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Calculating the FT and IFT in the finite duration (finite length sequences 
in both TD and FD), fully discrete (both in TD and FD) domain. 	


We can distinguish 4 types of Fourier transform based on what we’ve 
been developing so far.	
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A signal can be either continuous 
or discrete and either periodic or 
aperiodic. This results in four 
types of signals -	


i) aperiodic continuous - such as 
decaying exponentials and 
gaussians	


ii) periodic continuous -such as 
sines and square waves	

iii) aperiodic discrete - similar to (i), but sequence rather than continuous	


iv) periodic discrete - similar to (ii), but sequence rather than continuous	


Each of these classes of signal extend to ±infinity (even for finite length 
signals in the computer, since the basis functions - sine and cosine - are 
defined to ±infinity). We also already know that you need an infinite set 
of frequencies to synthesize an aperiodic signal.	


Figure from Smith	
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This leads to four types of Fourier Transform pairs (ignoring 
normalization constants)	


  

€ 

X(ω) =  x(t)
-∞

∞

∫ e− iωdt
  

€ 

x(t) =  X(ω)
-∞

∞

∫ eiωdω
Aperiodic continuous (Fourier Transform)	


  

€ 

˜ x (n) =  ˜ X (ω)eiωn

n =−∞

∞

∑
  

€ 

˜ X (ω) = ˜ x (t)e− iωtdt
−T0 / 2

T0 / 2

∫   

Periodic continuous (Fourier Series)	


  

€ 

x(n) =  X(ω)
-π

π

∫ eiωndω
  

€ 

X(ω) = x(k)e− iωk
k=−∞

∞

∑   
Aperiodic discrete (call it the Discrete Time Fourier Transform)	


€ 

˜ x (n) = ˜ X (k)
k =0

N −1

∑ ei(2π / N )nk

  

€ 

˜ X (k) = ˜ x (n)e− i(2π / N )nk

n =0

N −1

∑   

Periodic discrete (Discrete Fourier Series, if also finite-duration with 
proper interpretation becomes Discrete Fourier Transform, continuous ω 

goes to discrete k in Frequency Domain)	
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Consider a periodic sequence with period N (note, N is not the length of 
the sequence, which is still infinite). We will denote periodic sequences 
with a tilde,           , and we have by the definition of periodicity	


€ 

˜ x (n)

The DFS can be found from the FT we have been using as follows -	


First, remember how we discretized the “time” variable when we went 
from the continuous case to a sequence, t went to kΔ t.	


Now we do the same to the frequency variable, ω goes to 2π  nΔ f. And 
Δ f=(1/NΔ t), so ω t, which went to ω k before, now goes to 2π n k / Ν 
and the FT becomes	


€ 

˜ x (n) = ˜ x (n + kN) for all integer k.	


  

€ 

˜ X (ω) = ˜ x (k)e− iωk

k =−∞

∞

∑ = ˜ x (k)e−i2πnk / N

k =0

N −1

∑   = ˜ X (nΔω)

Where the sum is now from 0 to N-1, since there are only N complex 
exponential terms (the others are the “same” due to aliasing	


                                               ), the n is from the Fourier series frequency 
domain discretization, and the k is from the time domain discretization.	


€ 

e−i2πn(k+N ) /N = e− i2πnk /N
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Discrete Fourier Series (DFS) pairs.	


€ 

˜ x (n) =
1
N

˜ X (k)
k =0

N −1

∑ WN
−nk

  

€ 

˜ X (k) = ˜ x (n)WN
nk

n =0

N −1

∑   

both of which have period N.	
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€ 

˜ x ∗(n) ⇔

˜ X (k) = ˜ X *(−k)
ℜ[ ˜ X (k)] =ℜ[ ˜ X (−k)]
ℑ[ ˜ X (k)] = −ℑ[ ˜ X (−k)]

˜ X (k) = ˜ X (−k)
arg[ ˜ X (k)] = −arg[ ˜ X (−k)]

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

˜ x e
∗(n) ⇔ℜ[ ˜ X (k)]

˜ x o
∗(n) ⇔ iℑ[ ˜ X (k)]

Summary for real x
(n).	


DFT of real sequence showing 
symmetries of real and 
imaginary parts of complex 
DFT. One and a half cycles 
shown to see 2 most common 
x axis ranges -0.5 to 0.5 and 0 
to 1 (in units of π).	


