
1	

Calculating the FT and IFT in the finite duration (finite length sequences
in both TD and FD), fully discrete (both in TD and FD) domain. 	

We can distinguish 4 types of Fourier transform based on what we’ve
been developing so far.	

2	

A signal can be either continuous
or discrete and either periodic or
aperiodic. This results in four
types of signals -	

i) aperiodic continuous - such as
decaying exponentials and
gaussians	

ii) periodic continuous -such as
sines and square waves	

iii) aperiodic discrete - similar to (i), but sequence rather than continuous	

iv) periodic discrete - similar to (ii), but sequence rather than continuous	

Each of these classes of signal extend to ±infinity (even for finite length
signals in the computer, since the basis functions - sine and cosine - are
defined to ±infinity). We also already know that you need an infinite set
of frequencies to synthesize an aperiodic signal.	

Figure from Smith	

3	

This leads to four types of Fourier Transform pairs (ignoring
normalization constants)	

€

X(ω) = x(t)
-∞

∞

∫ e− iωdt

€

x(t) = X(ω)
-∞

∞

∫ eiωdω
Aperiodic continuous (Fourier Transform)	

€

˜ x (n) = ˜ X (ω)eiωn

n =−∞

∞

∑

€

˜ X (ω) = ˜ x (t)e− iωtdt
−T0 / 2

T0 / 2

∫

Periodic continuous (Fourier Series)	

€

x(n) = X(ω)
-π

π

∫ eiωndω

€

X(ω) = x(k)e− iωk
k=−∞

∞

∑
Aperiodic discrete (call it the Discrete Time Fourier Transform)	

€

˜ x (n) = ˜ X (k)
k =0

N −1

∑ ei(2π / N)nk

€

˜ X (k) = ˜ x (n)e− i(2π / N)nk

n =0

N −1

∑

Periodic discrete (Discrete Fourier Series, if also finite-duration with
proper interpretation becomes Discrete Fourier Transform, continuous ω

goes to discrete k in Frequency Domain)	

4	

Consider a periodic sequence with period N (note, N is not the length of
the sequence, which is still infinite). We will denote periodic sequences
with a tilde, , and we have by the definition of periodicity	

€

˜ x (n)

The DFS can be found from the FT we have been using as follows -	

First, remember how we discretized the “time” variable when we went
from the continuous case to a sequence, t went to kΔ t.	

Now we do the same to the frequency variable, ω goes to 2π nΔ f. And
Δ f=(1/NΔ t), so ω t, which went to ω k before, now goes to 2π n k / Ν
and the FT becomes	

€

˜ x (n) = ˜ x (n + kN) for all integer k.	

€

˜ X (ω) = ˜ x (k)e− iωk

k =−∞

∞

∑ = ˜ x (k)e−i2πnk / N

k =0

N −1

∑ = ˜ X (nΔω)

Where the sum is now from 0 to N-1, since there are only N complex
exponential terms (the others are the “same” due to aliasing	

), the n is from the Fourier series frequency
domain discretization, and the k is from the time domain discretization.	

€

e−i2πn(k+N) /N = e− i2πnk /N

5	

Discrete Fourier Series (DFS) pairs.	

€

˜ x (n) =
1
N

˜ X (k)
k =0

N −1

∑ WN
−nk

€

˜ X (k) = ˜ x (n)WN
nk

n =0

N −1

∑

both of which have period N.	

6	

€

˜ x ∗(n) ⇔

˜ X (k) = ˜ X *(−k)
ℜ[˜ X (k)] =ℜ[˜ X (−k)]
ℑ[˜ X (k)] = −ℑ[˜ X (−k)]

˜ X (k) = ˜ X (−k)
arg[˜ X (k)] = −arg[˜ X (−k)]

⎧

⎨

⎪
⎪ ⎪

⎩

⎪
⎪
⎪

˜ x e
∗(n) ⇔ℜ[˜ X (k)]

˜ x o
∗(n) ⇔ iℑ[˜ X (k)]

Summary for real x
(n).	

DFT of real sequence showing
symmetries of real and
imaginary parts of complex
DFT. One and a half cycles
shown to see 2 most common
x axis ranges -0.5 to 0.5 and 0
to 1 (in units of π).	

