.46 0.67

0.95 0.83 0.84 0.18 0.95
0.23 0.71 0.44 0.72 0.91
0.60 0.45 0.54 0.63 0.41
0.48 0.01 0.79 0.40 0.89

columns

rows

pages

Figure 1. A 3-D array, with size 4×5×3, may be described as a

"block array" containing three 4×5 matrices (one per page), or also

four 5×3 matrices (one per row). With MULTIPROD, these

matrices can be automatically multiplied by matrices, vectors or

scalars contained in another array.

MULTIPROD can be also described as a

generalization of the built-in function

TIMES. While TIMES operates element-

by-element multiplications (e.g. A .* B),

MULTIPROD operates block-by-block

matrix multiplications.

Examples

Let's say that

 A is (2×5)×6, and

 B is (5×3)×6.

With MULTIPROD the six matrices in A

can be multiplied by those in B in a single

intuitively appealing step:

C = MULTIPROD(A, B).

where C is (2×3)×6.

By automatically applying AX, MULTIPROD can multiply a single matrix by each of the blocks of

a block array. So, if

 A is 2×5 (single matrix), and

 B is (5×3)×1000×10,

then C = MULTIPROD(A, B) yields a (2×3)×1000×10 array. A is virtually expanded to a

(2×5)×1000×10 size, then multi-multiplied by B. This is done without using loops, and without

actually replicating the matrix (see Appendix A). We refer to this particular application of AX as

virtual matrix expansion. In a system running MATLAB R2008a, MULTIPROD performs it about

380 times faster than the simple loop shown in Fig. 2 (see Appendix B). AX generalizes matrix

expansion to multidimensional arrays of any size. For instance, if

 A is (2×5)×10, and

 B is (5×3)×1×6,

then C = MULTIPROD(A, B) multiplies each of the 10 matrices in A by each of the 6 matrices in

B, obtaining 60 matrices stored in a (2×3)×10×6 array C. It does that by virtually expanding A to

(2×5)×10×6, and B to (5×3)×10×6. A detailed definition of AX will be given in a separate section.

Here are a few other examples of block arrays on which MULTIPROD can operate, including

arrays with 1-D blocks (D and E), and scalar blocks (C and E):

 A is a 2×5×(6×3) array containing matrices along dimensions 3 and 4.

 B is a 2×5×(3×4) array containing matrices along dimensions 3 and 4.

 C is a 2×5×(1×1) array containing scalars along dimensions 3 and 4.

 D is a 2×5×(3) array containing vectors along dimension 3.

 E is a 2×5×(1) array containing scalars along dimension 3.

For instance, MULTIPROD can multiply the 10 matrices in A by the 10 matrices, vectors or scalars

occupying the same position in B, C, D, or E (in this case, the vectors in D are regarded as 3x1

matrices).

The help text of MULTIPROD was written with extreme care, and should be enough for those who

just want to use the function. Details on the algorithm are provided in Appendices A, B, and C.

% Building A and B

A = rand(2, 5);
B = rand(5, 3, 1000, 10);

% Multiplying A by all the matrices in B
for i = 1:1000
 for j = 1:10
 C(:,:,i,j) = A * B(:,:,i,j);
 end
end

Figure 2. This loop is equivalent to the single instruction

C = MULTIPROD(A, B), but MULTIPROD performs the

same task about 380 times faster. You can test this example on

your system by running function timing_MX, included in this

toolbox.

Internal and external dimensions

In this context, a block array is defined as an array the elements of which are matrices, vectors or

scalars (fig. 1). Each of these elements is referred to as a block.

The one or two adjacent dimensions of the block array along which the blocks are contained are

called internal dimensions (IDs), while all its other dimensions are called external dimensions

(EDs).

For instance, if A is a (4×5)×3 array of matrices, its first two dimensions are internal (IDs = [1 2]),

and the third is external (ED = 3).

Array expansion

AX is a generalization to N-D of the concept of scalar expansion. Indeed, A and B may be scalars,

vectors, matrices or multi-dimensional arrays.

In MATLAB, scalar expansion is the virtual replication or annihilation of a scalar which allows you

to combine it to an array X of any size, including empty arrays. For instance, if X is 2×5×6, the

operation X * 10 multiplies each element of X by the scalar 10, which is virtually equivalent to an

element-by-element multiplication X .* Y, where Y is a 2×5×6 matrix filled with tens. On the other

hand, if X is empty, X * 10 = X, which is virtually equivalent to annihilating the scalar and

multiplying X element-wise by another empty array Y of the same size.

