
Data Analysis in Geophysics
ESCI 7205

Bob Smalley

Room 103 in 3892 (long building), x-4929

Tu/Th - 13:00-14:30
CERI MAC (or STUDENT) LAB

Lab – 5, 09/10/13

The load function

reads binary files containing matrices (generated by earlier

MATLAB sessions), or text files containing numeric data.

The text file should be organized as a rectangular
table of numbers, separated by blanks, with one
row per line, and an equal number of elements in

each row.

>> cat magik.dat!
16.0 !3.0 !2.0 !13.0!
5.0 !10.0 !11.0 !8.0!
9.0 !6.0 !7.0 !12.0!
4.0 !15.0 !14.0 !1.0!
>> A=load(‘magik.dat’) #places matrix in variable A!
>> load magik.dat #places matrix in variable magik!

The save function

Writes files containing matrices (from memory).
Default format – matlab binary.

>> save default name "matlab.mat"!
>> myfile='my_file.mat'!
>> save(myfile)!
>> save('my_file.mat','a','b')!
>> save(myfile,'a', '-ascii')!
!
save(FILENAME,VARIABLES)!
save(FILENAME, , ...,FORMAT)!
save(FILENAME, ..., '-append')!
!
'-mat' Binary MAT-file format (default).!
'-ascii' 8-digit ASCII format.!
'-ascii', '-tabs' Tab-delimited 8-digit ASCII format.!
'-ascii', '-double' 16-digit ASCII format.!
'-ascii', '-double', '-tabs' Tab-delimited 16-digit ASCII format!
!

Matlab is particularly difficult to use if data files
do not fit this format (varying number columns for

example).

Matlab is also particularly difficult to use for
processing character data.

m-Files

Text files with MATLAB code (instructions). Use
MATLAB Editor (or any text editor) to create files

containing the same statements you would type at
the MATLAB command line.

Save the file with a name that ends in .m

% vim magik.m!
i!
A = [16.0 3.0 2.0 13.0!
5.0 10.0 11.0 8.0!
9.0 6.0 7.0 12.0!
4.0 15.0 14.0 1.0];!
(esc)wq!

in matlab, execute the m file magik.m

>> magik #places matrix in A!

Reading SAC files

>> [t,a,p]=readsac('ccm_india_.bhz');!
>> whos!
 Name Size Bytes Class Attributes!
!
 a 1x145601 1164808 double !
 p 1x40 320 double !
 t 1x145601 1164808 double !
!
>> plot(a)!

Functions

Are also text files with MATLAB code
(instructions).

Use MATLAB Editor (or any text editor) to create files

containing the same statements you would type at
the MATLAB command line – but...

Encapsulates some calculation, etc., and called
by the function name, with defined inputs and

outputs (similar to "built-in" functions such as sin,
cos, etc.)

Write in any editor, save as .m file. Function name
has to be same as file name, one function per file.
!
function TensorOut = TensorRotate(TensorIn, RotAng)!
%does tensor rotation through angle RotAng!
!
RotMat=[cosd(RotAng) sind(RotAng); -sind(RotAng) cosd(RotAng)];!
TensorOut = RotMat*TensorIn*RotMat';!

End
To use!

>> a=[1 0; 0 -1];!
>> arot=TensorRotate(a,45)!
ans =!
 0 -1.000000000000000!
 -1.000000000000000 0!
>> b=[0 1; 1 0];!
>> TensorRotate(b,45)!
ans =!
 1.000000000000000 0!
 0 -1.000000000000000!
>> help TensorRotate!
 does tensor rotation through angle RotAng!
!

Output can be single variable as in last or multiple
items (if only give one output, get first).

!
function [TensorOut RotMat] = TensorRotate(TensorIn, RotAng)!
%does tensor rotation through angle RotAng!
!
RotMat=[cosd(RotAng) sind(RotAng); -sind(RotAng) cosd(RotAng)];!
TensorOut = RotMat*TensorIn*RotMat';!
End!