Figure from Smith	

7	

With the proper interpretation we can directly change the DFS into the
Discrete Fourier Transform (DFT). So far we have seen that we can

represent a finite-duration sequence of length N by a periodic sequence
with period N, one period of which is identical the the finite-duration

sequence (we usually assume that the finite-duration sequence is in the
region 0≤n≤N-1, but this is not necessary). In the sense that the periodic

sequence has a unique DFS representation, so does the original finite-
duration sequence, since we can compute a single period of the periodic

sequence, and thus the finite-length sequence, from the DFS.	

If we want to be rigorous - we should re-derive everything with the
following modifications.	

8	

€

RN (n) =
1 0 ≤ n ≤ N −1
0 otherwise
⎧
⎨
⎩

Define the rectangular sequence RN(n) (also known as a boxcar
window) by	

The finite duration sequence is defined by extracting one period.	

€

x(n) =
˜ x (n) 0 ≤ n ≤ N −1
0 otherwise

⎧
⎨
⎩

Which can be written	

€

x(n) = ˜ x (n)RN (n)

(Notice that we now have a multiplication in the TD by a
“boxcar”, so we get convolution in the FD).	

9	

A	

B	

C	

D	

E	

F	

G	

How does the Discrete Fourier
Transform (DFT) relate to the
Continuous Fourier Transform
(CFT)? This figure shows that we
can consider the DFT to be a
special case of the FT. (if one
insists that discrete math is second
class).	

(A) shows the continuous function
x(t) and its continuous FT X(f).	

Figure after Brigham	

To determine the FT by digital
means we first have to sample it.
This is accomplished by
multiplying the signal by the
sampling function shown in (B).	

The sampling interval is T.	

10	

(C) shows the sampled function
and its FT. The signal and FT are
both changed. TD multiplication,
forming the sampled signal,
becomes FD convolution of the
CFT of the continuous signal
with the CFT of the sampling
function making the CFT
periodic. Note that in this case,
the spikes in the CFD are not far
enough apart to keep the repeated
spectra apart, so they overlap and
sum (aliasing). Since the spacing
of the CFD spikes is 1/T0, one
must sample faster to spread them
apart and prevent aliasing (or
remove the higher frequencies
from the signal before sampling).	

A	

B	

C	

D	

E	

F	

G	

11	

A	

B	

C	

D	

E	

F	

G	

We cannot feed (C) into the
computer yet, because it is
infinitely long. We have to
truncate it to a finite length. To do
this, multiply by a rectangular
(truncation or boxcar) window in
the TD (D) producing the length
N finite-duration, discrete TD
signal in (E). This effects the FD
representation, requiring a
convolution with the sinc
function (CFT of the rectangular
window). This introduces ripple
into the CFT due to the wiggles
in the tails of the sinc function.
We’re still not ready for the
computer however, because the
FD signal is still continuous.	

12	

A	

B	

C	

D	

E	

F	

G	

This is addressed in (F), where
we now discretize the FD. As for
the TD sampling, this is done
with a comb of N (same length as
TD) δ functions producing the
DFT on the bottom right. FD
multiplication requires
convolution in the TD, so we
convolve the finite-duration
sampled TD sequence with the
IFT of the FD sampling comb
producing a periodic signal in the
TD. In the computer, of course,
we have only 1 cycle of the TD
and FD representations and only
positive frequencies. The math
thinks things go to ±infinity and
includes negative frequencies.	

13	

A	

B	

C	

D	

E	

F	

G	

What about the ripples that showed
up in (E)? Do they make it into
(G)?	

It depends (we can never have a
simple answer!) on the frequency
content in (A). As we will see, if
the continuous signal just happens
to contain only those frequencies
contained in the comb of delta
functions in (F), then the ripples all
occur “between” the FD samples
so they “don’t” exist (since
discrete signals don’t exist there).
If there is a continuum of
frequencies in the continuous
signal in (A) then the ripples will
not all be zero on the FD samples
and they will add into the DFT.	

14	

Truncation interval = period (“on” a
DFT “line”). Same development as
before. Minor change - the window
function goes from -T/2 to T0-T/2,
this prevents the sampled TD data
from having a point that is
duplicated when (F) makes the TD
periodic. Since there is only one
frequency component we can follow
the amplitudes exactly. There are 10
samples/cycle. (you will notice if you look carefully that
the FD in (E) is not quite right - we need one more oscillation - two more
zero crossings - in there [to be fixed in future {maybe}])	

The TD representation in (G) looks
the same as the TD analog signal in
(A) since the analog signal has the
same period at the DFT so we don’t
notice the imposed periodicity,
while the FD shows this periodicity. 	