Figure from Smith	
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With the proper interpretation we can directly change the DFS into the 
Discrete Fourier Transform (DFT). So far we have seen that we can 

represent a finite-duration sequence of length N by a periodic sequence 
with period N, one period of which is identical the the finite-duration 

sequence (we usually assume that the finite-duration sequence is in the 
region 0≤n≤N-1, but this is not necessary). In the sense that the periodic 

sequence has a unique DFS representation, so does the original finite-
duration sequence, since we can compute a single period of the periodic 

sequence, and thus the finite-length sequence, from the DFS.	


If we want to be rigorous - we should re-derive everything with the 
following modifications.	
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€ 

RN (n) =
1 0 ≤ n ≤ N −1
0 otherwise
⎧ 
⎨ 
⎩ 

Define the rectangular sequence RN(n) (also known as a boxcar 
window) by	


The finite duration sequence is defined by extracting one period.	


€ 

x(n) =
˜ x (n) 0 ≤ n ≤ N −1
0 otherwise

⎧ 
⎨ 
⎩ 

Which can be written	


€ 

x(n) = ˜ x (n)RN (n)

(Notice that we now have a multiplication in the TD by a 
“boxcar”, so we get convolution in the FD).	
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How does the Discrete Fourier 
Transform (DFT) relate to the 
Continuous Fourier Transform 
(CFT)? This figure shows that we 
can consider the DFT to be a 
special case of the FT. (if one 
insists that discrete math is second 
class).	


(A) shows the continuous function 
x(t) and its continuous FT X(f).	


Figure after Brigham	


To determine the FT by digital 
means we first have to sample it. 
This is accomplished by 
multiplying the signal by the 
sampling function shown in (B).	

The sampling interval is T.	
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(C) shows the sampled function 
and its FT. The signal and FT are 
both changed. TD multiplication, 
forming the sampled signal, 
becomes FD convolution of the 
CFT of the continuous signal 
with the CFT of the sampling 
function making the CFT 
periodic. Note that in this case, 
the spikes in the CFD are not far 
enough apart to keep the repeated 
spectra apart, so they overlap and 
sum (aliasing). Since the spacing 
of the CFD spikes is 1/T0, one 
must sample faster to spread them 
apart and prevent aliasing (or 
remove the higher frequencies 
from the signal before sampling).	


A	


B	


C	


D	


E	


F	
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We cannot feed (C) into the 
computer yet, because it is 
infinitely long. We have to 
truncate it to a finite length. To do 
this, multiply by a rectangular 
(truncation or boxcar) window in 
the TD (D) producing the length 
N finite-duration, discrete TD 
signal in (E). This effects the FD 
representation, requiring a 
convolution with the sinc 
function (CFT of the rectangular 
window). This introduces ripple 
into the CFT due to the wiggles 
in the tails of the sinc function. 
We’re still not ready for the 
computer however, because the 
FD signal is still continuous.	




12	


A	


B	


C	


D	


E	


F	


G	


This is addressed in (F), where 
we now discretize the FD. As for 
the TD sampling, this is done 
with a comb of N (same length as 
TD) δ functions producing the 
DFT on the bottom right. FD  
multiplication requires 
convolution in the TD, so we 
convolve the finite-duration 
sampled TD sequence with the 
IFT of the FD sampling comb 
producing a periodic signal in the 
TD. In the computer, of course, 
we have only 1 cycle of the TD 
and FD representations and only 
positive frequencies. The math 
thinks things go to ±infinity and 
includes negative frequencies.	
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What about the ripples that showed 
up in (E)? Do they make it into 
(G)?	


It depends (we can never have a 
simple answer!) on the frequency 
content in (A). As we will see, if 
the continuous signal just happens 
to contain only those frequencies 
contained in the comb of delta 
functions in (F), then the ripples all 
occur “between” the FD samples 
so they “don’t” exist (since 
discrete signals don’t exist there). 
If there is a continuum of 
frequencies in the continuous 
signal in (A) then the ripples will 
not all be zero on the FD samples 
and they will add into the DFT.	
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Truncation interval = period (“on” a 
DFT “line”). Same development as 
before. Minor change - the window 
function goes from -T/2 to T0-T/2, 
this prevents the sampled TD data 
from having a point that is 
duplicated when (F) makes the TD 
periodic. Since there is only one 
frequency component we can follow 
the amplitudes exactly. There are 10 
samples/cycle. (you will notice if you look carefully that 
the FD in (E) is not quite right - we need one more oscillation - two more 
zero crossings - in there [to be fixed in future {maybe}])	


The TD representation in (G) looks 
the same as the TD analog signal in 
(A) since the analog signal has the 
same period at the DFT so we don’t 
notice the imposed periodicity, 
while the FD shows this periodicity.  	