To use
>> TensorRotate(a,30)!
ans =!
 0.500000000000000 -0.866025403784439!
 -0.866025403784439 -0.500000000000000!
>> [arot rm]=TensorRotate(a,30)!
arot =!
 0.500000000000000 -0.866025403784439!
 -0.866025403784439 -0.500000000000000!
rm =!
 0.866025403784439 0.500000000000000!
 -0.500000000000000 0.866025403784439!
>>!

0-d scaler

1-d vector

2-d matrix

3-d think of as a stack of 2-d matrices

>3-d something hard to visualize – but fine
mathematically (4-d is 2-d matrix with each

element itself a 2-d matrix)

The Colon Operator
The colon, “:”, is one of the most important (and
sometimes seemingly bizarre) MATLAB operators

It can be used to

- Create a list of numbers
- Work with all entries in specified dimensions
- Collapse trailing dimensions (right- or left-hand side)

- Create a column vector (right-hand side behavior related to

reshape)
- Retain an array shape during assignment (left-hand

side behavior)

Creating a List of Numbers

You can use the “:” operator to create a 1-d
vector of evenly-spaced numbers.

Here are the integers from -3 to 3.

>> list1=-3:3!
list1 =!
 -3 -2 -1 0 1 2 3!
!

Don't need the braces (are optional)

Creating a List of Numbers

Here are the first few odd positive integers.

>>list2 = 1:2:10!
list2 =!
 1 3 5 7 9!

Can use negative increments

>>100:-7:51!
ans =!
 100 93 86 79 !72 !65 !58 !51!

syntax for this use of colon operator –

start:[increment if ≠1:]end!
!

(default increment = 1)

Things that don't work
>> a=(1:3;4:6)!
 a=(1:3;4:6)!
 |!
Error: Unbalanced or unexpected parenthesis or bracket.!
 !
>> a=1:3;4:6!
!
ans =!
!
 4 5 6!
!
>>!
!

Second one (no error reported because no
errors) creates array named a = 1 2 3, and

then an array named ans = 4 5 6. It uses the ;
as a line separator (and suppresses output, not a

row separator (when outside []).

Working with all the Entries in Specified
Dimensions

To manipulate values in some specific dimensions,
use the “:” operator to specify the dimensions.

A “:” by itself indicates all elements of that index
position (usually rows or columns)

>>a(:,1)

Means “all rows, in column 1”

>>a(1,:)

Means “all columns, in row 1”

Deleting rows and columns

You can also combine : with [] to remove rows,
columns, or elements (again – variation on theme
of assigning elements in a matrix – have a syntax

rule and read it like a lawyer for all possible
interpretations and implications.)

e.g. Remove the second column
>>X=A;!
>>X(:,2) = [];!
!

Create vector from X; removes every 2nd element
from 2 to 10!

>>X(2:2:10) = []!
X =!
16 !9 !2 !7 !13 !12 !1!

Done with the colon operator for now.

But will continue to show up in examples.

Array and Matrix divide
Even more fun

Element by element divide (the ".").

Right array divide.

Left matrix divide

Matrix on top is dividend.
Matrix on bottom is divisor.

>> a=[1 2;3 4]
a =
 1 2
 3 4
>> b=[2 4;6 8]
b=
 2 4
 6 8
>> a./b
ans =
 0.5000 0.5000
 0.5000 0.5000
>> a.\b
ans =
 2 2
 2 2
>> b./a
ans =
 2 2
 2 2
>> b.\a
ans =
 0.5000 0.5000
 0.5000 0.5000
>>

Array and Matrix divide (Matlab inventions)

>> a=[1 2;3 4]!
a =!
 1 2!
 3 4!
>> det(a)!
ans =!
!
 -2!
>> b=[5 6]'!
b =!
 5!
 6!
>> c=a*b!
 c =!
 17!
 39!
>> d=a\c!
d =!
 5.0000!
 6.0000!
>> !

Left matrix division.

Check a is invertible

This is equivalent to inv(a)*c=b.

Note this is the solution to a*b=c
when you know a and c and want
b.

d=b above.

Sizes have to be appropriate.

With a matrix for b, get solutions for each column
b’.