A	

B	

C	

D	

E	

F	

G	

15	

A quick look at the
sinc function -- it
is 1 at x=0, and
zero at x=n/2T0
for all integer n≠0
and oscillates
around, while
decaying to zero,
in between.	

16	

FD zoom when the truncation interval = the period. Convolution of the
two δ’s at ±f with the sinc results in the black line - somewhat ugly. The
dashed red and green lines show the shifted sinc function components in
the convolution that sum to this result. The blue lines show where the
continuous (black) FT is sampled (multiplied by δ comb) in the FD to
make the discrete spectrum shown by the blue circles. Except for the two
samples at the “fundamental”, the sinc functions and convolution are
zero at the FD sampling points, while at the fundamental the convolution	

value is 1. We get exactly what we
“expect” from our intuitive
understanding of the real world and
the CFT - a sharp single spectral line
at the input frequency giving the
amplitude of the signal (not worrying
about difference between peak and
RMS amplitude determinations or the
50-50 power split between + and -
frequencies)	

17	

A	

B	

C	

D	

E	

F	

G	

Truncation interval ≠ period (input
frequency not on DFT line). Same
development as before. Since there
is only one frequency component
we can attempt to follow the
amplitude exactly.	

We now notice two “non-
intuitive” (actually confusing)
things - first the TD representation
in (G) is not the same as the TD
analog signal in (A) and we do not
get a single spike in the DFT and
the amplitude determination is
“off”! This is a result of the “math”
making a signal that is not periodic
in N in the analog world, periodic in
N in the discrete world on the
computer.	

18	

Zooming-in in the FD we see the result of convolution of the continuous
FT with the sinc function from the windowing. So far we get the same
thing as before - the same ugly continuous function. The “problem”
arises when we sample this with the δ comb in the FD. Now the
continuous frequency locations of the fundamental and the zeros of the
shifted sinc functions and convolution do not correspond to locations of
the δ’s in the comb - so the ugliness carries through the sampling into our
result and we get two points in the sequence with large “incorrect”
amplitude values and lots of points in the sequence with non-zero values.	

Putting a little more effort into
understanding this it actually makes
sense. The DC value is not zero for
instance. Remember that the
sequence is “periodic” in the TD.
The DC value is the average over
one window cycle of the TD signal,
which is not zero for arbitrary
frequency cosine waves.	

19	

To sum up, the effect of truncation of a TD sinusoidal signal at other than
multiples of the period of the signal is to create a periodic TD function
with sharp discontinuities. Intuitively we expect the addition of these

discontinuities in the TD to result in the need for additional (high)
frequency components in the FD. In the FD, the TD truncation is

equivalent to convolution with the sinc function. After this convolution
in the FD we no longer have a single impulse, but a “smooth” continuous
function with local maximum (correctly) centered at the original impulse
and a series of other peaks called sidelobes. The next “bad” effect comes
with FD sampling, which samples this mess based on the TD truncation
period and not the sinusoidal signal period resulting in a multiple spike
peak and low amplitude tails. The effect whereby the energy is spread-
out over multiple samples is called “spectral leakage”. This effect is

inherent in the DFT because of the required TD truncation (it is aliasing
– need high frequencies for the discontinuity). We will look at some
techniques for reducing spectral leakage (at a cost) later (you already

have seen this - windows that remove/smooth out the discontinuities in
the periodic view of the TD). 	

20	

If the signal to be analyzed is finite duration or periodic, one can skip the
“windowing” step by looking at a sequence with a length equal to the
finite duration of the signal or one period and get the “right” answer in
the “math” view in both the TD and FD (remember what happened when
we sampled the “ugly” convolution result for the case of a cosine wave
truncated at its period - it removed the ugliness by sampling only the
“good” points). If the original signal is not band-limited, however, we
would get aliasing errors.	

For a general signal the DFT gets hit with a double whammy - one from
the truncation effect and one from aliasing. We already “know” (but have
not looked in detail at) how to fix both problems	

Truncation - use a smooth window function (not a boxcar)	

Aliasing problem - faster sampling and anti-aliasing filtering before
sampling – can’t fix discontinuity – fix same way – smoothing window.	

21	

Let’s look at what can happen when we decide to do DSP on the
computer. We have some sequence and would like to know its spectrum.
Assume it’s a GDSN seismogram, so we don’t have to worry about the a-

d hardware, sampling, bits/sample, etc. We have a good, properly
prepared signal to process. Let’s further assume that this signal is a pure

sine wave (the “spherical chicken” of DSP).	