A	
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C	
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E	


F	


G	
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A quick look at the 
sinc function -- it 
is 1 at x=0, and 
zero at x=n/2T0 
for all integer n≠0 
and oscillates 
around, while 
decaying to zero, 
in between.	
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FD zoom when the truncation interval = the  period. Convolution of the 
two δ’s at ±f with the sinc results in the black line - somewhat ugly. The 
dashed red and green lines show the shifted sinc function components in 
the convolution that sum to this result. The blue lines show where the 
continuous (black) FT is sampled (multiplied by δ comb) in the FD to 
make the discrete spectrum shown by the blue circles. Except for the two 
samples at the “fundamental”, the sinc functions and convolution are 
zero at the FD sampling points, while at the fundamental the convolution	


value is 1. We get exactly what we 
“expect” from our intuitive 
understanding of the real world and 
the CFT - a sharp single spectral line 
at the input frequency giving the 
amplitude of the signal (not worrying 
about difference between peak and 
RMS amplitude determinations or the 
50-50 power split between + and - 
frequencies)	
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Truncation interval ≠ period (input 
frequency not on DFT line). Same 
development as before. Since there 
is only one frequency component 
we can attempt to follow the 
amplitude exactly.	

We now notice two “non-
intuitive” (actually confusing) 
things - first the TD representation 
in (G) is not the same as the TD 
analog signal in (A)  and we do not 
get a single spike in the DFT and 
the amplitude determination is 
“off”! This is a result of the “math” 
making a signal that is not periodic 
in N in the analog world, periodic in 
N in the discrete world on the 
computer.	
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Zooming-in in the FD we see the result of convolution of the continuous 
FT with the sinc function from the windowing. So far we get the same 
thing as before - the same ugly continuous function. The “problem” 
arises when we sample this with the δ comb in the FD. Now the 
continuous frequency locations of the fundamental and the zeros of the 
shifted sinc functions and convolution do not correspond to locations of  
the δ’s in the comb - so the ugliness carries through the sampling into our 
result and we get two points in the sequence with large “incorrect” 
amplitude values and lots of points in the sequence with non-zero values.	


Putting a little more effort into 
understanding this it actually makes 
sense. The DC value is not zero for 
instance. Remember that the 
sequence is “periodic” in the TD. 
The DC value is the average over 
one window cycle of the TD signal, 
which is not zero for arbitrary 
frequency cosine waves.	
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To sum up, the effect of truncation of a TD sinusoidal signal at other than 
multiples of the period of the signal is to create a periodic TD function 
with sharp discontinuities. Intuitively we expect the addition of these 

discontinuities in the TD to result in the need for additional (high) 
frequency components in the FD. In the FD, the TD truncation is 

equivalent to convolution with the sinc function. After this convolution 
in the FD we no longer have a single impulse, but a “smooth” continuous 
function with local maximum (correctly) centered at the original impulse 
and a series of other peaks called sidelobes. The next “bad” effect comes 
with FD sampling, which samples this mess based on the TD truncation 
period and not the sinusoidal signal period resulting in a multiple spike 
peak and low amplitude tails. The effect whereby the energy is spread-
out over multiple samples is called “spectral leakage”. This effect is 

inherent in the DFT because of the required TD truncation (it is aliasing 
– need high frequencies for the discontinuity). We will look at some 
techniques for reducing spectral leakage (at a cost) later (you already 

have seen this - windows that remove/smooth out the discontinuities in 
the periodic view of the TD). 	
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If the signal to be analyzed is finite duration or periodic, one can skip the 
“windowing” step by looking at a sequence with a length equal to the 
finite duration of the signal or one period and get the “right” answer in 
the “math” view in both the TD and FD (remember what happened when 
we sampled the “ugly” convolution result for the case of a cosine wave 
truncated at its period - it removed the ugliness by sampling only the 
“good” points). If the original signal is not band-limited, however, we 
would get aliasing errors.	


For a general signal the DFT gets hit with a double whammy - one from 
the truncation effect and one from aliasing. We already “know” (but have 
not looked in detail at) how to fix both problems	


Truncation - use a smooth window function (not a boxcar)	


Aliasing problem - faster sampling and anti-aliasing filtering before 
sampling – can’t fix discontinuity – fix same way – smoothing window.	
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Let’s look at what can happen when we decide to do DSP on the 
computer. We have some sequence and would like to know its spectrum. 
Assume it’s a GDSN seismogram, so we don’t have to worry about the a-

d hardware, sampling, bits/sample, etc. We have a good, properly 
prepared signal to process. Let’s further assume that this signal is a pure 

sine wave (the “spherical chicken” of DSP).	


