
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929
�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 24, 11/19/13

I don’t know what the programming language
of the year 2000 will look like, but I know it

will be called Fortran.

Charles Anthony Richard Hoare

One other rather dangerous DO form is allowed
under Fortran 90.

x=1!
do x=2*x+1!
if (x.gt.200) exit!
if (x.lt.100) cycle print *, ' x.ge.100’!
end do !
print * , ' x = ',x !

!
This will continue to loop until an EXIT, or GOTO
statement within the loop forces the looping to

end.

Place were goto sort of makes sense – want
different behavior depending on how leave the

loop.

 do 100 it=1,itmax!
 xo=x!
 fx=f(xo,dfdx)!
! !dx = -fx/dfdx!

 x=xo+dx!
 write (*,2000)it,x,fx,dx !
 if(abs(x-xo).lt.eps*abs(x)) go to 200!
100 continue!
 print *, 'Iteration failed to converge’!

Better do something else here!
200 x=xin!

If you belong to the school of thought, that
GOTOs should be avoided at all cost, then the

Fortran CYCLE and EXIT statements are for you.

Fix the previous code to be “modular” and not
use the GOTO.

Modern way.
Need something to tell you how you left the loop.

Use some sort of logical “flag”.

converge_flag=.false.!
do 100 it=1,itmax!
 …fortran code from last slide…
 if(abs(x-xo).lt.eps*abs(x)) then!
! ! !converge_flag=.true.!
! ! !exit!
! !endif!

If(.not. converge_flag) then!
 print *, 'Iteration failed to converge’!

Better do something else here!
end if!
x=xin!

Random stuff for loops

-  Can’t modify loop control variable inside loop.

Compiler will catch this.

-  Can’t depend on value of loop counter when
exit loop by completing it (if you are lucky it will
have the first value that failed the test, causing

the loop to terminate).

Compiler will not catch this.

Random stuff for loops

- Traditional loops can share a labeled “end”
!
do 100 i=1,10!
“fortran statements”
Do 100 j=20,30!
“fortran statements”
100 continue or “executable fortran statement”
what are the values of i and j here?

do…enddo have to be individually paired.

In nested loops, which loop do the exit and
cycle commands apply to?

-> The nest level being executed.

What if you want get all the way out of the loop?

(higher the the next level up in the nest.)

New with Fortran 90 – you can name the loops
(at beginning and end)

Refer to the loop name you want to exit or

cycle!
!

outer: do i=1,5!
middle: do j=11,25!
inner: do k=21,25!
 print *, i, j, k!
 if(j==12)exit outer!
end do inner!
end do middle!
end do outer!

Implied loops

x = (/ (2*i, i=1,4) /)!

Equivalent to

do i = 1,4!
!x(i) = 2*i!

end do!

Implicit loops are used for initialization of arrays,

reading and printing (heaviest use). !

Implied loops

x = (/ ((i*j, i=1,4), j=1,6) /)

Equivalent to

do j = 1,6!
do i = 1,4!
x((j-1)*4+i) = i*j!
end do!
end do!
!
k = 1!
do j = 1,6!
do i = 1,4!
x(k) = i*j!
k = k+1!
end do!
end do!

Implied loops

Can be very handy.

write(*,*)((i,”*”,j,”=“,i*j,j=1,9),i=1,9)!

Prints multiplication table (but all on one line).

Implied loops

Most commonly used to read and write

read(*,*) n,(x(i),i=1,n)!
or

read(*,*) n!
read(*,*)(x(i),i=1,n)!

or
read(*,*) n!
do i=1,n!
!read(*,*)x(i)!

enddo
All 3 seem to do the same
thing – and they do –
sometimes!

Say I have 3 files with the following contents

5 1 4 9 16 25!
!
!
5!
1 8 27 64 125!
!
!
5!
1!
2!
3!
4!
5!

The first piece of code on the
last page will read all 3 files.

The second will read the last
two files.

The third will read only the
last file.

This is because each read starts a new
“record”=line from the input file, but if it is
not done reading when it gets to the end of
the line, it keeps going with the next line.

