
Data Analysis in Geophysics �
ESCI 7205

�
Bob Smalley�

Room 103 in 3892 (long building), x-4929

�

Tu/Th - 13:00-14:30 �
CERI MAC (or STUDENT) LAB

Lab – 14, 12/8/13

There are two other non-map-projected forms

1) Logarithmic - add l (lower case letter L) after
scale of axis you want logarithmic -JX4l/2 !

2) Power/exponential – add p and the value of
the exponent to scale of axis you want

exponential (can scale axes individually)

-JX4p0.5/2 !

Common command options on first, and possibly
subsequent, calls

Need on all calls

-R

Define region for plot – will need on first call
and at least “–R” on subsequent

-J! !define projection for plot – will need this on
all calls if need to define region

Common command options on first, and possibly
subsequent, calls

(Generally) Need on first call only

-B

Borders -- annotation, frame, grid. Only
need on first (or a single) call.

-P! !Switch between landscape and portrait
modes

-X

Shift X axis

-Y! !Shift Y axis

Common command options on first, and possibly
subsequent, calls.

Need when needed.

-K

Don’t close PostScript (showpage), use
when more plotting will follow

- need on all but last GMT call

-O

Don’t initialize PostScript, use when
appending to pre-existing file

- need on all but first GMT call

- use both –K and –O when putting a large
number of GMT call outputs together

Common command options on first, and possibly
subsequent, calls.

Need when needed.

-V

Verbose (prints out stuff to standard error
for user).

-H

Header records (tells GMT to skip first H
lines of ascii input file)

How about
making

pretty

MAPS?

Map projections available in GMT

List of
“standard”

command line
options.

The –J option
sets the

“projection”

One has to

look at the man
page for each

one as
“different

things vary”

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

pscosat makes the
basic “background
map”.

It “knows” about
coastlines and is used
to plot them.

(unfortunately GMT is particularly
dumb about topography and –
following the UNIX philosophy – leaves
the finding and installation of
topographic data to the user.)

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

“All” gmt programs
plot “maps” through
the projection
command line option
or switch -J (even the x-y
plot).

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

All projections give
you two selections for
specifying the scale

(note GMT takes the
mapmakers attitude that a
map has to have a
predetermined/known scale
– assuming you want the map
to nicely fill the page does
not cut it – a map without an
explicitly known or specified
scale is simply
inconceivable.)

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

-Jmparameters!

 (Mercator).

Specify one of:

 -Jmscale or -JMwidth !

Give scale along
equator

(1:xxxx or UNIT/degree,
indicated by lower case m or upper

case M.

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps !

-Jmlon0/lat0/scale or!

-JMlon0/lat0/width !

Can also give central
meridian, standard
latitude and scale

along parallel

(1:xxxx or UNIT/degree, UNIT

= number inches or cms).

Map Projection:

addresses plotting sphere on a plane

Mercator Projection:

One way to address plotting sphere on a plane

(which is whole ‘nother subject)

Conformal (maintains shapes but not relative

sizes)

Is a cylindrical projection

Albers

Also conformal (maintains/conserves shape)

Conical projection

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

Region, saw
before, specified

by –R, is a
“rectangle”
defined by

latitude and
longitude lines

on the spherical
earth.

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

Albers Conic
Projection (b/B)
– need to know

something
(center and/or

standard
parallels).

-Jblon0/lat0/lat1/lat2/scale or -JBlon0/lat0/lat1/lat2/width!

Give projection center: lon0/lat0, two standard parallels:
lat1/lat2, and scale (1:xxxx or UNIT/degree).

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-N for political
boundaries

(international, US/Canadian/
Mexican state boundaries

“built in”), rivers.

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-A to get rid of
small water/island
features (number
gives min size to

plot in km2)

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-G fill for land/
dry areas, (saw

before with RGB,
new form with

single value for
gray scale - 0

black, 255 white).

-G fill for ocean/
lakes/wet areas
(not used here).

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-W for line widths
(in points “p”).

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

-P switches from
portrait to

landscape or
vice-versa

depending on the
default setting.

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic\ Projection":
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps !

Put in file map.ps
and clobber old

version if it exists

(csh and tcsh, not
sh or bash)

This is a single line
gmt program – quite

unusual.

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \ !

-G255/255/255 -S150/50/150 -P >! map.ps !

Other projections –

azimuthal orthographic
(projection mimics
looking at earth from
infinite distance).

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \ !

-G255/255/255 -S150/50/150 -P >! map.ps !