The first question we have to answer is how much data to process. The 
DFT needs TD data to ±infinity and  a continuum of FD frequencies, 

which we can’t do on the computer. So we need to make some decisions 
and compromises. We know we need to sample at least two samples at 

the sinusoids extrema to get the amplitude and that the more samples we 
have the better for the DFT, but we run into computer space and 

calculation time problems. So we compromise on some finite duration 
sequence that gets a number of cycles (say between 10 and1000)	


Next we have to decide on the number of frequencies we will use in our 
finite sum. We get the fundamental frequency from the sampling rate.	
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We will now calculate some DFTs using the definition of the DFT (the - 
slow - correlation method).	


Take an 80 Hz sinewave and sample at 8kHz (that’s 100 samples per 
cycle) for 100 msec (that’s 8 cycles) for a total of 801 samples.	


Given the sampling frequency we know that the spectrum will only have 
frequencies between ±4kHz. Since we can’t calculate the continuous 
spectrum, let’s pick 200 of them (notice that we’re doing something non-
standard here - for educational purposes, normally we’d use 801 
frequencies for an 801 point complex input sequence), which gives a 
fundamental frequency of 40 Hz and a spacing in the discrete FD of 40 
Hz. Notice that 80 Hz is an even multiple of the fundamental.	


We now compute                                                 for the 201 frequencies	


between -4kHz and 4kHz (-100≤n<100) and get.         	


  

€ 

X(n) = x(k)e− i2πnk / 801
k=0

800

∑   
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We get a near “perfect” result, all the energy is basically in two lines at 
±80 Hz. The stuff down at -300 dB is effectively zero and is due to round 
off error associated with the finite precision math (MATLAB uses double 
precision).	
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The result in the previous plot was so nice because we cheated - it was 
“set-up” to come out that way. We knew the frequency of the input and 
“ginned-up” the spectrum calculation to include the known frequency in 
the set of frequencies used for the correlation's. Suppose we did not 
know what the input frequency was and arbitrarily decided to sample the 
FD every 100 Hz instead of every 40 Hz? (again for educational 
purposes). Now what do we get?	
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WOW! Where’d our sine wave go? Everything’s down at -300 dB, i.e. 
there’s no signal. But we know we put one in. Remember that we’re 
correlating the input with a set of sinusoidal waves. Also remember that 
sinusoidal waves are orthonormal, so we get ZERO (or near zero) for all   	

of our 
correlation's, 
since the 
frequencies 
we’re using for 
a basis are every 
100 Hz, none 
match up with 
80 Hz. This is 
pretty bad - we 
know we put in 
a signal and get 
NOTHING out. 	




26	


Ok, so we understand why we don’t see the 80 Hz sine wave, we did not 
sample at a sub-harmonic of 80 Hz (so that n*fundamental=80 Hz). But 
what does this imply for taking measurements in the real world where 
our inputs will most likely be  unknown frequencies from a continuous 
spectrum? Can we really mess up so badly?	


Let’s try sampling in the FD at 7 Hz to see what happens.	
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WOW again! We went from the frying pan into the fire. First we saw no 
sine wave in the output and now we see them everywhere (plus some 
frequencies with zero - the guy’s down at -300 dB). Granted we do have 
peaks at ±80 Hz, but what’s all that other stuff? So we went from missing 
our input altogether to smearing it out all over.	
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Ok - so what’s going on. 	


First - the previous examples were meant to scare you. 	


When you look at the equations, correlation over some finite set of 
frequencies  seems like a reasonably way to approximate the DTFT. In 

practice this will produce 	


Good solutions - Showing all terms, and at the right frequencies 	

Bad solutions - Missing important terms 	


Ugly solutions - Moving important terms to the wrong frequencies 	


(let’s call our correlation method the Finite-Length-Discrete-Time-
Fourier-Transform = FLDTFT)	


To confidently predict the FT from the DFT/FFT/DFS/FLDTFT you 
need to know what happened in these examples. Fortunately there is a 

fairly easy explanation	
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Recall there are two problems that prevented us from calculating the 
DTFT - we don’t have a signal over all time, and we can't evaluate the 
DTFT at all frequencies. 	


Start by examining the first problem. We only have x[n] over a finite 
time interval, but we usually assume the analog signal, x(t), extends out 
to t=±infinity (or at least extends for a lot longer time than we used in 
the FLDTFT calculation). We essentially multiplied x(t) by a 'window' 
that looks like a square pulse by ignoring data outside some finite time 
interval in our calculation of the FLDTFT,. 	