(we needed the b’ when b was a vector to get
things to multiply correctly – to get the same

values we have to transpose b also)

>> b=[5 6;7 8]
b =
 5 6
 7 8
>> c=a*b
c =
 17 23
 39 53
>> d=a\c
d =
 4.999999999999999 5.999999999999997
 7.000000000000001 8.000000000000002
>>

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

A and B must be matrices that have the same

number of rows, unless A is a scalar, in which case
A\B performs element-wise division — that is,

A\B = A.\B.

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

If A is a square matrix, A\B is roughly the same as
inv(A)*B, except it is computed in a different

way.

If A is an n-by-n matrix and B is a column vector
with n elements, or a matrix with several such

columns, then
X = A\B!

is the solution to the equation AX = B.

A warning message is displayed if A is badly
scaled or nearly singular.

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

If A is an m-by-n matrix with m ~= n and B is a
column vector with m components, or a matrix with

several such columns, then
X = A\B!

is the solution in the least squares sense to the
under- or over-determined system of equations

AX = B.

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

In other words, X minimizes
norm(A*X - B),

the length of the vector AX – B.

The rank k of A is determined from the QR
decomposition with column pivoting.

The computed solution X has at most k nonzero
elements per column. If k < n, this is usually not

the same solution as
x = pinv(A)*B,

which returns a least squares solution.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

B and A must have the same number of columns.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

If A is a square matrix, B/A is roughly the same as
B*inv(A).

If A is an n-by-n matrix and B is a row vector with
n elements, or a matrix with several such rows,

then
X = B/A!

is the solution to the equation XA = B computed
by Gaussian elimination with partial pivoting.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

A warning message is displayed if A is badly
scaled or nearly singular.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

If B is an m-by-n matrix with m ~= n and A is a
column vector with m components, or a matrix with

several such columns, then
X = B/A!

is the solution in the least squares sense to the
under- or over-determined system of equation

 XA = B.

Note: matrix right division and matrix left division
are related by the equation

!
B/A = (A'\B')'

Example 1- Suppose A and B are -
>> A = magic(3)!
A =!
 8 1 6!
 3 5 7!
 4 9 2!
>> b = [1;2;3]!
b =!
 1!
 2!
 3!

To solve the matrix equation Ax = b, enter
>> x=A\b!
x =!
 0.0500!
 0.3000!
 0.0500!

You can verify x is the solution to the equation as follows.
>> A*x!
ans =!
 1.0000!
 2.0000!
 3.0000!

Magic matrix – square matrix with property that
column, row and diagonal sums add to same value.
!
>> tst=magic(3)!
tst =!
 8 1 6!
 3 5 7!
 4 9 2!
>> sum(tst)!
ans =!
 15 15 15!
>> sum(tst’)!
ans =!
 15 15 15!
>> sum(sum(tst.*eye(3)))!
ans =!
 15!
>> sum(sum(tst'.*eye(3)))!
ans =!
 15!
>>!

Example 2 — A Singular

If A is singular, A\b returns the following warning.
!

Warning: Matrix is singular to working precision.

In this case, Ax = b might not have a solution.

Example 2 — A Singular

A = magic(5);!
A(:,1) = zeros(1,5); % Set column 1 of A to zeros!
b = [1;2;5;7;7];!
x = A\b!

Warning: Matrix is singular to working precision.!
ans =!

!NaN!
!NaN!
!NaN!
!NaN!
!NaN!

If you get this warning, you can still attempt to

solve Ax = b using the pseudoinverse function
pinv.

Example 2 — A Singular

If you get this warning, you can still attempt to
solve Ax = b using the pseudoinverse function

pinv.

x = pinv(A)*b!
x =!
0 0.0209!
0.2717!
0.0808!
-0.0321!

The result x is least squares solution to

Ax = b.!

Example 2 — A Singular!
!

To determine whether x is a exact solution!
!

 — i.e., a solution for which Ax - b = 0!
—!
!

 simply compute
A*x-b!
ans =!

!-0.0603!
!0.6246!
!-0.4320!
!0.0141!
!0.0415!

The answer is not the zero vector, so x is not an

exact solution.

Example
Suppose that

A = [1 0 0;1 0 0];!
b = [1; 2];!

Note Ax = b cannot have a solution, because
A*x has equal entries for any x. Entering

!
x = A\b !

returns the least squares solution
x =!
1.5000!
0!
0!

along with a warning that A is rank deficient.