New option

-Dc!

Controls resolution of
coastline

f full

h high

l low

c crude

Helps manage file sizes.

Some useful
maps.

The world
centered on

Memphis.

Use to get
back azimuth

and distance to
earthquakes at

a glance.

We want to plot

Earthquakes

Focal Mechanisms/Moment Tensors

Digitized geologic data

Topography/Bathymetry

Other Geophysical Data

Roads, Cities, etc.

What tools are
there to handle
these data sets?

GMT is one of
them.

#!/bin/sh -f!
#make a simple map with point data!
!
LATMIN=10!
LATMAX=30!
LONMIN=-80!
LONMAX=-55!
SCALE=0.6!
MEDYELLOW=255/255/192!
LTBLUE=192/192/255!
RED=255/0/0!
DONTCLOSE=-K!
DONTINIT=-O!
CONTINUE="-K -O"!
INVLATLON="-:"!
!
pscoast -R$LONMIN/$LONMAX/$LATMIN/$LATMAX -Jm${SCALE} \!
-B10 -G$MEDYELLOW -S$LTBLUE $DONTCLOSE -P > $0.ps!
psxy -R -Jm${SCALE} -Sc0.2 -G$RED -W1/0 $DONTINIT \!
$INVLATLON << END >> $0.ps!
`preqs2gmt.sh`!
END!

Set it up

pscoast to draw background
map

psxy to draw the earthquakes
(red circles with black outline)

preqs2gmt.sh (PuertoRican
eqs to gmt) to prepare data

on the fly, reads file puts out
lat long

result

Example of GMT man page – expanded for
understanding

psxy reads (x,y) pairs from files [or standard
input] and generates PostScript code that will

Plot

lines, polygons, or symbols

at those locations on a map.

Plotting symbols

psxy -R -Jm${SCALE} -Sc0.2 -G$RED -W1/0 $DONTINIT \!
$INVLATLON << END >> $0.ps!

Flag is -S

Symbols you can plot with psxy – Point data

Star - a!
Bar - b!
Circle - c!
Diamond – d!
Ellipse – e, E!
Front – f!
Hexagon - h!
Inverted triangle - i!
Letter - l!
Point - p!

Square - s!
Triangle - t!
Vector – v, V!
Wedge - w!
Cross - x!

Plotting symbols

nawk '/^ PDE/ {print $6, $7}' $0.htm | psxy -R$REGION
$PROJ -Sc0.1 -Gpurple -L -W.1/0 -: $CONTINUEPS $VERBOSE
>> $OUTFILE!
!
!
!

-S specify symbol type and size.

Plotting symbols

nawk '/^ PDE/ {print $6, $7}' $0.htm | psxy -R$REGION
$PROJ -Sc0.1 -Gpurple -L -W.1/0 -: $CONTINUEPS $VERBOSE
>> $OUTFILE!
!
!
!

-S specify symbol type and size.

Use nawk to get data into psxy

!

 PDE-W 2011 03 19 083501 -21.98 -68.87 117 5.2 MwRMT 4FM !
 PDE-W 2011 03 19 091240.87 -20.13 -69.08 102 4.7 MwRMT 3FM !
 PDE-W 2011 03 20 013306.18 -24.07 -66.79 189 4.5 mbGS !
 PDE-W 2011 03 20 171225 -24.87 -70.20 49 5.0 MwRMT 4FM !
 PDE-W 2011 03 23 025737 -20.19 -70.82 26 4.0 mbGS !
 PDE-W 2011 03 27 115427 -21.27 -70.29 58 4.3 mbGS 3F. !
 PDE-W 2011 03 29 114934 -20.10 -69.95 60 4.8 mbGS 4F. !
 PDE-W 2011 03 31 040737.45 -24.06 -66.65 181 4.5 mbGS !
 PDE-W 2011 03 31 214111.87 -27.64 -67.32 61 4.1 mbGS 4F.!

Plotting symbols

Setting size on the fly from the data

nawk '/^ PDE/ {print $6, $7}' $0.htm | psxy -R$REGION
$PROJ –Sc -Gpurple -L -W.1/0 -: $CONTINUEPS $VERBOSE >>
$OUTFILE!
!

If a symbol is selected and no symbol size given,
then psxy will interpret the third column of the

input data as symbol size.

Symbols whose size is <= 0 are skipped.