Rather than looking at the difference between the DTFT and FLDTFT 
calculations - look at the difference between the spectrum of x(t) and 
the spectrum of x(t)w(t). 	
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Recall that multiplication in the TD, is convolution in the FD. Also recall 
that the spectrum of a square pulse (the truncation window) is a sinc 

function. 	


If the pulse has a width of Tp seconds, the sinc spectrum will hit zero 
every 1/Tp Hz. In our example the window was 100 msec long, so it's 

spectrum will hit zero every 10 Hz. 	


To get a clear view of this spectrum, just take the FLDTFT of a constant 	


(notice that we’re repeating what we saw in the multi-panel CFT to DFT 
development)	
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Spectrum of the truncation function (boxcar, rectangular pulse) that 
results from changing a infinite duration signal into a finite duration 
signal. (no sampling yet).	
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Convolving the sinc function with the deltas changes the original 
spectrum of x(t). When x(t) is a sinusoid this is easy. Using the numbers 
in this example, the spectrum of x(t) is just two impulses, at +/- 80 Hz. 
When these impulses are convolved with a sinc function, we should see	

two copies of 
the sinc 
function, 
centered at +/- 
80 Hz. These 
sinc functions 
will hit zero 
every 10 Hz, at: 
… -110, 100, 
-90, -70, -60 
-50 ..... 50, 60, 
70, 80, 90, 100, 
110 ... Hz.	
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So now we can explain exactly what happened in our 3 cases and relate it 
to the “true” spectrum.	
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True (no FD sampling, is continuous [well it looks continuous, it’s still 
done on the computer so it can’t be continuous - so just pretend]). Take 
enough frequencies in the FD to see the full x(t)w(t) (i.e. both the signal 
and weighting function)	




35	


If we only sample the sinc function at the peak and nulls we get the 
“excellent” result shown by the red dots. Unfortunately this requires 
knowing the answer beforehand or lots of luck.	
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If we’re unlucky enough to sample the spectrum only at the zeros of 
the sinc function we completely miss the input!	
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And if we sample randomly we might get the peak (if we sample on one 
of the sinc peaks), we move frequencies around by sampling on the sinc 
ripples, and we get zeros when sampling on the zeros of the sinc. YECH.	
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Another thing to worry about -- those pesky negative frequencies. Since 
the sinc function goes to ±infinity, when we do the convolution of the 
truncation function with the deltas (for a single sinusoidal input) the tail 
going to +infinity of the sinc function coming from the negative 
frequency spike can “contaminate” the positive frequency spectrum (and	

similarly for the 
negative side of the 
spectrum.	
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The “educational” modification we made to the implementation of  the 
FLDTFT was to select the frequencies in the FD. Normally these are 

“set”. But the truncation window effects are still there.	
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When you calculate a spectrum of a real-world signal, you should 
ALWAYS think about the finite window length effects. The spectrum you 

see on the computer screen (or the the screen of a spectrum analyzer) 
will be the convolution of the true spectrum with the spectrum of the 
weighting window. In the simple case where you use a rectangular 

window (the approach described on this page), the true spectrum will be 
convolved with a sinc function that has nulls every 1/T Hz (where T is 

the length of time you observed the signal in seconds). If you want to get 
a clear picture of the spectrum, you will need to look at frequency 

samples spaced every 1/10T to 1/100T Hz apart. If you ignore this effect 
- you may get very pretty, or very ugly spectra. At low frequencies, you 
need to remember that the sinc from the negative frequencies may alter 

the spectrum at positive frequencies.	


All this stuff is directly applicable to DSP in seismology . How long of a 
record must one analyze to resolve the frequencies of interest?	
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Comparison of number of complex 
multiplication's (equivalent to time) 
needed for DFT and FFT for sequences 
up to a million points long. Once the 
sequence is longer than about 64 
points, the FFT wins hands down.	


  

€ 

Execution timeDFT ∝ N 2

Execution timeFFT ∝ N log2(N)

Proportionality constant depends on 
whether or not sines are precalculated 
and stored and looked up or calculated 
on the fly. Further speed gains by 
noticing duplicated values in sine table. 
These gains are not order of magnitude.	
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Another big plus for 
the FFT is that the 
FFT calculates the 
FT more precisely 
because fewer 
calculations result in 
smaller round off 
error. 	


Figure from Smith	
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Making it faster still. There are some special techniques to make the 
FFT go faster, but the speed gains are minimal and in the range of 

20-40% (not order of magnitude like the original FFT).	