Reading and writing from files

First have to open a file and tell the program how
to identify it, do this with a “unit

number” (standard-in is unit 5, but can use *).

Then replace the first * in ()’s after read with
“unit” number, stuff in grey is optional

!
open(unit=1,file='f3.dat')!
read(unit=1,*) n,(x(i),i=1,n)!
write(*,*)(x(i),i=1,n)!
End!

Can do same with output!

Reading and writing from files

There are lots more options for the open!

look them up.!

Handling errors/end of file on input.
Modern way.

read(1,*,iostat=iostatus) n!
if(iostat>0)then!
print *,'something wrong'!
elseif(iostat<0)then!
print *,'eof'!
else!
write(*,*)'n=',n!
endif!
close(1)!

Handling errors/end of file on input.
Old “goto” way.

read(1,*,end=100,err=101) n!
write(*,*)'n=',n!
close(1)!
…!

Somewhere else in the code
100 print *,'eof’!
stop!
101 print *,’bad input’!
stop!

So far we’ve only been reading and writing what is
called list-directed (free) format

As long as input is composed of numbers it is

easy (although you have to make sure you don’t
try to read a real into an integer), separating the

numbers by spaces or commas.

A bit more complicated to read in character
strings since they can have spaces (and don’t

have to be in quotes).

Formatted I/O
Gives more control over what it read and written.

WRITE(unit, "(A,F10.3,A)") "flux =” &!
! ! ! ! ! ! ! !,source_flux, " Jansky"!

(Can use variable to specify unit number to print)

Then print a character string (A) of unspecified

length
Followed by a floating point number using a total
of 10 spaces, with three digits after the decimal

point (sign and decimal point count),
And finally another character string.

Formatted I/O

Can also use with print and accept.

print ’("A,F10.3,A")' "flux =" &!
! ! ! ! ! ! ! !,source_flux, " Jansky"!

Have various ways to specify different types of
numbers

I – integer

(In is n digits/spaces w/o leading zeros, or In.m
prints at least m≤n digits, so uses leading zeros)

F – floating point

(Fn.m is n total digits, m after decimal point,
remember to count sign and decimal point

characters)

A – character
(An is n total characters, including spaces)

E – scientific notation

(ESn.mEo is n total digits, m after decimal point,
normalized with 1 digit before decimal point and

optionally specify o digits for exponent.

ENn.mEo is n total digits, m after decimal point,
normalized such that exponent is multiple of 3.)

Also have

Generalized exponent (G)
Hex, Octal and Binary (H, O, B)

Logical (L).

Space (X)
Tab (T)

New line (/)

Repetition (for all format specifiers)

rX, rFn.m!

Repeats the specification that number of times.

Formatted I/O
Old way.

Could do same

WRITE(unit, "(A,F10.3,A)") "flux =” &!
! ! ! ! ! ! ! !,source_flux, " Jansky”!

Or use labels (may not work in F90…)

WRITE(unit,100) "flux =” &!
! ! ! ! ! ! ! !,source_flux, " Jansky”!

100 format(A,F10.3,A)

And share format between different statements.!

Internal I/O
!

Read from/write to character variable.
And how to declare characters.

Can use ' or " in pairs to define strings.

character(len=100) :: string!
character(100) :: otherstring!
Character(*) :: prompt ='enter real' !compiler will figure
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !out length!

character otherstring2(100) !this is array of 100 single
! ! characters, not 100 character long string as above!

!
read(*,'(A)')string!
read(string(10:15), *) somereal!

Reads from character substring in positions 10 to 15

inclusive.

Q format specifier

Get length of input record.

character(50) buf; character(60) string; integer(4) nbytes!
!
buf = 'this string is 29 bytes long.'!
read(buf, fmt='(q)') nbytes!
write(*,*) nbytes!
read(*,fmt='(q,a)') nbytes, string!
write(*,'(i,x,3a,/,a,/,3a)') nbytes, '"',string,'"',' vs
','"',string(1:nbytes),'"'!
end!

Run it
!

50 nbytes equals 50 because the buffer buf is 50 bytes long.!
how long is this string?!
24 "how long is this string? ”!
 nbytes now equal the number of characters entered by the user.!
 vs !
"how long is this string?"!