Plotting symbols

Setting size on the fly from the data

nawk '/^ PDE/ {print $6, $7, ($9>0)?($9^2)/64:"0.01"}'
$0.htm | sort -k 3 -n | psxy -R$REGION $PROJ -Sc -Gpurple
-L -W.1/0 -: $CONTINUEPS $VERBOSE >> $OUTFILE!
!
!

-S set size on fly.

Use nawk to get data into psxy

!

 PDE-W 2011 03 19 083501 -21.98 -68.87 117 5.2 MwRMT 4FM !
 PDE-W 2011 03 19 091240.87 -20.13 -69.08 102 4.7 MwRMT 3FM !
 PDE-W 2011 03 20 013306.18 -24.07 -66.79 189 4.5 mbGS !
 PDE-W 2011 03 20 171225 -24.87 -70.20 49 5.0 MwRMT 4FM !
 PDE-W 2011 03 23 025737 -20.19 -70.82 26 4.0 mbGS !
 PDE-W 2011 03 27 115427 -21.27 -70.29 58 4.3 mbGS 3F. !
 PDE-W 2011 03 29 114934 -20.10 -69.95 60 4.8 mbGS 4F. !
 PDE-W 2011 03 31 040737.45 -24.06 -66.65 181 4.5 mbGS !
 PDE-W 2011 03 31 214111.87 -27.64 -67.32 61 4.1 mbGS 4F.!

Plotting Symbols

Setting color on the fly based on data.

nawk '/^ PDE/ {print $6, $7, $8, ($9>0)?($9^2)/64:"0.01"}'
$0.htm | sort -k 3 -n | psxy -R$REGION $PROJ -Sc -L
-Ceq.cpt -W5/0 -: $CONTINUEPS $VERBOSE >> $OUTFILE!
!

-C Give a color palette (cpt) file (don't need –G, which
fills symbol, anymore).!

When used with -S, lets symbol color be
determined by the z-value in the third column.

Additional fields are shifted over by one column
(optional size would be 4th rather than 3rd field,

etc.).

Plotting Symbols

Setting color on the fly based on data.

color palette (cpt) file.!
!

$ cat eq.cpt!
000 255 000 000 100 255 100 000!
100 255 100 000 200 255 255 000!
200 255 255 000 300 100 200 000!
300 100 200 000 400 000 000 255!
400 000 000 255 600 100 000 255!
!

Simple cpt file – define start and stop of non-
overlapping data ranges and color for each
range. Gives linear variation between limits.

z1bottom r g b z1top r g b!
Z2bottom r g b z2top r g b!
…!

Plotting symbols

Setting color on the fly based on data.

nawk '/^ PDE/ {print $6, $7, $8, ($9>0)?($9^2)/64:"0.01"}'
$0.htm | sort -k 3 –n -r | psxy -R$REGION $PROJ -Sc -L
-Ceq.cpt -W5/0 -: $CONTINUEPS $VERBOSE >> $OUTFILE!

Setting color on the fly

Use nawk to get data into psxy

!
 PDE-W 2011 03 19 083501 -21.98 -68.87 117 5.2 MwRMT 4FM !
 PDE-W 2011 03 19 091240.87 -20.13 -69.08 102 4.7 MwRMT 3FM !
 PDE-W 2011 03 20 013306.18 -24.07 -66.79 189 4.5 mbGS !
 PDE-W 2011 03 20 171225 -24.87 -70.20 49 5.0 MwRMT 4FM !
 PDE-W 2011 03 23 025737 -20.19 -70.82 26 4.0 mbGS !
 PDE-W 2011 03 27 115427 -21.27 -70.29 58 4.3 mbGS 3F. !
 PDE-W 2011 03 29 114934 -20.10 -69.95 60 4.8 mbGS 4F. !
 PDE-W 2011 03 31 040737.45 -24.06 -66.65 181 4.5 mbGS !
 PDE-W 2011 03 31 214111.87 -27.64 -67.32 61 4.1 mbGS 4F.!

Open with psbasemap.

Draw pscoast and grid last.

Plotting symbols

Setting symbol on the fly from the data

!
psxy -R -Jm${SCALE} -S -G$RED -W1/0 $DONTINIT \!
$INVLATLON << END >> $0.ps!

If no symbols are specified in the command line,
then the symbol code must be present as last

column in the input.

Definition of size for each symbol – look at man
page

psxy -R -Jm${SCALE} –Sa0.5 -G$RED -W1/0 $DONTINIT \!
$INVLATLON << END >> $0.ps!

-Sa star. size is diameter of circumscribing circle.!