Example
!
A = [1 0 0;1 0 0];!

b = [1; 2];
!
x = A\b !

x =!
1.5000!
0!
0!

Note that x is not an exact solution:

A*x-b!
ans =!
0.5000!
-0.500!

Operators

Arithmetic operators.
 plus - Plus +!
 uplus - Unary plus +!
 minus - Minus -!
 uminus - Unary minus -!
 mtimes - Matrix multiply *!
 times - Array (element by element) multiply) .*!
 mpower - Matrix power ^!
 power - Array (element by element) power .^!
 mldivide - Backslash or left matrix divide \!
 mrdivide - Slash or right matrix divide /!
 ldivide - Left array (element by element) divide .\!
 rdivide - Right array (element by element) divide ./!
 kron - Kronecker tensor product kron!

Operators

 Relational operators.
 eq - Equal ==!
 ne - Not equal ~=!
 lt - Less than <!
 gt - Greater than >!
 le - Less than or equal <=!
 ge - Greater than or equal >=!

 Logical operators.
 and - Logical AND &!
 or - Logical OR |!
 not - Logical NOT ~!
 xor - Logical EXCLUSIVE OR
 any - True if any element of vector is nonzero
 all - True if all elements of vector are nonzero

Logical operations on matrix:
(test is element by element)

Returns a logical matrix!
!
>> a=[1 2 3 4 5]!
a =!
 1 2 3 4 5!
>> b=[5 4 3 2 1]!
b =!
 5 4 3 2 1!
>> c=a==b!
c =!
 0 0 1 0 0!
>>!
!

==, >, >=, <, <=, ~, &, |!
!

Exclusive or
!

>> a=[0 0 1 1]!
>> b=[0 1 0 1]!
>> xor(a,b)!
ans =!
 0 1 1 0!
>> !

A few things to remember:

- Cannot use spaces in names of matrices
(variables, everything in matlab is a matrix)

cool x = [1 2 3 4 5]!

- Cannot use the dash sign (-) because it
represents a subtraction.

cool-x = [1 2 3 4 5]!

- Don’t use a period (.) unless you want to create
something call a structure.

cool.x = [1 2 3 4 5]!

A few things to remember:

- Your best option, is to use the underscore (_)
if you need to assign a long name to a matrix

 my_cool_x = [1 2 3 4 5]!

Sizes of matrices:

 a =!
 1 4 3 0!
 0 0 0 5!
>> size(a)!
ans =!
 2 4!
>> sizea=size(a);!
>> whos!
 Name Size Bytes Class Attributes!
!
 a 2x4 64 double !
 ans 1x2 16 double !
 sizea 1x2 16 double !
>> sizea!
sizea =!
 2 4!
>> size(a,1)!
ans =!
 2!
>> size(a,2)!
ans =!
 4!

Dimension of matrix
(mathematically) – rows, columns

Can do by individual dimensions

Sizes of matrices:

!
>> x=[1 2 3; 4 5 6; 7 8 9; 10 11 12];!
>> length(x)!
ans =!
 4!
>> x=[1 2 3 45 6; 7 8 9 10 11 12];!
>> length(x)!
ans =!
 6!
>> length(x(:))!
ans =!
 12!

Linear size (as vector – total number
elements)

Length of matrix gives the max dimension

 (# rows here)

(# columns here)

Matlab does all arithmetic in double precision.

Matlab "knows" about other types of entities
(single precision, integers of varying lengths,

unsigned integers, logicals) but converts them to
floating point to use them.

(This is somewhat of a disaster when processing topographic data bases for which one
square degree of data can be 13 Mega points (3600x3600 points) each 2 bytes long,
that turn into 13 Mega points each 8 bytes long for a total of about 100 Mbytes for

one square degree worth of data. Considering that there are about
0.3*360*180~20,000 (est 70% earth surface is water) square degrees of land. So if
you want to process all the topo data that's 2 Terrabytes as double precision, versus

about 500 Gibaybtes in raw format)

This combined with fact that Matlab is in general
interpreted means that it is not a speed deamon.