Unformatted (binary) I/O
!

Omit the format specifier.
Writes data in binary format.

Must be read back with exactly the same types of
variables, on the same computer architecture, if

you want it to make sense!!

(E.g. with the same endianness and word size.)
Example:

write(unit=9) x, y, z!
read(unit=9) a, b, c !

Character strings in Fortran and C.

Can’t find a limit for character string length in
Fortran90

It is 255 characters in Fortran-Fortran77 (first byte is

length, can only count up to 255, from 000, with 8 bits)

C character strings are “zero” terminated. They start
at a given memory location and continue until a byte

equal to zero is encountered.

This makes passing strings between the two languages
tricky.

Arrays

Fortran also has arrays (similar to Matlab –
including how elements are ordered in memory.)

You have to declare variables as being arrays.

Traditionally you had to declare the size of an

array at the time you wrote the program
(Fortran before Fortran95 did not have dynamic

memory allocation – except on the DEC VAX,
whose extended Fortran had it in the early to mid

80’s, but it was not “portable”).

Declaring traditional (predefined size) arrays

real z(20) ! !!traditional, 20 floating points!
real :: a(20) !!just add the :: for consistency!
real, dimension(20) :: b,c !new options format!
integer, parameter :: isize=100!
real, dimension(isize) :: d!!new options format!
real, dimension(2*isize) :: e !with calculation!
real :: f(isize,isize)!!2d traditional w/ ::!
real, dimension(isize,isize) :: g !2d, options!
real :: h(-isize:isize) !!neg indicies!
integer, dimension(5) :: i=(/1, 2, 3, 4, 5/) !
! ! ! ! ! ! ! ! ! ! ! ! ! ! !initialize!

integer k!
integer, dimension(5) :: j=(/(k,k=1,4), 5/) !use!
! ! ! ! ! ! ! !implied do loop to initialize!

So far all variables have been static variables

They have a fix memory requirement, which is
specified when the variable is declared.

Static arrays in particular are declared with a

specified shape and extent which cannot change
while a program is running

(at least not in the main program).

So far all variables have been static variables

This means that when processing variable
amounts of data you have to:

Dimension arrays to the largest possible size that
will be required,

or

Change the sizes in the source, and re-compile
every time you run (or the array is too small).

Declaring arrays with dynamic memory allocation
(size not fixed at coding time).

Having to declare arrays at compile time has long
been a complaint against Fortran

(especially by C programmers as C allowed it).

Fortran 90 (and newer) has “fixed” the problem.

Various ways to declare using allocatable option

General form

type, ALLOCATABLE [,attribute] :: name!

!
examples

!
INTEGER, DIMENSION(:), ALLOCATABLE :: a !rank 1!
!
INTEGER, ALLOCATABLE :: b(:,:) !rank 2!
!
REAL, DIMENSION(:,:), ALLOCATABLE :: c !rank 2!

Declare array using allocatable option

program dynamem!
implicit none!
integer :: nmax,istat,error!
real*8, allocatable :: array(:)!
…!
end!

When you need the array, use allocate.

General form

ALLOCATE(name(bounds) [,STAT])!

Examples
!Some part of the code determines nmax!
nmax=100!
allocate(array1d(nmax),stat=error)!
if (stat.ne.0) then!
print*,'error: couldnt allocate memory &!
! ! ! ! ! ! ! !for array1d, nmax=',nmax!

stop!
endif!

When done with array, should (have to!) deallocate.

General form

DEALLOCATE(name [,STAT])!

examples

!
DEALLOCATE (a, b) !
DEALLOCATE (c, STAT=test) !
IF (test .NE. 0) THEN !
STOP 'deallocation error' !
ENDIF!

Status of allocatable memory

Allocated – has associated memory

Not currently allocated – no memory associated

General form

Allocated(name)!

Returns .true. or .false.!

Note that you still need to know the size of the
array when you declare it dynamically.

You can compute it in your program, etc.

(this is also true in C)

You cannot just keep adding elements and have
the array grow as in Matlab.

Aside

Logical variables

Define as logical

logical :: TF!