Ellipse symbol

-Se ellipse. Direction (in degrees counter-
clockwise from horizontal), major_axis, and
minor_axis must be found in columns 3, 4, and 5.!
!
-SE Same as -Se, except azimuth (in degrees east
of north) should be given instead of direction. !
!
The azimuth will be mapped into an angle based on
the chosen map projection (-Se leaves the
directions unchanged.) Furthermore, the axes
lengths must be given in km instead of plot-
distance units. !

Vectors – center (?) on specified (x,y)

!

-Sv vector. Direction (in degrees counter-
clockwise from horizontal) and length must be
found in columns 3 and 4. size, if present, will
be interpreted as arrowwidth/headlength/headwidth
[Default is 0.075c/0.3c/0.25c (or 0.03i/0.12i/
0.1i)]. By default arrow attributes remains
invariant to the length of the arrow. To have the
size of the vector scale down with decreasing
size, append nnorm, where vectors shorter than
norm will have their attributes scaled by length/
norm. -SV Same as -Sv, except azimuth (in degrees
east of north) should be given instead of
direction. The azimuth will be mapped into an
angle based on the chosen map projection (-Sv
leaves the directions unchanged.) !

Plot lines

leave out symbol flag, -S, will connect data points
with great circle line segments.

psxy -R$REGION $PROJ -W3/$RED $CONTINUEPS ridges >> $OUTFILE!

!
(use -A to suppress great circle – I suppose it draws straight

line between projected points, never used it). !

psxy -R$REGION $PROJ –M -W3/
purple $CONTINUEPS

pgr_contours.dat >> $OUTFILE!

Multiple segment files
("lift pen") may be
plotted using the -

Mflag option.

Segments are
separated by a record
whose first character

is flag. [Default is
'>'].

To explicitly close polygons when drawing lines
(with great circle segment), use –L.

Need to do this is you want to fill the polygon.

Fill – for symbols and closed polygons defined by
lines.

Shade interior with -G. If -G is set, -W (line width
and color) will control whether the polygon

outline is drawn or not.

If a symbol is selected and -G set, -W determines
the fill color and outline/no out­ line, respectively.

-G Select filling of polygons and symbols. Append the shade
(0-255), color (r/g/b), or P|pdpi/pattern (polygons only)
[Default is no fill]. Note when -M is chosen, psxy will search
for -G and -W strings in all the subheaders and let any found
values over-ride the command line settings.!

Front symbol – goes on lines

!

-Sf front. -Sfgap/size[dir][type][:offset].
Supply distance gap between symbols and symbol
size. If gap is negative, it is interpreted to
mean the number of symbols along the front
instead. Append dir to plot symbols on the left
or right side of the front [Default is centered].
Append type to specify which symbol to plot: box,
circle, fault, slip, or triangle. [Default is
fault]. Slip means left-lateral or right-lateral
strike-slip arrows (centered is not an option).
Append :offset to offset the first symbol from
the beginning of the front by that amount
[Default is 0]. !

Plot lines

Just plot line

Plot and fill (lines
have form closed

polygons.)

Geologic symbols
(subduction zone)

Fill – problems

If polygon not closed properly psxy draws ¿great
circle or straight? line from first to last point and
fills in closed polygons that this line creates(line

from beginning to end may result in multiple
polygons being formed (it closes an S shape with

a straight line and you get two opposite facing
half circles).

Fill – problems

The anti-pode fill problem seems to have gone
away (except falls over when center is exactly North or South poles, even though no

land at N pole).!

Plotting lines

Both Symbol outline (a line) and Line properties
are specified using –W switch.

Line thickness, color, pattern/texture.

!
-W Set pen attributes. [Defaults: width = 1, color = 0/0/0,
texture = solid]. Implicitly draws the outline of symbols with
selected pen. !

Plotting lines

Setting color on the fly based on data.

psxy -R -Jm${SCALE} -S –CANDES.cpt -W1/0 $DONTINIT \!
$INVLATLON << END >> $0.ps!
`Feed in data`!
END!

If -S is not set (drawing lines), psxy expects the

user to supply a multisegment polygon file
(requires -M) and will look for -Zval strings in

each multisegment header. The val will control
the color via the cpt file.

Input geographic data order.

GMT was written by guys who made x-y plots.

x comes first, y comes second.

This means longitude comes first, latitude comes
second (default would have been other way

around if written by cartographer.)

(why is clockwise the direction it is?)!

!