The first question we have to answer is how much data to process. The
DFT needs TD data to ±infinity and a continuum of FD frequencies,

which we can’t do on the computer. So we need to make some decisions
and compromises. We know we need to sample at least two samples at

the sinusoids extrema to get the amplitude and that the more samples we
have the better for the DFT, but we run into computer space and

calculation time problems. So we compromise on some finite duration
sequence that gets a number of cycles (say between 10 and1000)	

Next we have to decide on the number of frequencies we will use in our
finite sum. We get the fundamental frequency from the sampling rate.	

22	

We will now calculate some DFTs using the definition of the DFT (the -
slow - correlation method).	

Take an 80 Hz sinewave and sample at 8kHz (that’s 100 samples per
cycle) for 100 msec (that’s 8 cycles) for a total of 801 samples.	

Given the sampling frequency we know that the spectrum will only have
frequencies between ±4kHz. Since we can’t calculate the continuous
spectrum, let’s pick 200 of them (notice that we’re doing something non-
standard here - for educational purposes, normally we’d use 801
frequencies for an 801 point complex input sequence), which gives a
fundamental frequency of 40 Hz and a spacing in the discrete FD of 40
Hz. Notice that 80 Hz is an even multiple of the fundamental.	

We now compute for the 201 frequencies	

between -4kHz and 4kHz (-100≤n<100) and get. 	

€

X(n) = x(k)e− i2πnk / 801
k=0

800

∑

23	

We get a near “perfect” result, all the energy is basically in two lines at
±80 Hz. The stuff down at -300 dB is effectively zero and is due to round
off error associated with the finite precision math (MATLAB uses double
precision).	

24	

The result in the previous plot was so nice because we cheated - it was
“set-up” to come out that way. We knew the frequency of the input and
“ginned-up” the spectrum calculation to include the known frequency in
the set of frequencies used for the correlation's. Suppose we did not
know what the input frequency was and arbitrarily decided to sample the
FD every 100 Hz instead of every 40 Hz? (again for educational
purposes). Now what do we get?	

25	

WOW! Where’d our sine wave go? Everything’s down at -300 dB, i.e.
there’s no signal. But we know we put one in. Remember that we’re
correlating the input with a set of sinusoidal waves. Also remember that
sinusoidal waves are orthonormal, so we get ZERO (or near zero) for all 	

of our
correlation's,
since the
frequencies
we’re using for
a basis are every
100 Hz, none
match up with
80 Hz. This is
pretty bad - we
know we put in
a signal and get
NOTHING out. 	

26	

Ok, so we understand why we don’t see the 80 Hz sine wave, we did not
sample at a sub-harmonic of 80 Hz (so that n*fundamental=80 Hz). But
what does this imply for taking measurements in the real world where
our inputs will most likely be unknown frequencies from a continuous
spectrum? Can we really mess up so badly?	

Let’s try sampling in the FD at 7 Hz to see what happens.	

27	

WOW again! We went from the frying pan into the fire. First we saw no
sine wave in the output and now we see them everywhere (plus some
frequencies with zero - the guy’s down at -300 dB). Granted we do have
peaks at ±80 Hz, but what’s all that other stuff? So we went from missing
our input altogether to smearing it out all over.	

28	

Ok - so what’s going on. 	

First - the previous examples were meant to scare you. 	

When you look at the equations, correlation over some finite set of
frequencies seems like a reasonably way to approximate the DTFT. In

practice this will produce 	

Good solutions - Showing all terms, and at the right frequencies 	

Bad solutions - Missing important terms 	

Ugly solutions - Moving important terms to the wrong frequencies 	

(let’s call our correlation method the Finite-Length-Discrete-Time-
Fourier-Transform = FLDTFT)	

To confidently predict the FT from the DFT/FFT/DFS/FLDTFT you
need to know what happened in these examples. Fortunately there is a

fairly easy explanation	

29	

Recall there are two problems that prevented us from calculating the
DTFT - we don’t have a signal over all time, and we can't evaluate the
DTFT at all frequencies. 	

Start by examining the first problem. We only have x[n] over a finite
time interval, but we usually assume the analog signal, x(t), extends out
to t=±infinity (or at least extends for a lot longer time than we used in
the FLDTFT calculation). We essentially multiplied x(t) by a 'window'
that looks like a square pulse by ignoring data outside some finite time
interval in our calculation of the FLDTFT,. 	