They take the values

.true. or .false.!
!

(can do stuff like do while (.true.))

Status of allocatable memory

Examples
 if you need memory can check and allocate if not

already allocated

If(.not.allocated(x)) allocate(x(1:10))!

Or if you don’t need it, can check if allocated and
get rid of it if it is allocated.

IF(ALLOCATED(x)) DEALLOCATE(x)!

Memory leaks

Normally, the program takes responsibility for
allocating and deallocating storage to (static)

variables. When using dynamic memory allocation,
however, this responsibility falls to the

programmer.

Storage allocated through the ALLOCATE
statement may only be recovered by:

a corresponding DEALLOCATE statement, or
the program terminating.

Memory leaks

Storage allocated to local variables (in say a
subroutine or function) must be deallocated

before the exiting the procedure.

When leaving a procedure all local variable are
deleted from memory and the program releases

any associated storage for use elsewhere,

Memory leaks

HOWEVER any storage allocated through the
ALLOCATE statement will remain `in use' even
though it has no associated variable name!

Storage allocated, but no longer accessible,
cannot be released or used elsewhere in the

program and is said to be in an `undefined' state.

This reduction in the total storage available to the
program called is a “memory leak”.

Memory leaks

And to make matters worse –

memory leaks are cumulative, repeated use of a
procedure which contains a memory leak will

increase the size of the allocated, but unusable,
memory.

Memory leaks can be difficult errors to detect but
may be avoided by remembering to allocate and

deallocate storage in the same procedure.

Assigning array values
!
!
a=0 ! ! ! ! !!whole array set to zero!
b(1)=5 ! ! ! !!element 1 set to 5!
c(j(2))=a(1)! !!j(2) element of c set to a(1)!
f(3,4)=a(10)! !!2 d element (3,4)!

What is this going to do?

integer, parameter :: nmax=100!
real*8 array1d(nmax), array2d(nmax,nmax)!
!
array1d(1)=1!
array1d(nmax+1)=nmax+1!
array2d(1,1)=1!
array2d(0,0)=-1!
!
print *,' array1d ', array1d(1),
array1d(nmax+1)!
print *,' array2d ',array2d(1,1), &
array2d(0,0)=!
end!

I should have you write a small program to try it

(But that would take 20 minutes)

So here’s the result

array1d 1.000000000 101.0000000 !
array2d 1.00000000 -1.00000000!
!

So it seems like it worked! !

The problem is that it is not guaranteed to work!

How about I go 109 outside of bounds

579 $ a.out!
forrtl: severe (174): SIGSEGV, segmentation fault occurred!
Image PC Routine Line Source !
a.out 000000010ED9BCFB Unknown Unknown Unknown!
a.out 000000010ED9BA3C Unknown Unknown Unknown!
libdyld.dylib 00007FFF8F3BE7E1 Unknown Unknown Unknown!

Here we lucked out and the OS protected us

from ourselves.

It looks like we wanted to write into the dynamic
library (which is shared by all the programs running on the machine – probably not

a nice thing to do).

This “problem” is not restricted to Fortran.

C, and most other languages, will do the same bad
things very nicely also.

Produces the famous “segmentation fault”

(says you are trying to trespass outside your “property” in memory, and it will not let you).

But it does let you do it within your “property” (in

the memory allocated to your program).

This may or may not cause your program to get
bad results or crash.

How to fix it?

Use something called “bounds checking”

Most languages do not do it by default as it is
incredibly slow.

However, you can tell the compiler (it takes extra code) to do

it, and it will then save you from yourself.

583 $ ifort -check bounds dynamem.f90!
584 $ a.out!
forrtl: severe (408): fort: (2): Subscript #1 of the array
ARRAY1D has value 101 which is greater than the upper
bound of 100!
…!

Can do “scalar” operations on arrays (as in
Matlab: .+, .-, .*, ./)

For arrays a, b and c (the arrays have to be

declared earlier)!
!

c=a+b!

Arrays have to be “conformable” – same size.