So it is important to do whatever you can to make

it as fast as possible when using it for heavily
used number crunching.

(hint – Vectorize)

Formatting screen output

format may be used to affect the spacing in the
display of all variables as follows:

format compact Suppresses extra line-feeds.

format loose Puts the extra line-feeds back
in (the default).

>> pi!
!
ans =!
!
 3.1416!
!
>> format compact!
>> pi!
ans =!
 3.1416!
>> !

Formatting screen output

format short fixed point with 4 decimal
places (the default)

format long fixed point with 14 decimal places

format short e scientific notation with 4
decimal places

format long e scientific notation with 15
decimal places

ways to access array elements.

>> a=10!
a =!
 10!
>> a!
a =!
 10!
>> whos!
 Name Size Bytes Class Attributes!
!
 a 1x1 8 double !
>> !
!

So a is a scalar!

But everything in Matlab is really a matrix so -
!
!
>> a(:)!
ans =!
 10!
>> a(1)!
ans =!
 10!
>> a(1,1)!
ans =!
 10!
>> a(1,1,1,1)!
ans =!
 10!
>> !

We can list all the elements of a
(there is only 1)
We can address a as a 1-d vector.
We can address a as a 2-d (or
higher d) vector as (1, 1) in 2-d is
same memory location as (1) in 1-d,
which is the memory location as the
single element.

!
 !
>> el=1!
el =!
 1!
>> a(el)!
ans =!
 10!
>> a([1])!
ans =!
 10!
>> arry=[1]!
arry =!
 1!
>> a(arry)!
ans =!
 10!
>>!

We can also use a variable for the index

Or an array (explicitly) or as a variable

But everything in Matlab is really a matrix so -
!
!
!
>> a(1,2)!
Index exceeds matrix dimensions.!
>> a(2)!
Index exceeds matrix dimensions.!
>> !

If we try to address
beyond one element
we get an error
message.

>> a=1:27!
a =!
 Columns 1 through 21!
 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21!
 Columns 22 through 27!
 22 23 24 25 26 27!
>> a3d=reshape(a,3,3,3)!
a3d(:,:,1) =!
 1 4 7!
 2 5 8!
 3 6 9!
…!
>> a3d(:,:,1)!
ans =!
 1 4 7!
 2 5 8!
 3 6 9!

These methods work in general

>> a3d(:,1:2,1)!
ans =!
 1 4!
 2 5!
 3 6!
>> a3d(:,[1 3],1)!
ans =!
 1 7!
 2 8!
 3 9!
>> a3d(:,[1 3:-1:2],1)!
ans =!
 1 7 4!
 2 8 5!
 3 9 6!
>> !

Specify ranges with :
operator, use arrays w/ and
w/o colon operator.

>> [1 3:-1:2]!
ans =!
 1 3 2!
>> [1 5:-1:2]!
ans =!
 1 5 4 3 2!
>> [1 5:-1:3]!
ans =!
 1 5 4 3!
>>!

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!

>> b=[1:3]'!
b =!
 1!
 2!
 3!

More on vectorizing

Say we want to take the cross product of each of
the columns of a matrix a with the column vector

b.

Another way
to make b!

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!

>> b=[1:3]'!
b =!
 1!
 2!
 3!

More on vectorizing

We could do a loop over the columns of a,
crossing each with the vector b, putting the

answer in a new matrix.
 (but we don't want to do loops - SLOW.)

Another way to
make b!

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> o=ones(1,2)!
o =!
 1 1!
>> bb=b*o!
bb =!
 1 1!
 2 2!
 3 3!
>> cross(a,bb)!
ans =!
 -1 0!
 2 0!
 -1 0!
>> !

Vectorizing

Find a way to do with out a loop.

Can make a matrix bb with a copy of
b in each column, such that we can
now do all the cross products with
just one call to the cross product.

One way to make the matrix bb.

Post multiply column vector by row
vector of all ones (3x1*1x2=3x2).

Then do cross product of all pairs
of columns with one call.

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> bb=[b b]!
bb =!
 1 1!
 2 2!
 3 3!
>> cross(a,bb)!
ans =!
 -1 0!
 2 0!
 -1 0!
>> !