One of the go-faster techniques is interesting because it makes use of the 
symmetry properties of the DFT when computing the DFT of a real 

sequence. In this technique, one cuts the sequence in half and puts one 
half in the real part and one half in the imaginary part of the input 

sequence. (or one could stuff in two signals, one in the real part an one in 
the imaginary part). One then takes the FFT and gets a mess, but it’s a 

special mess.	
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Some more 
“tricks”. Compare 
the real and 
complex DFT.	


Figure from Smith	
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Can get a little faster using 
complex FFT and FD 
symmetries. Top 2 panels show 
real signal in complex FFT 
(wasting imaginary space). 
Notice that the real part of the 
FD is symmetric around N/2 and 
0, while the imaginary part is 
anti-symmetric around N/2 and 
0. If we put the sequence into the 
imaginary part of the complex 
input sequence and put zeros in 
the real part, the symmetry in the 
FD  is reversed. So can put 
sequences into real and 
imaginary parts in TD and do 
even/odd decomposition in FD to 
recover the individual FT.	


Figure from Smith	
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Remember that for a real input, the 
real part of the FT is an even 
function and the imaginary part is 
odd. We get the reverse for an 
imaginary input, the real part of the 
FT is odd and the imaginary part is 
even. Since any function can be 
uniquely (<important) decomposed 
into an even and odd function, we 
can decompose the mess that comes 
out of our FT due to the funky 
input we gave it. Decompose the 
real and imaginary parts of the FT 
into even and odd functions to 
obtain the individual FTs. (this also 
tells how the real and imaginary 
TD parts, in general, map into the 
real and imaginary FD parts.)	


Figure from Smith	
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Getting useful results from the FFT.	


What we want - the FT. Unfortunately this is not what we get on the 
computer.	


So how do we get the best estimate of the FT from the FFT (since this is 
the only computer method efficient enough to be useful).	


Remember the various flavors of Fourier Analysis	


FT - for aperiodic analog signals - frequency domain continuous and 
infinite. TD continuous and infinite extent. Can’t do on the computer. 
Function in TD has to have finite energy. (Signals that are NOT finite 

energy: all periodic signals, ramps, steps, exponentials, DC. Signals that 
are finite energy: one shot pulses)	


FS - for periodic analog signals - frequency domain discrete but infinite 
extent. TD is finite-duration (the period). Also can’t do on the computer.	
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So far can’t evaluate on the computer. Probably can’t evaluate 
analytically either.	


Next comes the DFT - for periodic, discrete signals (probably better to 
call it the DFS, but convention is to call it the DFT). Both TD and FD 
discrete and finite-duration. Can do on the computer (but VERY slow).	


DTFT - for aperiodic, discrete signal - frequency domain continuous 
between -0.5 and 0.5 cycle per sample. (Outside this range repeats - 
aliasing). TD discrete but infinite extent. Can’t do on the computer. 	


FLDTFT - modify DTFT to be finite-duration and discrete in FD (this is 
what we did with the step-by-step analysis of what happens on the 

computer). (there is no standard name for this technique). Can do on the 
computer (but VERY slow). Since most signals will not be periodic, this 

is the form (in the sense of the derivation) that we want to use on the 
computer.	
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Typically we want to know the FT for some analog signal, which we 
digitize, changing the FT flavor to the DTFT. We have to further limit it 
to a finite length of signal which changes it to the FLDTFT. We have 2 

choices on the computer.	


1) Evaluate the FLDTFT and realize the spectrum will be “smeared” 
with the sinc function. In addition to the spectrum smearing, it will also 

be SLOW.	


2) Evaluate the FFT and realize that the signal will be made periodic 
whether we want it to be or not (since it’s really a FS, not a FT). We will 
get a FAST (possibly wrong, or at best confusing) result. But it is so fast 

it’s worth the effort to find out how to make it “correct”, or at least 
usable.	


So the question is - how to use the FFT to get the “best” approximation 
to the FT?	
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We want an estimate of the FT of an aperiodic signal, but the FFT works 
with periodic signals. An aperiodic signal can be thought of as a periodic 

signal with infinite period. Since we can’t have infinite periods in the 
computer, we can approximate and infinite period by making the period 
very large. This can be easily done by ZERO PADDING the signal (you 
can put them before the signal, at the end, some before and some after - it 

does not matter -- why?). 	
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Look at example with numbers (this enables us to put actual time and 
frequency labels on the x axis, else we have sample number only) - 3.5 
cycles of a sine wave in 32 points, sampled at fs=8KHz, and its FFT. 	