Rather than looking at the difference between the DTFT and FLDTFT
calculations - look at the difference between the spectrum of x(t) and
the spectrum of x(t)w(t). 	

30	

Recall that multiplication in the TD, is convolution in the FD. Also recall
that the spectrum of a square pulse (the truncation window) is a sinc

function. 	

If the pulse has a width of Tp seconds, the sinc spectrum will hit zero
every 1/Tp Hz. In our example the window was 100 msec long, so it's

spectrum will hit zero every 10 Hz. 	

To get a clear view of this spectrum, just take the FLDTFT of a constant 	

(notice that we’re repeating what we saw in the multi-panel CFT to DFT
development)	

31	

Spectrum of the truncation function (boxcar, rectangular pulse) that
results from changing a infinite duration signal into a finite duration
signal. (no sampling yet).	

32	

Convolving the sinc function with the deltas changes the original
spectrum of x(t). When x(t) is a sinusoid this is easy. Using the numbers
in this example, the spectrum of x(t) is just two impulses, at +/- 80 Hz.
When these impulses are convolved with a sinc function, we should see	

two copies of
the sinc
function,
centered at +/-
80 Hz. These
sinc functions
will hit zero
every 10 Hz, at:
… -110, 100,
-90, -70, -60
-50 50, 60,
70, 80, 90, 100,
110 ... Hz.	

33	

So now we can explain exactly what happened in our 3 cases and relate it
to the “true” spectrum.	

34	

True (no FD sampling, is continuous [well it looks continuous, it’s still
done on the computer so it can’t be continuous - so just pretend]). Take
enough frequencies in the FD to see the full x(t)w(t) (i.e. both the signal
and weighting function)	

35	

If we only sample the sinc function at the peak and nulls we get the
“excellent” result shown by the red dots. Unfortunately this requires
knowing the answer beforehand or lots of luck.	

36	

If we’re unlucky enough to sample the spectrum only at the zeros of
the sinc function we completely miss the input!	

37	

And if we sample randomly we might get the peak (if we sample on one
of the sinc peaks), we move frequencies around by sampling on the sinc
ripples, and we get zeros when sampling on the zeros of the sinc. YECH.	

38	

Another thing to worry about -- those pesky negative frequencies. Since
the sinc function goes to ±infinity, when we do the convolution of the
truncation function with the deltas (for a single sinusoidal input) the tail
going to +infinity of the sinc function coming from the negative
frequency spike can “contaminate” the positive frequency spectrum (and	

similarly for the
negative side of the
spectrum.	

39	

The “educational” modification we made to the implementation of the
FLDTFT was to select the frequencies in the FD. Normally these are

“set”. But the truncation window effects are still there.	

40	

When you calculate a spectrum of a real-world signal, you should
ALWAYS think about the finite window length effects. The spectrum you

see on the computer screen (or the the screen of a spectrum analyzer)
will be the convolution of the true spectrum with the spectrum of the
weighting window. In the simple case where you use a rectangular

window (the approach described on this page), the true spectrum will be
convolved with a sinc function that has nulls every 1/T Hz (where T is

the length of time you observed the signal in seconds). If you want to get
a clear picture of the spectrum, you will need to look at frequency

samples spaced every 1/10T to 1/100T Hz apart. If you ignore this effect
- you may get very pretty, or very ugly spectra. At low frequencies, you
need to remember that the sinc from the negative frequencies may alter

the spectrum at positive frequencies.	

All this stuff is directly applicable to DSP in seismology . How long of a
record must one analyze to resolve the frequencies of interest?	

41	

Comparison of number of complex
multiplication's (equivalent to time)
needed for DFT and FFT for sequences
up to a million points long. Once the
sequence is longer than about 64
points, the FFT wins hands down.	

€

Execution timeDFT ∝ N 2

Execution timeFFT ∝ N log2(N)

Proportionality constant depends on
whether or not sines are precalculated
and stored and looked up or calculated
on the fly. Further speed gains by
noticing duplicated values in sine table.
These gains are not order of magnitude.	

42	

Another big plus for
the FFT is that the
FFT calculates the
FT more precisely
because fewer
calculations result in
smaller round off
error. 	

Figure from Smith	

43	

Making it faster still. There are some special techniques to make the
FFT go faster, but the speed gains are minimal and in the range of

20-40% (not order of magnitude like the original FFT).	