To switch data order use the -: switch

This is an important one – switches the order of
ALL the grid referenced data on the input line.

pxsy pretty powerful but does not draw all the
symbols needed for geophysics

Two important items not covered by psxy!

psmeca - Focal Mechanisms/Moment Tensors

psvelo - Vectors with error ellipses

(replaced older psvelomeca program that broke
UNIX philosophy by mixing two unrelated tasks).!

Make focal mechanisms – use GMT filter
(program/routine) psmeca!

make/obtain input file – see psmeca
documentation for large number of ways to define

focal mechanism data

35.59 !-90.48!12 !220!65 !150!4.5975 -0.25 -0.25  
35.86 !-89.95!16 !220!75 !150!4.0727 -0.25 0.25  
36.37 !-89.51!7.5!350!84 !145!4.2020 -0.25 0.25  
36.54 !-89.68!9 !85 !60 !-20!3.7118 0 0.5  
36.56 !-89.83!8 !90 !67.5 !20 !4.1068 -0.25 -0.25  
36.64 !-90.05!15 !304!78 !-28!4.6309 0 -0.5  
37.16 !-89.58!15 !140!75 !50 !4.2547 0.25 0  
37.22 !-89.31!1.5!280!70 !-20!3.5783 -0.25 0.25  
37.36 !-89.19!16 !30 !70 !170!3.8250 0.25 0.25  
37.44 !-90.44!15 !350!60 !135!4.0126 0.25 0.25  
37.48 !-90.94!5 !260!40 !-70!4.5728 0.25 -0.25  
37.91 !-88.37!22 !0 !46 !79 !5.2612 -0.35 0.1  
38.55 !-88.07!15 !310!70 !0 !4.3154 -0.25 -0.25  
38.71 !-87.95!10 !135!70 !15 !4.9309 -0.25 0.25!

-Sa - Focal mechanisms in Aki and Richard
convention!
!
-Sc - Focal mechanisms in Harvard CMT convention!
!
-Sm - Seismic moment tensor (Harvard CMT, with
zero trace)!
!
-Sp - Focal mechanisms given with partial data on
both planes.!
!
Scale follows selection letter, adjusts the
scaling of the radius of the "beach ball", which
will be proportional to the magnitude (x is one of
a,c,m,p).!

Specify how data for focal mechanism is
specified.

#!/bin/sh -f!
REG=-92/-88/35/39!
psmeca -R$REG << END -Jm4. -Bg1f1a1 -P -Sa2./0/0 -CP -: -K > $0.ps!
`nawk '{print $1, $2, $3, $4, $5, $6, $7, $1+$8, $2+$9}'
practice_data.dat`!
END!
psxy -R$REG practice_data -Jm4. -Sc0.25 -: -G255/0/0 -W3/0 -O >> $0.ps!

Make map with focal mechanisms (psmeca)

and earthquake locations (psxy)

-S
flag in psmeca for focal mechanism input
format definition and size

-C
for plotting beach ball offset from
earthquake location and, PW, for connecting it to
point at earthquake location with a line W thick.

Specify how size changes with respect to
magnitude.

!
-Sxscale adjusts the scaling of the radius of the "beach ball",
which will be proportional to the magnitude. !
!
Scale is the size for magnitude = 5 (that is seismic scalar
moment = 4*10e+23 dynes-cm) in inch (unless c, i, m, or p is
appended). (-T0 option overlays best double couple
transparently.) !
!
Put -Syscale[c/i][/fontsize[/offset[u]]] to plot the only double
couple part of moment tensor. Put -Stscale[c/i][/fontsize[/
offset[u]]] to plot zero trace moment tensor. The color or shade
of the compressive quadrants can be specified with the -G option.
The color or shade of the extensive quadrants can be specified
with the -E option. Parameters are expected to be in the
following columns !

coloring.

!
The color or shade of the compressive quadrants can be specified
with the -G option. The color or shade of the extensive quadrants
can be specified with the -E option. Parameters are expected to
be in the following columns !

Uses “offsets” specified in
columns 8 and 9 to reposition
the focal mechanism.

You could put the lat, long you
wanted in cols 8 and 9, but why
calculate all of them by hand?

If you have to specify the
offsets for each beachball
depending on how things look
(example to left), no easy way
to do automatically, have to
type in offsets or locations.

Are lower hemisphere plots.

35.59 !-90.48!12 !220!65 !150!4.5975 -0.25 -0.25!

`nawk '{print $1, $2, $3, $4, $5, $6, $7, $1+$8, $2+$9}'!