Notice that the 
peak is not very 
precisely defined 
(is wide) and we 
have the 
annoying sinc 
factor, although 
it’s not obvious 
that it’s a sinc.	
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Now try the same data (3.5 cycles of a sine) that has been extended with 
zeros to a total length of 320 points,  10 times the original length. 	


We get much 
better frequency 
resolution (more 
samples in FD), 
and the sinc is 
now “obvious”, 
but the peaks 
are still “wide”.	
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So the sinc function is back!	


Zero padding in the TD and taking the FFT essentially does sinc 
interpolation in the FD. (Similarly zero padding in the FT before taking 

an IFFT does sinc interpolation in the TD).	


Final advice -- if you want nice looking FD plots, pad with zeros in the 
time domain to extend the TD signal to be at least 10 times as long. This 

will give finer resolution in the FD samples, i.e. the set of discrete 
frequencies is larger. 	


Since the sampling has not changed, the Nyquist frequency is still the 
same, so we have a finer sampling of FD points (frequencies closer 

together as we stuff more samples into the frequency range 0 to Nyquist).	
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Important note: width of peaks is same for zero padded and non-zero 
padded input, so we do not get an improvement in our ability to separate 

two nearby frequencies (we just get more points on the freq axis). 	


To make peaks narrower, we have to take a longer data window (wider 
boxcar in TD, which gives narrower sinc in FD). On left we have 32 & 
1024 point (zero padding from pts 33 to 1024) FFTs with 3.5 cycles (32 
pt FFT not on FFT “line”), on right we have 64 & 1024 point (zero 
padding from pts 65 to 1024) FFTs with 7 cycles (64 pt FFT now “on” 
FFT “line” for 64 pt FFT – so one point, at freq, hi and the rest “0”).	


“thinner”	




55	


We have seen several times that one of the big problems (with respect to 
differences between the analog world and the finite-duration digital 

world) is the effect of the periodicity that the finite-duration digital world 
enforces on everything. We saw how this creates discontinuities in the 

infinite-extent, periodic TD representation that require high frequencies 
in the FD representation and how these higher frequencies get “aliased”  

into the FD representation (the wings, skirts, tails, etc).	


Since the problem comes from the discontinuities at the ends of the 
finite-duration sequence when we duplicate it to make it periodic, what 

happens if we modify/distort the input sequence so that these 
discontinuities are suppressed?	


This is the idea behind windowing with weighted windows (non boxcar 
windows).	
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Problem - Finite Data Length = Frequency Spreading. Taking finite 
amount of data goofs up DTFT calculation. The true amplitude spectrum 
is convolved with a sinc function causing a sine wave that has an impulse 
for a DTFT to spread out into a signal that seems to occupy all 
frequencies. 	


You might be 
able to live 
with this if the 
input signal 
was a single 
frequency.	
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What if the signal was composed of 2 frequencies - add a second sine 
wave at 3kHz that is 40 dB down. You can’t see it in the TD plot. One 
would like to be able to see it in the FD plot. Well - there is something at 
3kHz, but it’s not too useful.	


So now the 
frequency 
spreading has 
gone from a 
nuisance to a 
fatal problem.	
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Enter the weighted window to the rescue (sort of). Since the “problem” 
comes from the discontinuities at the end, distort the data in the TD by 
multiplying in the TD with an envelope function that goes to zero at the 
ends (you should already see the implications of this -- FD convolution	

with the FT of the 
window function. 
So it’s not free).	

Here’s the FFT of 
the same input as 
the last example 
with a triangular 
window applied. 
Notice that we 
can now clearly 
“see” the second 
signal at -40 dB.	
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The triangular window solved the problem of discontinuities in the TD 
signal, but did not completely remove the contamination from the high 

frequency terms. This is because the derivatives are discontinuous. 	


(Can see why need continuous derivatives looking at case of 1.5 cycles 
of a sine wave in the window - get a sharp “V” shaped join at ends, and 
therefore need high frequencies to reproduce this. Here the function is 

continuous but its first derivative is not. It gets harder to see this kind of 
“high frequency” effect as we have more high order continuous 

derivatives, but it’s still there. 	


The leakage envelope more or less goes (decays) as 1/fn+1, where n is the 
order of the first discontinuous derivative [n=0 when function itself is 

discontinuous, e.g. boxcar] )	


This lead to the development of other types of windows	
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Boxcar - easy to apply (if you use it to shorten a sequence). 
It is the one you get whether you realize it or not! Sub-
optimal effect on spectrum. 	


Triangular window - easy to compute. Improves 
spectrum. Good start. (all derivatives discontinuous - has 
effect of not removing high frequencies)	


Hanning window - a “raised” sinusoid (add 1 to cosine and 
chop at ±π. Window and first derivative continuous. Even 
better.	