More on vectorizing

What we've done is correct/OK,
but it is slow due to the

multiplying.

Turns out it is much faster to
simply copy the vector b multiple

times, rather than doing the
multiply.

In addition the multply solution
does not always work (if can't

make the result by multiplication
of a vector/matrix and a matrix)

>> a=[1 2; 3 4 ; 5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> bb=repmat(b,1,2)!
bb =!
 1 1!
 2 2!
 3 3!
>> cross(a,bb)!
ans =!
 -1 0!
 2 0!
 -1 0!
>> !

More on vectorizing

The problem now is that this is
not a very convenient way (you
have to hard code it) to make

the matrix.

Enter the repmat command.

This lets you program up the
construction of the new matrix.

>> bb=repmat(b,1,2)!
bb =!
 1 1!
 2 2!
 3 3!

New routine repmat!

repmat(b,n,m) repeats the "input" matrix, b, n
times in row dimension and m times in column

dimension.

So this will take the 3x1 vector b
and repeat it twice columnwise to

produce a 3x2 matrix bb.

repmat(b,3,2) would repeat
b this way [b b; b b; b b]!

b b
b b
b b

>> bb=b(:,[1 1])!
bb =!
 1 1!
 2 2!
 3 3!
>> !

That said – most people will not do it this way
either!

The astute reader will notice that we can simply
use the array addressing tools introduced earlier

to also produce the desired result.
 (the astute reader will also get this technique named after them after sending it to

Matlab's discussion groups – it is known as Tony's trick after Tony Booer of
Schlumberger. Will see lots more of it later.)

This will return the 1st column
twice as two column vectors.

Lets look at this in a little more detail.

>> a=1:9!
a =!
 1 2 3 4 5 6 7 8 9!
>> a2d=reshape(a,3,3)!
a2d =!
 1 4 7!
 2 5 8!
 3 6 9!
>> a(:)'!
ans =!
 1 2 3 4 5 6 7 8 9!
>>!

 What is a2d(2,3)?
What is a2d(8)?

>> a=1:9!
a =!
 1 2 3 4 5 6 7 8 9!
>> a2d=reshape(a,3,3)!
a2d =!
 1 4 7!
 2 5 8!
 3 6 9!
>> a(:)'!
ans =!
 1 2 3 4 5 6 7 8 9!
>>!

What is a2d([8])?
How about a2d([8 8])?

And a2d([8 8]')?
And a2d([8;8])?

>> a2d([8 8])!
ans =!
 8 8!

And a2d([8 1])?

>> a2d([8 1])!
ans =!
 8 1!
>> !

And a2d([1 8]')?
And a2d([1;8])?

The thing to notice about using the array as an
index is that the result takes the shape of the

array used to index the values you are accessing.

Here we are accessing the elements linearly and
getting an array out based on the array used for

the addressing.

But a2d is a 2 d matrix.

So what does this do?

>> a2d(:,[3 2 1])!
ans =!
 7 4 1!
 8 5 2!
 9 6 3!

Get the UNIX/computer thinking cap out.

The : runs over all values of the first index
(rows).

The array [3 2 1] says use these as the values
for the second index (columns)

So it pulls out columns 3, 2 and 1 and makes a new
array that is composed of all the rows (from the :
for the first index) with the columns in this order.

Compare

So you should now be able to figure out what this
does

>> a2d!
a2d =!
 1 4 7!
 2 5 8!
 3 6 9!

>> a2d(:,[3 2 1])!
ans =!
 7 4 1!
 8 5 2!
 9 6 3!

>> a2d([3 2 1],:)!

From Drea Thomas at the MathWorks (the
company that produced Matlab)

Ask any crusty MATLAB programmer how to

speed up your code and they'll tell you
"Vectorize!".

"Vectorize!".
OK, you say. How?

This is a hard question to answer generally
because:

- There are different techniques for different
problems.

- There are different techniques for the same
problem.

- Different techniques are better or worse
depending on the matrix size.

- There is no end to the clever and obscure ways
to vectorize in MATLAB.

Vectorizing is not alogrithmic, there is no "recipe"
that will result in (either well, or,) vectorized code.

You have to learn the already discovered tricks or

invent your own.

