APPENDIX B

TESTING THE SPEED AND MEMORY USAGE OF MULTIPROD’S ENGINES

Testing speed

The M-function “testing_ ARRAYLAB_engines.m” was used to test the speed of different engines to perform
multiple matrix products. Several new engines were compared to the engine used in MULTIPROD 1.3. Some
of the engines were similar to the engine used in MULTIPROD 1.3 (ARRAYLAB 1.3, ARRAYLAB 1.31,
ARRAYLAB 1.32, ARRAYLAB 1.32), and were not capable of performing AX. Plain loops were also tested.

The new engines are listed in the tables below. All of them happen to be based on some kind of “reshape
technique”. Most use some form of singleton expansion (SX), even when the external dimensions of A and
B are identical. All of them eventually feed the reshaped and/or expanded arrays either to TIMES or
MTIMES. In short, the tested engines use two kinds of pipelines:

1. (PERMUTE) = 4-D RESHAPE - SX - TIMES - SUM - 3-D RESHAPE - (PERMUTE)
2. PERMUTE -> 2-D RESHAPE > MTIMES -> 3-D RESHAPE > PERMUTE

Notice that, in pipeline 1, 4-D RESHAPE expands a 3-D array to 4-D, by adding a singleton dimension, while
in pipeline 2, 2-D RESHAPE rearranges or “squashes” a 3-D array to 2-D. Moreover, in pipeline 1 sometimes
the initial permutation is not needed, and SX can be performed in four different ways. Namely, by means of
Tony’s trick, or functions GENOP, BSX_TIMES, or BSXFUN. Tony’s trick performs SX physically (by allocating
new memory to store the replicated array), while GENOP, BSX_TIMES and BSXFUN are preferable because
they perform it virtually (without allocating new memory).

The main results of the speed tests for some of these engines are summarized in figure 1. Normalized
processing times (ratio between processing time and average processing time) were reported to facilitate
comparison between two systems, a PC running MATLAB R2007b, and a PC running MATLAB R2008b.

Table 1. Engines used to solve a multiproduct which did neither require SX nor AX to match the external dimensions of
A and B. Ais Nx(PxQ), B is Nx(QxR).

Pipeline Engine RESHAPE technique Multiplication method
resh4D_clone A = A(:,:,:,0nes(1,R))
(Tony’s trick) B = B(:,:,:,ones(1,P))
Y C=a.*B
h4D A = reshape(A, [N P Q 1]) c ot AR
res _genop B = reshape (B, [N 1 Q = genop(@times, A,B)
(PERMUTE)
4D-RESH resh4D_bsxtimes C = bsx_times (A, B)
SX
TIMES resh4D_bsxfun C = bsxfun(@times, A, B)
st h (A, [1])
permA_resh4D_ A = reshape(A, [N Q P _ ,
bsxfun B = reshape (B, [N Q0 1 R]) C = bsxfun(@times, A, B)
permAB_resh4D__ A = reshape(A, [Q P 1 NJ)

bsxfun B = reshape (B, [Q 1 R NJ]) C = bsxfun(@times, A, B)

Table 2. Engines used to solve a multiproduct which required AX. Namely, the multiproduct of a single-block array by
an array with N blocks, or vice versa. Either A is (PxQ) and B is Nx(QxR), or A is Nx(PxQ) and B is (QxR).

Pipeline Engine RESHAPE technique Multiplication method
_ A = reshape(A,[1 P Q 1]) .
4D-RESH ’ _
ox resh4D_bsxfun_expA B - reshape(B, [N 1 O R]) C bsxfun (@times, A, B)
TIMES
A = reshape(A, [N P Q 1]) _ :
SUM resh4D_bsxfun_expB B - reshape(B, [1 1 O R]) C = bsxfun(@times, A, B)
. A is (PxQ) _ . o ,
PERMUTE squashB_mtimes B - reshape (B, [0, R*N]) C = A B % mtimes
2D-RESH
A = h A, [N*P
MTIMES squashA_mtimes) reshape (A, [» On) C=A*B % mtimes
B is (QOxR)

As expected, conventional loops were markedly slower than the other engines (Loop 2 was the fastest
“conventional loop” technique). The ARRAYLAB engines, similar to the engine used in MULTIPROD 1.3,
were faster than “R4D Tony’s trick”, “R4D GENOP”, “R4D BSX_TIMES”, but slower than “R4D BSXFUN". As
for the matrix expansion experiments, the “SQUASH MTIMES” techniques were much faster than “R4D
BSXFUN”, even though the latter exploits the builtin function BSXFUN. This is due to the fact that MTIMES
calls a few Basic Linear Algebra Subroutines (BLAS) to perform the multiplication. The BLAS are CPU-specific
interfaces provided by hardware vendors (such as Intel and AMD) to speed up computations.