Plot

- Velocity vectors with error ellipses

- Anisitropy bars

- Rotational wedges

- Strain crosses

psvelo -R -$PROJ$SCALE -Sr$VELLEN/0.95/0 -W1/$PURPLE -G$PURPLE \!

$VELARROW $CONTINUE $VBSE andaman_nicobar_coseis.dat \!

>> $OUTPUTFILE!

Various ways to define vector data

(ve, vw, or mag, az)

Vector length, error ellipse confidence for plot,
label font size

Arrow shaft width, head length and width

Data - lat lon vlat vlon siglat siglon corr

making pretty
MAPS

How to do:

- color or b&w
topo with shaded

topo

- how to combine
topo and

bathymetry

First – have to find data – what’s available

DEM’s (Digital Elevation Models) of world –
several resolutions, several kinds of data

(GTOPO-30, ETOPO-5 , SRTM, seasat, obs/
predicted bath)

Really raster
data (value on
grid or in
volume) – sucha
as gravity, age
sea floor, etc.

Where to get them?

(We have some online at CERI – makes it easy.

Have not fully figured out SRTM yet.)

use grdraster to extract a subregion from the
global bathymetry data set and make a new grid

file for GMT.

grdraster is not part of “standard” GMT.

Is a “supplemental” GMT program.

There are a bunch (order 35-40) of such
supplemental GMT programs like this around.

Many are written by others (not Smith and

Wessell) and become “attached” to GMT and can
be found on the GMT web page, but they are not

officially part of GMT.

psmeca and psvelo (to draw focal mechanisms
and vector fields) are in this class.

use grdraster to extract a subregion from the
global bathymetry data set and make a new grid

file for GMT.

$GRDRASTERREGION has same format at the REGION definition (min
lon/max lon/min lat/max lat) and been previously set up to define
the region!
!
echo do seafloor  
DATASET=10  
DATAGRID=-I2m/2m  
grdraster $DATASET -G${ROOTNAME}_2mtopo.grd $DATAGRID \!
-R$GRDRASTERREGION -V �
echo done with 2m topo grdraster

Let’s look at the documentation first

Typing grdraster all by itself dumps the man
page (GMT default behavior).

- reports

available data sets

Units

data coverage area

spacing and registration (pixel or grid – not
important for now, except that when combining

data sets they have to be the same).

alpaca/smalley 142:> grdraster!
grdraster 3.4.3 - Extract a region from a raster and save in a grdfile!
usage: grdraster <file number> -R<west/east/south/north>[r] \!
[-G<grdfilename>] [-I<dx>[m][/<dy>[m]]][-bo[s][<n>]]!
 <file number> (#) corresponds to one of these:!
 !
Data Description Unit Coverage Spacing Registration!
---!
1 "ETOPO5 global topography" "m" -R0/359:55/-90/90 -I5m G!
2 "US Elevations from USGS" "m" -R234/294/24/50 -I0.5m P!
3 "Geo/Seasat grav from Haxby" "mGal" -R0/359:55/-90/90 -I5m G!
4 "Geo/Seasat geoid from Haxby" "m" -R0/359:55/-90/90 -I5m G!
5 "Sea floor age from Cande" "Ma" -R0/359:55/-90/90 -I5m P!
6 "Sea floor age from Muller et al., 1998" "Ma" -R0/360/-72/90 -I6m G!
7 "Sea floor age errors Muller et al., 1997" "Ma" -R0/360/-72/72 -I6m G!
8 "1=land, 0=sea bitmask" "T/F" -R0/360/-90/90 -I5m P!
9 "USGS/SS ETOPO30s" "m" -R0/360/-90/90 -I0.5m P!
10 "2min Observed/Predicted Topo" "m" -R0/360/-72/72 -I2m P!
11 "et30wbath" "m" -R-78/-63/-25/-12 -I0.5m P!
---!

First use grdraster to extract a subregion from
the global data set

echo do seafloor
DATASET=10
DATAGRID=-I2m/2m
grdraster $DATASET -G${ROOTNAME}_2mtopo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with 2m topo grdraster

We have selected the 2m predicted sea floor
topography – data set 10.

We have set the grid to the proper sample spacing
(get from previous slide w/ data set properties).

First use grdraster to extract a subregion from
the global data set

echo do seafloor
DATASET=10
DATAGRID=-I2m/2m
grdraster $DATASET -G${ROOTNAME}_2mtopo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with 2m topo grdraster

We are going to put the extracted data into a file
called ${ROOTNAME}_2mtopo.grd !