One of the go-faster techniques is interesting because it makes use of the
symmetry properties of the DFT when computing the DFT of a real

sequence. In this technique, one cuts the sequence in half and puts one
half in the real part and one half in the imaginary part of the input

sequence. (or one could stuff in two signals, one in the real part an one in
the imaginary part). One then takes the FFT and gets a mess, but it’s a

special mess.	

44	

Some more
“tricks”. Compare
the real and
complex DFT.	

Figure from Smith	

45	

Can get a little faster using
complex FFT and FD
symmetries. Top 2 panels show
real signal in complex FFT
(wasting imaginary space).
Notice that the real part of the
FD is symmetric around N/2 and
0, while the imaginary part is
anti-symmetric around N/2 and
0. If we put the sequence into the
imaginary part of the complex
input sequence and put zeros in
the real part, the symmetry in the
FD is reversed. So can put
sequences into real and
imaginary parts in TD and do
even/odd decomposition in FD to
recover the individual FT.	

Figure from Smith	

46	

Remember that for a real input, the
real part of the FT is an even
function and the imaginary part is
odd. We get the reverse for an
imaginary input, the real part of the
FT is odd and the imaginary part is
even. Since any function can be
uniquely (<important) decomposed
into an even and odd function, we
can decompose the mess that comes
out of our FT due to the funky
input we gave it. Decompose the
real and imaginary parts of the FT
into even and odd functions to
obtain the individual FTs. (this also
tells how the real and imaginary
TD parts, in general, map into the
real and imaginary FD parts.)	

Figure from Smith	

47	

Getting useful results from the FFT.	

What we want - the FT. Unfortunately this is not what we get on the
computer.	

So how do we get the best estimate of the FT from the FFT (since this is
the only computer method efficient enough to be useful).	

Remember the various flavors of Fourier Analysis	

FT - for aperiodic analog signals - frequency domain continuous and
infinite. TD continuous and infinite extent. Can’t do on the computer.
Function in TD has to have finite energy. (Signals that are NOT finite

energy: all periodic signals, ramps, steps, exponentials, DC. Signals that
are finite energy: one shot pulses)	

FS - for periodic analog signals - frequency domain discrete but infinite
extent. TD is finite-duration (the period). Also can’t do on the computer.	

48	

So far can’t evaluate on the computer. Probably can’t evaluate
analytically either.	

Next comes the DFT - for periodic, discrete signals (probably better to
call it the DFS, but convention is to call it the DFT). Both TD and FD
discrete and finite-duration. Can do on the computer (but VERY slow).	

DTFT - for aperiodic, discrete signal - frequency domain continuous
between -0.5 and 0.5 cycle per sample. (Outside this range repeats -
aliasing). TD discrete but infinite extent. Can’t do on the computer. 	

FLDTFT - modify DTFT to be finite-duration and discrete in FD (this is
what we did with the step-by-step analysis of what happens on the

computer). (there is no standard name for this technique). Can do on the
computer (but VERY slow). Since most signals will not be periodic, this

is the form (in the sense of the derivation) that we want to use on the
computer.	

49	

Typically we want to know the FT for some analog signal, which we
digitize, changing the FT flavor to the DTFT. We have to further limit it
to a finite length of signal which changes it to the FLDTFT. We have 2

choices on the computer.	

1) Evaluate the FLDTFT and realize the spectrum will be “smeared”
with the sinc function. In addition to the spectrum smearing, it will also

be SLOW.	

2) Evaluate the FFT and realize that the signal will be made periodic
whether we want it to be or not (since it’s really a FS, not a FT). We will
get a FAST (possibly wrong, or at best confusing) result. But it is so fast

it’s worth the effort to find out how to make it “correct”, or at least
usable.	

So the question is - how to use the FFT to get the “best” approximation
to the FT?	

50	

We want an estimate of the FT of an aperiodic signal, but the FFT works
with periodic signals. An aperiodic signal can be thought of as a periodic

signal with infinite period. Since we can’t have infinite periods in the
computer, we can approximate and infinite period by making the period
very large. This can be easily done by ZERO PADDING the signal (you
can put them before the signal, at the end, some before and some after - it

does not matter -- why?). 	

51	

Look at example with numbers (this enables us to put actual time and
frequency labels on the x axis, else we have sample number only) - 3.5
cycles of a sine wave in 32 points, sampled at fs=8KHz, and its FFT. 	

Notice that the
peak is not very
precisely defined
(is wide) and we
have the
annoying sinc
factor, although
it’s not obvious
that it’s a sinc.	