Similarly, in MULTIPROD, the purpose of AX is to virtually match the size of the external

dimensions (EDs) of A and B, so that block-by-block products can be performed. ED matching is

achieved by means of a dimension shift followed by a singleton expansion:

1) Dimension shift (see SHIFTDIM).

Whenever IDA1 ~= IDB1, a shift is applied to impose IDA1 == IDB1 (IDA1 is the first

ID of A, and IDB1 is the first ID of B; e.g., if the size of A is 6×(2×5), then its IDs are

[2 3] and IDA1 is 2).

If IDA1 > IDB1, B is shifted to the right by IDA1 - IDB1 steps.

If IDB1 > IDA1, A is shifted to the right by IDB1 - IDA1 steps.

2) Singleton expansion (SX).

Whenever an ED of either A or B is singleton and the corresponding ED of the other

array is not, the mismatch is fixed by virtually replicating the array (or diminishing it

to length 0) along that dimension.

For instance,

 if A is .. 6×(2×5),

 and B is ... (5×3)×5,

 then B is shifted by 1 dim. and becomes 1×(5×3)×5,

 and C = MULTIPROD(A, B, IDA, IDB) is 6×(2×3)×5.

where IDA = [2 3] and IDB = [1 2] are the internal dimensions of A and B, respectively.

Applications

MULTIPROD has a broad field of potential applications. By calling MULTIPROD, multiple

geometrical transformations such as rotations or roto-translations can be performed on large arrays

of vectors in a single step and with no loops. Multiple operations such as normalizing an array of

vectors, or finding their projection along the axes indicated by another array of vectors can be

performed easily, with no loops and with two or three rows of code.

Sample functions performing some of these tasks by calling MULTIPROD are included in the

separate toolbox "Vector algebra for multidimensional arrays of vectors" (MATLAB Central, file

#8782). A sample function (LOC2LOC) performing a multiple roto-translation by calling

MULTIPROD is included in this package. This function uses 3-element translation vectors and 3x3

rotation matrices. If you prefer to work with homogeneous coordinates and 4x4 roto-translation

matrices, you can obtain the same result just by calling MULTIPROD twice.

Optimization and testing

Since I wanted to be of service to as many people as possible, MULTIPROD was designed,

debugged, and optimized for speed and memory efficiency with extreme care. Precious advices by

Jinhui Bai (Georgetown University) helped me to make it even faster, more efficient and more

versatile. Suggestions to improve it further will be welcome. The code ("testMULTIPROD.m") I

used to systematically test the function output is included in this package.

The ARRAYLAB toolbox

In sum, MULTIPROD is a generalization for N-D arrays of the matrix multiplication function

MTIMES, with AX enabled. Vector inner, outer, and cross products generalized for N-D arrays and

with AX enabled are performed by DOT2, OUTER, and CROSS2 (MATLAB Central, file #8782).

Element-by-element multiplications (see TIMES) and other element-by-element binary operations

(such as PLUS and EQ) with AX enabled are performed by BAXFUN (MATLAB Central, file

#23084).

Together, these functions make up the “ARRAYLAB toolbox”. I hope that The MathWorks will

include it in the next version of MATLAB.

Requirements

The users of MATLAB releases prior to R2007a must install Douglas Schwarz’s substitute for

bsxfun, a function which is builtin in MATLAB R2007a and later releases, and which represents

the core of one of the two main engines of MULTIPROD.

MULTITRANSP

This package includes the function MULTITRANSP, performing multiple matrix transpositions.

B = MULTITRANSP(A, DIM)

 transposes all the matrices contained along dimensions DIM and DIM+1 of A.

Acknowledgements

I wish to express my gratitude to Jinhui Bai (Georgetown University, Washington, D.C.) for his

invaluable suggestions to optimize the engines used by MULTIPROD, for writing some of the

engines tested by the m-function timing_arraylab_engines, and for patiently running the infinitely

many versions of that function on his laptop computer.

On behalf of all the users of pre-R2007a MATLAB releases (including me), I also wholeheartedly

thank Douglas Schwarz for making the latest version of MULTIPROD fully compatible with those

releases. He did so by generously granting my request to publish on MATLAB Central (file

#23005) a memory efficient replacement for bsxfun, a builtin function introduced in MATLAB

R2007a which I exploited to assemble one of the two main engines of MULTIPROD.