Now we do the same for the land topographic
data, using GTOPO-30, which only has data for

land.

echo do topo
DATASET=9
DATAGRID=-I30c/30c
grdraster $DATASET -G${ROOTNAME}_topo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with gtopo grdraster

Now we select the ETOTO-30 topography – data
set 9.

Notice that the grid has a different sample
spacing than the bathymetry, otherwise this code

snippet is the same.

Now we do the same for the land topographic
data, using GTOPO-30, which only has data for

land.

echo do topo
DATASET=9
DATAGRID=-I30c/30c
grdraster $DATASET -G${ROOTNAME}_topo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with gtopo grdraster

The data will go into a file called

${ROOTNAME}_topo.grd!

We now have two complimentary data sets, one
for topography and one for bathymetry and we

have to combine them.

(for most maps, the newer, current dem files have
land and sea and you don't have to do this – but

some datasets still need it.)

Unfortunately, they have different sample
spacing.

So we have to resample one of the data sets –
lets do it to the sea floor (since it has the lower
resolution – we will therefore be interpolating).

Use grdsample to resample the bathymetry as
defined by DATAGRID and put in a new resampled

file ${ROOTNAME}_30stopo.grd

echo prep and merge bathy!
DATAGRID=-I30c/30c  
grdsample ${ROOTNAME}_2mtopo.grd -G${ROOTNAME}_30stopo.grd $DATAGRID \!
-F -R$GRDRASTERREGION -V  
!

Now we use grdmath to combine (AND) the two
data sets (they have distinguishing values in the

dataless points).

grdmath uses a stack and RPN – (Reverse or postfix
Polish Notation, as opposed to prefix Polish Notation –
what your invention gets called when your ethnic Polish

name is unpronounceable in English)

grdmath -F -V ${ROOTNAME}_topo.grd ${ROOTNAME}_30stopo.grd AND = \!
${ROOTNAME}_topobath.grd  
echo done with merge bathy!

And put the new topo file in

${ROOTNAME}_topobath.grd!

We are now done selecting the topographic and
bathymetric data,

which can be used to generate coloring or
grayscale.

What is the object in
this figure?

It is very hard, however,
for the brain to interpret

this view of the data.

One needs to add shadows (shading) for the
brain to “get the picture”.

What does it look like now?

We “illuminate” the topography with a fake sun,
specifying elevation and azimuth, and generate an

intensity filter to be added to the color or
grayscale image (actually for grayscale just use the intensity filter).

There is a slight problem however.

What is the object in this image?

Both images are made from the same data (the one on

the right is the one on the left rotated 180°, or vice versa), yet they look
like very different objects (to most people – some people

claim to see two of the same thing, and with the correct
interpretation, i.e. the object on the earth)

Is it a flat bottomed valley with a peak or a mesa
with a small valley?

 “Raw” data shaded topo “illuminated” from

 grey scale into topo upper right

 lower right

 The left is an image of the data (altitude), two on the right are
nice visual pictures but do not show the altitude.

 What you "see" depends on how the brain
works – how the brain interprets up/down by

shadows.

Light usually comes from "above" so the brain in

Once we started walking around, light usually
comes from "above" so the brain interprets

topography using this assumption to interpret
what makes shadows.

Try with color

No better.

Red – high

Green - low

Again, it is very

hard for the brain
to interpret this
view of the data.

high

low

Try with illumination

A little better?

Can see slopes/
structure

(mountains) but
have lost altitude

info.

flat

flat

Combine color and illumination

This is the best
we can do.

flat and high

flat and low

The code that made the last 3 plots

 DATASET=9!
 GRDRASTERREGION=$REGION!
 DATAGRID=-I30c/30c!
 echo do 30s topo from GRDraster, dataset $DATASET!
 echo gmt topo data at $GMT_GRIDDIR!
 grdraster $DATASET -Gtopo.grd $DATAGRID -R$GRDRASTERREGION $PROJ $VBSE!
 grdinfo topo.grd!
 ls -l topo.grd!
 echo done with grdraster call!
 TOPOILLUM=315!
 grd2cpt topo.intns -Cgray $VBSE > bw.cpt!
 grdgradient topo.grd -A$TOPOILLUM -Gtopo.intns -Ne0.6 -V!
#grey sca.e only!
grdimage topo.intns -Itopo.intns -Cbw.cpt -R$REGION $PROJ -B5g5 $VBSE
$ORIENT > $OUTFILE!
#color only!
grdimage topo.grd -CapproxBryan.cpt -R$REGION $PROJ -B5g5 $ORIENT
$VBSE > $OUTFILE!
#both together!
 grdimage topo.grd -Itopo.intns -CapproxBryan.cpt -R$REGION $PROJ -B5g5
$VBSE $ORIENT > $OUTFILE!