Hamming window - add a small DC offset to Hanning. 
Window and derivatives discontinuous again.	
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What do these windows look like in the FD? What determines how 
“good” they are?	


There is no single best weighting window. Different applications use 
different windows. When deciding which window to use, it is handy to 

characterize the window in some way. 	


Start by looking at the FT of the weighting windows. In virtually every 
case, the amplitude spectrum looks like a series of bumps, or lobes. 	
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The tallest, and usually widest, bump is at DC, and is called the Main 
Lobe. 	


All of the other bumps are at higher frequencies and are called Side 
Lobes. 	
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Blurring, smearing, or main lobe width. 	


All windows tend to smear an impulse over a range of frequencies close 
to the true frequency. This is the same thing that an out-of-focus optical 

lens will do to a point of light, so it is also called blurring. 	


This distortion makes it difficult to tell if a bump in the spectrum was 
generated by a single sine wave (single impulse) or a series of two or 

more closely spaced impulses (sinusoids at closely spaced frequencies). 	


To measure the severity of this problem, look at the width of the main 
lobe.	


Small is good. You can measure the main lobe width in Hz, rad/sec, 
cycles/sample or rad/sample.	


This width is a function of 2 things - the sampling frequency and the 
length of the window.	
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Leakage or side lobe attenuation. 	


If blurring is a local problem, leakage is a long-distance problem. A 
strong signal will generate terms at frequencies far from its frequency. 	


When there is a strong signal present, it may mask weak signals - even 
if they are separated by a great distance in frequency. (remember 

previous example) 	


To measure the severity of this effect/problem, look at the difference 
between the amplitude of the main lobe, and the amplitude of the 

highest of the side lobes. 	


This difference in amplitude, usually measured in dB, is called the side 
lobe attenuation.	


Bigger (higher attenuation) is better.	
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So looking at the various windows we’ve mentioned. Can distinguish 
two characteristics with any window's spectrum - main lobe width and 
side lobe “rejection”/leakage.	


Boxcar - 
narrowest central 
peak (remember 
that running 
average was 
“sharpest” low-
pass filter), 
horrible leakage. 
Decays as 1/f.	




66	


Triangular (Bartlett) - compared to boxcar is wider (not so good) but 
first side lobe is lower (better). Decays as 1/f2.	
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Hanning - compared to boxcar is wider (not so good) but compared to 
boxcar and triangle first side lobe and higher side lobes are lower 
(better). Decays as 1/f3.	
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Hamming (Hanning with a DC offset) - compared to boxcar is wider 
(not so good) but compared to boxcar, triangle and Hanning first side 
lobe is lower (better) and higher side lobes are lower (better). Leakage 
worse than Hanning. Decays as 1/f.	
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Window 	
Main Lobe Width (Hz) 	
Side Lobe Atten. (dB)	

Rectangle 	
 	
fs/N 	
 	
 	
 	
13	

Triangle 	
 	
2fs/N 	
 	
 	
 	
26	

Hanning 	
 	
2fs/N 	
 	
 	
 	
31	

Hamming 	
 	
2fs/N 	
 	
 	
 	
42	

Blackman 	
 	
3fs/N 	
 	
 	
 	
58	

Kaiser 	
 	
 	
fs/N to fs/2 	
 	
 	
13 to infinity	

Lanczos 	
 	
fs/N to fs/2 	
 	
 	
13 to infinity	

Tukey 	
 	
 	
fs/N to 2fs/N 	
 	
 	
13 to 31	


Various windows and their main lobe width and side lobe attenuation. 
The rectangular window gives the narrowest main lobe but lousy side 
lobe attenuation. There are an infinite number of window types - each 

one optimized for some application.	
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When not to use windows -	


Windows are like drugs - they distort reality for people and computers 
that can't handle the truth. They are fun to play with, they let you see 
things in a different light, and lots of people use them, but whenever 
possible, you should Just Say No (© 1988, R. Regan).	


Weighting windows are useful, and arguably necessary, when the signal 
extends for a far longer time span than you can feed into a computer or 
when the input signal has a continuum of frequencies (always?!).	


Weighting windows are not necessary, and should not be used, when the 
signal is a finite length pulse (e.g. P or S wave). The FT is really only 
supposed to be used for finite energy, or pulse-type, waveforms. Surface 
waves are usually not pulse type waveforms.	


Filter impulse responses usually are pulse type waveforms. To calculate a 
filter’s frequency response by the FFT, do not use weighting windows. 	