MULTIPROD 2.0 implements generalizations of the “R4D BSXFUN” and “SQUASH MTIMES” engines, which

are capable of operating on arrays of any size.
Mormalized processing time
(time / mean time) EXPERIMENT EXPERIMENT
A ledx(3x3) 1e3x[3x30) le3x(5x10) 100x(9x100) A ledw(3e3) 1e3x3x30) le3x(3x10) 100x(9x100)
ENGINE B ledx(3xl) 1e3x(30x1) le3x(10x3) 100x(100x3) B leds(3xl) 1e3x(30x1) 1e3x(10x3) 100x(100x3)
Loop 2 2.2 138 1.5] 0.5 9.9 14§ 1.6] 0.5
Arraylab 1.33 0.3] o3l 0.9 0.8 0.4] ozl 0.7] 0.6
MULTIPROD 2.0 0.3] 0.3 o7l 0.7 0.2} 0.2 0.5 0.5
RAD Tony's rick 0.6] 0.6 1.78 1.6 0.4 0.4l 11] ikl
RAD GENOP 0.5 o5l 11 157 0.4l 0.4l 11 ilat
RAD BSX_TIMES 0.4 04l 1.0f 1.0 0.3] 0.2 1.0f 1.0
RAD BSXFUN 0.3] 0.2 0.6 0.6 0.2] 0.2 0.5/ 0.5
MATRIX EXPANSION (MX) EXPERIMENT MATRIX EXPANSION (MX) EXPERIMENT
A (23] [3x30) [2x10) [ox100) A (33) [3x30) [ax10) [3x100)
ENGINE B ledx(3x1) le3x[30x1) le3x(10x3) 100x(100x3) B leds(3xl) 1e3x(301) le3x[10x3) 100=(100=3)
Loop 2 (exp A) 6.1 0.7 1.0 0.2 7.1 0.8 1.0 0.2
RAD BSXFUN (exp A) 0.2 0.2 0.6 0.6 0.1 0.1 0.4 0.4
SQUASH-B MTIMES 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
MULTIPROD 2.0 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1
A ledx(3x3) le3x(3x30) le3x(Sx10) 100x(9x100) A ledw(33) 1e3x(3x30) le3x(3x10) 100=(Sx100)
B (3] [30x1) 103} (1003} B [3x1) [20n1) [103) [10m:3)
Loop 2 (exp B) 6.7 i g 0.4 7.3 i 1.2 0.5
RAD BSXFUN (exp B) 0.2 0.2 0.6 0.6 0.2 0.1 0.4 0.4
SQUASH-A MTIMES 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0
MULTIPROD 2.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
CPU Pentium D - 3 GHz Intel Core Duo 1.83 GHz
RAM 2 (GB) 1 (GB)
Operating system Windows Vista SP1 32bit Windows XP Tablet PC Edition 2005 SP3
MATLAB Release R2007b R2008b
Mean processing time 7.8 {ms) 1152 (ms)

Figure 1. Notice that in the MX experiments, all the engines performed virtual expansion. The “SQUASH MTIMES”
engines actually squashed the 3-D array to 2-D, rather than expanding the matrix.

Generalization of the R4D-BSXFUN engine (pipeline 1)
“R4D BSXFUN” was one of the six implementations of pipeline 1:
(PERMUTE) = 4-D RESHAPE - SX = TIMES - SUM - 3-D RESHAPE = (PERMUTE)

Since PERMUTE was not used by “R4D BSXFUN” and the SX and TIMES steps were both performed by
BSXFUN, we can write:

4-D RESHAPE - BSXFUN - SUM - 3-D RESHAPE

A and B are reshaped from 3-D to 4-D by adding a singleton dimension, and C is reshaped back to 3-D by
deleting a singleton dimension. Thus, we can write:

ADDSINGLETON - BSXFUN = SUM -> DELSINGLETON

The same method can be used to process N-D arrays (N>2). This pipeline was adapted to deal with different
MULTIPROD syntaxes (see Appendix A):