52	

Now try the same data (3.5 cycles of a sine) that has been extended with
zeros to a total length of 320 points, 10 times the original length. 	

We get much
better frequency
resolution (more
samples in FD),
and the sinc is
now “obvious”,
but the peaks
are still “wide”.	

53	

So the sinc function is back!	

Zero padding in the TD and taking the FFT essentially does sinc
interpolation in the FD. (Similarly zero padding in the FT before taking

an IFFT does sinc interpolation in the TD).	

Final advice -- if you want nice looking FD plots, pad with zeros in the
time domain to extend the TD signal to be at least 10 times as long. This

will give finer resolution in the FD samples, i.e. the set of discrete
frequencies is larger. 	

Since the sampling has not changed, the Nyquist frequency is still the
same, so we have a finer sampling of FD points (frequencies closer

together as we stuff more samples into the frequency range 0 to Nyquist).	

54	

Important note: width of peaks is same for zero padded and non-zero
padded input, so we do not get an improvement in our ability to separate

two nearby frequencies (we just get more points on the freq axis). 	

To make peaks narrower, we have to take a longer data window (wider
boxcar in TD, which gives narrower sinc in FD). On left we have 32 &
1024 point (zero padding from pts 33 to 1024) FFTs with 3.5 cycles (32
pt FFT not on FFT “line”), on right we have 64 & 1024 point (zero
padding from pts 65 to 1024) FFTs with 7 cycles (64 pt FFT now “on”
FFT “line” for 64 pt FFT – so one point, at freq, hi and the rest “0”).	

“thinner”	

55	

We have seen several times that one of the big problems (with respect to
differences between the analog world and the finite-duration digital

world) is the effect of the periodicity that the finite-duration digital world
enforces on everything. We saw how this creates discontinuities in the

infinite-extent, periodic TD representation that require high frequencies
in the FD representation and how these higher frequencies get “aliased”

into the FD representation (the wings, skirts, tails, etc).	

Since the problem comes from the discontinuities at the ends of the
finite-duration sequence when we duplicate it to make it periodic, what

happens if we modify/distort the input sequence so that these
discontinuities are suppressed?	

This is the idea behind windowing with weighted windows (non boxcar
windows).	

56	

Problem - Finite Data Length = Frequency Spreading. Taking finite
amount of data goofs up DTFT calculation. The true amplitude spectrum
is convolved with a sinc function causing a sine wave that has an impulse
for a DTFT to spread out into a signal that seems to occupy all
frequencies. 	

You might be
able to live
with this if the
input signal
was a single
frequency.	

57	

What if the signal was composed of 2 frequencies - add a second sine
wave at 3kHz that is 40 dB down. You can’t see it in the TD plot. One
would like to be able to see it in the FD plot. Well - there is something at
3kHz, but it’s not too useful.	

So now the
frequency
spreading has
gone from a
nuisance to a
fatal problem.	

58	

Enter the weighted window to the rescue (sort of). Since the “problem”
comes from the discontinuities at the end, distort the data in the TD by
multiplying in the TD with an envelope function that goes to zero at the
ends (you should already see the implications of this -- FD convolution	

with the FT of the
window function.
So it’s not free).	

Here’s the FFT of
the same input as
the last example
with a triangular
window applied.
Notice that we
can now clearly
“see” the second
signal at -40 dB.	

59	

The triangular window solved the problem of discontinuities in the TD
signal, but did not completely remove the contamination from the high

frequency terms. This is because the derivatives are discontinuous. 	

(Can see why need continuous derivatives looking at case of 1.5 cycles
of a sine wave in the window - get a sharp “V” shaped join at ends, and
therefore need high frequencies to reproduce this. Here the function is

continuous but its first derivative is not. It gets harder to see this kind of
“high frequency” effect as we have more high order continuous

derivatives, but it’s still there. 	

The leakage envelope more or less goes (decays) as 1/fn+1, where n is the
order of the first discontinuous derivative [n=0 when function itself is

discontinuous, e.g. boxcar])	

This lead to the development of other types of windows	

60	

Boxcar - easy to apply (if you use it to shorten a sequence).
It is the one you get whether you realize it or not! Sub-
optimal effect on spectrum. 	

Triangular window - easy to compute. Improves
spectrum. Good start. (all derivatives discontinuous - has
effect of not removing high frequencies)	

Hanning window - a “raised” sinusoid (add 1 to cosine and
chop at ±π. Window and first derivative continuous. Even
better.	