Matlab
Programming – relational operators

Relational Operators

Returns 1 if true and 0 if false.
(opposite of shell)

All relational operators are left to right

associative.

Make element-by-element comparisons.

Some useful relational operators for whole
matrices include the following commands:

isequal : tests for equality

isempty: tests if an array is empty

all : tests if all elements are nonzero

any: tests if any elements are nonzero; ignores
NaNs

These return 1 if true and 0 if false

Relational Operators (review)

< : test for less than

<= : test for less than or equal to

>: test for greater than

>= : test for greater than or equal to

== : test for equal to

~= : test for not equal

Relational Operators with matrices.

What do you think they do?

>> a=[1 2 3]!
a =!
 1 2 3!
>> b=[1 1 3]!
b =!
 1 1 3!
>> a==b!
ans =!
 1 0 1!
>>!

These return a
matrix with the

results of element by
element testing,

return 1 if true and 0
if false.

Can use the result
matrix as a mask for
further processing.

Logical Operators

Logical array operators return 1 for true and 0
for false

As you might expect, work element-by-element

& : logical AND; tests that both expressions are
true

| : logical OR ; tests that one or both of the
expressions are true

~ : logical NOT; inverts logical value

Logical Operators w/ Short-circuiting

If the first tested expression will automatically
cause the logical operator to fail, the remainder

of the expression is not evaluated.

&& : short-circuit logical AND

|| : short-circuit logical OR

Logical Operators w/ Short-circuiting

(b ~= 0) && (a/b > 18.5)!

if the first test (b ~= 0) evaluates to false then
MATLAB already knows the entire expression will

be false and terminates its evaluation of the
expression early.

This avoids the warning that would be generated
if MATLAB were to evaluate the operand on the

right (due to a divide by zero).

Matlab
Programming – control structures

if/elseif/else/end!
!

if expression is true, run this set of commands.
else if another expression is true, run this set

of commands (can repeat).
else if nothing true so far, run this set of

commands.
end the if block.

if rem(n,2) ~= 0! !%calculates remainder of n/2 !!

!M = odd_magic(n)!
elseif rem(n,4) ~= 0 ! % ~= is ‘not equal to’ test!

!M = single_even_magic(n)!
else!

!M = double_even_magic(n)!
end!
!

Often indented for readability.

switch, case, and otherwise/end!
switch executes the statements associated with

the first case where

switch_expr == case_expr !

If no case expression, you can have multiple
cases, matches the switch expression, then
control passes to the otherwise case (if it

exists).
switch switch_expr!
case case_expr!

!statement, ..., statement!
otherwise!

!statement, ..., statement!
end!

Often indented for readability.

for/end!

one of the most common loop structures is the
for loop, which iterates over an array of objects

for x values in array, do this

for M = 1:m!
!for N = 1:n!
! !h(M,N) = 1/(m+n);!
!end!

end!
!

Often indented for readability.

Try to avoid using i and j as loop counters
(matlab uses them for sqrt(-1))

while/end!

while: continues to loop as long as condition
exited successfully

n= 1;!
while (1+n) > 1, n=n/2;, end!
n= n*2!

Note the use of the “,” rather than a newline

(carriage return) to separate the parts of this loop when
written on one line

(the semicolon “;” is for “silence” – else it prints out n/2 each time through, you need

the "," to separate the statement n=n/2 from the end statement).

This can be done with any type of loop structure.

break!

break: allows you to break out of a for or
while loop

exits only from the loop in which it occurs

while condition1 # Outer loop!

!while condition2 # Inner loop!
! !break ! ! ! !# Break out of inner loop only!
!end!
!… ! ! ! ! ! !# Execution continues here after break!

end!
!

Often indented for readability.

continue!

continue: pass control to next iteration of for
or while loop (skips remaining body of loop)

passes to the next iteration of the loop in which it
occurs

fid = fopen('magic.m','r');!
count = 0;!
while ~feof(fid)!

!line = fgetl(fid);!
!if isempty(line) | strncmp(line,'%',1)!
! !continue!
!end!
!count = count + 1;!

end!
disp(sprintf('%d lines',count));!
!

Often indented for readability.