SWAPPING - BSXFUN - SUM
ADDSINGLETON - BSXFUN
BSXFUN

In some simple cases, BSXFUN (i.e. SX = TIMES) was not needed, and TIMES was sufficient:

SWAPPING - TIMES - SUM
DELSINGLETON - TIMES = SUM
ADDSINGLETON -> TIMES
TIMES - SUM
TIMES

Generalization of the SQUASH-MTIMES engines (pipeline 2)

Pipeline 2 was specifically designed to solve the matrix expansion problem. Pipeline 1 was capable of
solving that problem as well, but was shown to be markedly slower in this specific task (Fig. 1). The two
“SQUASH MTIMES” engines represented the only tested implementations of pipeline 2:

PERMUTE —> 2-D RESHAPE > MTIMES -> 3-D RESHAPE > PERMUTE

We can use the expressions 2-D SQUASH and 3-D REASSEMBLE to indicate the first two and last two steps
of pipeline 2:

2-D SQUASH = MTIMES —> 3-D REASSEMBLE
This pipeline was generalized to N-D and adapted to deal with different MULTIPROD syntaxes:

2-D SQUASH - MTIMES - N-D REASSEMBLE
RESHAPE - 2-D SQUASH - MTIMES - N-D REASSEMBLE - RESHAPE
RESHAPE - 2-D SQUASH = MTIMES = N-D REASSEMBLE

Herein RESHAPE means inserting or removing singletons. The initial RESHAPE is used to shift the single
block array to dimension(s) [1 2] (e.g. when its size is 1x1x(PxQ)), or 1, or 2 (e.g. when its size is 1x1x(P))
and/or to turn into 2-D blocks the 1-D blocks contained in the multi-block array (e.g. when its size is
MxNx(P)). The final RESHAPE adjusts the output size, according to the rules of MULTIPROD.

A simplified version of this generalized pipeline was used to multiply two single-block arrays. This does not
require array expansion:

RESHAPE - MTIMES - RESHAPE
RESHAPE > MTIMES
MTIMES

Testing memory usage

Function testing_memory_usage.m was used to test the memory efficiency of some of the above
mentioned techniques for singleton expansion, as well as some MATLAB commands used to rearrange
array elements (TRANSPOSE, RESHAPE, and PERMUTE). The results are shown in Figure 2. GENOP and the
embedded Tony's trick needed to temporarily allocate a significant amount of additional memory to store
the expanded array. On the other hand, BSXFUN and its replacement BSX_TIMES obtained the same result
without additional memory allocation. These techniques for SX were also shown to be faster than GENOP
and Tony's trick. Their memory efficient behavior is referred to as virtual expansion, as opposed to the
physical expansion performed by GENOP and Tony's trick. BSXFUN was selected as the core of one of
MULTIPROD's engines. BSX_TIMES is a replacement for BSXFUN which can be exploited by users of pre-
R2007a releases of MATLAB, in which BSXFUN was not provided (see MULTIPROD manual).

PC: Lenovo Thinkpad X60 Tablet
05: Windows XP Tablet PC Edition 2005 5P3
CPU: Intel Core Duo 1.83 GHz
RAM: 1 GE
MATLAB: R2008b (7.7)
Memory usage Peak memory usage

Value Increase Value Increase

(MB) (MB) (MB) (MB)
Initial value 153.0 Idem
A1D = RAND(1, 1e6) 160.8 (+7.8) Idem
A2D = RAND(100, 1e4) 168.6 (+7.8) Idem
E TRANSPOSE(A1D) 168.6 (+0.0) Idem
E‘ E’n TRANSPOSE(A2D) 176.5 (+7.9) Idem
< E RESHAPE(AZD, ...) 176.5 (+0.0) Idem
E PERMUTE(AZ2D, ...} 184.3 (+7.8) Idem
b Tony's trick 223.5 (+39.2) Idem
4 BSXFUN 262.6 (+39.1) Idem
E BSX_TIMES 301.7 (+39.1) Idem
¥ GENOP 340.8 (+39.1) 364.2 (+62.5)
@ Embedded T. trick 380.0 (+39.2) 419.1 (+78.3)

Figure 2. Memory used by MATLAB commands performing array element rearrangement and by functions
implementing singleton expansion (SX), or singleton expansion associated with a multiplication (SX + TIMES). In this
test, SX consists of a replication by 5 times of A2D. See function testing_memory_usage.m for further details.