Subroutines and Functions
(subprograms)

Functions return a single value

Subroutines can return multiple values through an

argument list.

program testfunctions!
implicit none!
real a, b, a_mean, g_mean!
write(*,*)'enter two real values'!
read(*,*) a,b!
a_mean=ArithMean(a,b)!
g_mean=GeoMean(a,b)!
write(*,*) 'value 1 ',a,' value 2 ',b,' arith mean ',a_mean,'
geom mean ',g_mean!
!
contains!
real function ArithMean(a,b)!
implicit none!
real, intent(in) :: a,b!
ArithMean=(a+b)/2.0!
end function ArithMean!
!
real function GeoMean(a,b)!
implicit none!
real, intent(in) :: a,b!
GeoMean=sqrt(a*b)!
end function GeoMean!
!
end program testfunctions!

Functions – roll your own

Can put functions inside
same file as main program
– use contains
Can also put in another
file and combine at
compile time.!

Intrinsic Functions

Built into Fortran (don’t need to link libraries for
I/O, math, etc.)

There are about a hundred of them, some of the

most common

sqrt!
sin, cos, tan – take argument in radians

sind, cosd, tand – take argument in degrees

Etc. – look ‘em up.
!

program testsubroutines!
implicit none!
real a, b, c, d!
write(*,*)'enter two real values'!
read(*,*) a,b!
call Means(a,b,c,d)!
write(*,*) 'value 1 ',a,' value 2 ',b,' arith mean ',c,' geom
mean ',d!
!
contains!
subroutine Means(a,b,c,d)!
implicit none!
real, intent(in) :: a,b!
real, intent(out) :: c,d!
c=(a+b)/2.0!
d=sqrt(a*b)!
end subroutine Means!
!
end program testsubroutines!

Subroutines

Similar to function –
but output now through
argument list, and can
have multiple outputs.

In example, a and b are
input and c and d are
output variables.

What is

intent(xxx) !
!

where xxx is one of in, out, inout !

INTENT(IN) function takes the value from the
corresponding “formal argument” (the thing in the

argument list in the subroutine definition) and
does not change its content.

Is optional

Also have

INTENT(OUT) the “formal argument” does not
receive a value from the calling program, but will

return a value to the calling program through the
corresponding argument.

INTENT(INOUT) the “formal argument” can both

receive and return a value through the
corresponding argument.

Both are optional and all are mutually exclusive

But – can get in trouble if don’t specify
(problem is when put constant or expression in call)

!
real a!
write(*,*)'enter real value'!
read(*,*) a!
call MySub(2*a)!
write(*,*) 'value a ’,a!
call MySub(2)!
write(*,*) 'value a ’,a!
!
Contains!
!
subroutine MySub(x)!
implicit none x!
real x=sqrt(x)!
end subroutine Means!
end!

Main & subprograms don’t have to be in same file!

File mainsubs.f90
program mainsubs!
implicit none!
real a, b, c, d!
write(*,*)'enter two &!
real values'!
read(*,*) a,b!
call Means(a,b,c,d)!
write(*,*) 'value 1 ’&!
,a,’value 2 ',b&!
,' arith mean ’,c&!
,' geom mean ',d!
end program mainsubs!

File subsubs.f90
subroutine
Means(a,b,c,d)!
implicit none!
real, intent(in) :: a,b!
real, intent(out) :: c,d!
c=(a+b)/2.0!
d=sqrt(a*b)!
end subroutine Means!

To compile – list all source files needed!
gfortran mainsubs.f90 subsubs.f90 –o myprog!

Fortran passes by “reference” (address).

When you pass a variable to a subroutine it gets
the address of the variable.

(use the intent statement to control what can be
changed)

When you pass an array, the subroutine gets the

address of the start of the array. There is no
metadata. The subroutine does not know

anything about the size of the array, so you also
have to pass the size with more arguments.

Can resize an array in subroutine (dangerous).

So if you change the value of a variable in your
Fortran subroutine (and you are not using

intent) – the change is seen outside

(that’s how you pass stuff back out!)

C, on the other hand, passes by “value” – a copy,
so changes are local to inside the subroutine –

except for arrays, which C also passes by
reference.

Write a subroutine to multiply two arrays.

Write a program to do Gaussian elimination.
(should also be a subroutine or function).