Hamming window - add a small DC offset to Hanning.
Window and derivatives discontinuous again.	

61	

What do these windows look like in the FD? What determines how
“good” they are?	

There is no single best weighting window. Different applications use
different windows. When deciding which window to use, it is handy to

characterize the window in some way. 	

Start by looking at the FT of the weighting windows. In virtually every
case, the amplitude spectrum looks like a series of bumps, or lobes. 	

62	

The tallest, and usually widest, bump is at DC, and is called the Main
Lobe. 	

All of the other bumps are at higher frequencies and are called Side
Lobes. 	

63	

Blurring, smearing, or main lobe width. 	

All windows tend to smear an impulse over a range of frequencies close
to the true frequency. This is the same thing that an out-of-focus optical

lens will do to a point of light, so it is also called blurring. 	

This distortion makes it difficult to tell if a bump in the spectrum was
generated by a single sine wave (single impulse) or a series of two or

more closely spaced impulses (sinusoids at closely spaced frequencies). 	

To measure the severity of this problem, look at the width of the main
lobe.	

Small is good. You can measure the main lobe width in Hz, rad/sec,
cycles/sample or rad/sample.	

This width is a function of 2 things - the sampling frequency and the
length of the window.	

64	

Leakage or side lobe attenuation. 	

If blurring is a local problem, leakage is a long-distance problem. A
strong signal will generate terms at frequencies far from its frequency. 	

When there is a strong signal present, it may mask weak signals - even
if they are separated by a great distance in frequency. (remember

previous example) 	

To measure the severity of this effect/problem, look at the difference
between the amplitude of the main lobe, and the amplitude of the

highest of the side lobes. 	

This difference in amplitude, usually measured in dB, is called the side
lobe attenuation.	

Bigger (higher attenuation) is better.	

65	

So looking at the various windows we’ve mentioned. Can distinguish
two characteristics with any window's spectrum - main lobe width and
side lobe “rejection”/leakage.	

Boxcar -
narrowest central
peak (remember
that running
average was
“sharpest” low-
pass filter),
horrible leakage.
Decays as 1/f.	

66	

Triangular (Bartlett) - compared to boxcar is wider (not so good) but
first side lobe is lower (better). Decays as 1/f2.	

67	

Hanning - compared to boxcar is wider (not so good) but compared to
boxcar and triangle first side lobe and higher side lobes are lower
(better). Decays as 1/f3.	

68	

Hamming (Hanning with a DC offset) - compared to boxcar is wider
(not so good) but compared to boxcar, triangle and Hanning first side
lobe is lower (better) and higher side lobes are lower (better). Leakage
worse than Hanning. Decays as 1/f.	

69	

Window 	
Main Lobe Width (Hz) 	
Side Lobe Atten. (dB)	

Rectangle 	
 	
fs/N 	
 	
 	
 	
13	

Triangle 	
 	
2fs/N 	
 	
 	
 	
26	

Hanning 	
 	
2fs/N 	
 	
 	
 	
31	

Hamming 	
 	
2fs/N 	
 	
 	
 	
42	

Blackman 	
 	
3fs/N 	
 	
 	
 	
58	

Kaiser 	
 	
 	
fs/N to fs/2 	
 	
 	
13 to infinity	

Lanczos 	
 	
fs/N to fs/2 	
 	
 	
13 to infinity	

Tukey 	
 	
 	
fs/N to 2fs/N 	
 	
 	
13 to 31	

Various windows and their main lobe width and side lobe attenuation.
The rectangular window gives the narrowest main lobe but lousy side
lobe attenuation. There are an infinite number of window types - each

one optimized for some application.	

70	

When not to use windows -	

Windows are like drugs - they distort reality for people and computers
that can't handle the truth. They are fun to play with, they let you see
things in a different light, and lots of people use them, but whenever
possible, you should Just Say No (© 1988, R. Regan).	

Weighting windows are useful, and arguably necessary, when the signal
extends for a far longer time span than you can feed into a computer or
when the input signal has a continuum of frequencies (always?!).	

Weighting windows are not necessary, and should not be used, when the
signal is a finite length pulse (e.g. P or S wave). The FT is really only
supposed to be used for finite energy, or pulse-type, waveforms. Surface
waves are usually not pulse type waveforms.	

Filter impulse responses usually are pulse type waveforms. To calculate a
filter’s frequency response by the FFT, do not use weighting windows. 	