Back to making figures

GMT has a routine to do the shading:
grdgradient.

I’ll also illuminate the ocean floor and the

topography from slightly different angles – to
bring out the “best” of both.

After generating the illumination, we have to

combine the two files using grdmath.

I'll name the output files wilh .intns as extension.

NORM=-Nt  
BATHILLUM=270  
TOPOILLUM=315!
grdgradient ${ROOTNAME}_topo.grd -A$TOPOILLUM \!
-G${ROOTNAME}_topo.intns $NORM -V !
 
grdgradient ${ROOTNAME}_30stopo.grd -A$BATHILLUM \!
-G${ROOTNAME}_30stopo.intns $NORM -V !
!
grdmath -F -V ${ROOTNAME}_topo.intns ${ROOTNAME}_30stopo.intns AND = \!
${ROOTNAME}_topobath.intns  
!
INTNSFILE=${ROOTNAME}_topobath!

So now we have two grid files

- One with the topographic data

- One with the shading

Now we’re ready to plot them together to make
the map.

Finally we make our first contribution to the map
(PostScript output file) using grdimage.

grdimage can combine the coloring of the data,
based on the CPT (color something table) file,

with the shading (which comes from the slopes of
the data).

grdimage can combine the coloring of the data,
based on the CPT file, with the shading (which

comes from the slopes of the data).

echo color topo
CPTFILE=/gaia/opt/gmt/share/GMT_globe.cpt
grdimage $INTNSFILE.grd -I$INTNSFILE.intns -C$CPTFILE -R$REGION -$PROJ
$SCALE $GRID -K -X$XOFFSET -Y$YOFFSET -V $ORIENT > $OUTPUTFILE
echo done with color topo

The CPT file is the color table file. GMT has a
bunch of them predefined (look in the directory referenced above).

GMT uses the R/G/B model for color

You can also make your own CPT files

(if you have lots of time) or rescale existing ones based on

your data.

“copper”
built-in cpt

file

Now we can add other data – earthquakes, GPS
vectors, focal mechanisms, etc.

psmeca -R -$PROJ$SCALE -Sd0.2/0/0 -G$RED $CONTINUE -L -W0.5/$BLACK \!
india.cmt >> $OUTPUTFILE !

Again being lazy, I don’t like to have to keep track
of the last GMT call (to keep track of whether or

not I need the –O) so I use $CONTINUE.

Then I check the output file for a showpage when
I’m done – and write the PostScript myself when I

need it.

echo done with figure - clean up
SHOWPAGE=`tail -1 $OUTPUTFILE | nawk '{print $1}'`
echo check SHOWPAGE -${SHOWPAGE}-
if [$SHOWPAGE != showpage]
then
 echo add showpage
 echo showpage >> $OUTPUTFILE
fi

if [$CLEAN = yes]
then
 echo yes - clean up
 if [$TOPO != notopo]
 then

 \rm ${ROOTNAME}.cpt
 \rm ${ROOTNAME}.grd
 \rm ${ROOTNAME}.intns

 \rm ${ROOTNAME}_topo.grd
 \rm ${ROOTNAME}_topo.intns
 \rm ${ROOTNAME}_2mtopo.grd
 \rm ${ROOTNAME}_2mtopo.intns
 \rm ${ROOTNAME}_30stopo.grd
 \rm ${ROOTNAME}_30stopo.intns
 \rm ${ROOTNAME}_topobath.grd
 \rm ${ROOTNAME}_topobath.intns

 fi

 \rm ${ROOTNAME}.nawk
 \rm ${ROOTNAME}.tmp

fi

We then have to erase all the temporary files we
made.

So
here’s

our

pretty

MAP!

ETOPO -5

global

(5 min)

GTOPO-30

Land only

(30 sec)

(These were combined using
technique presented)

SRTM

Land only

(3 sec)

GTOPO-30

GTOPO-30
 SRTM

Plotting a single srtm file

#!/bin/sh!
\rm tst.grd!
grdgradient tile_31_69.grd -A270 -Gtst.intens -Ne0.6 -V \!
grd2cpt tst.intens -Cgray > $0.cpt!
grdimage tst.intens -Itst.intens -R-69/-68/-31/-30 -Jm7 \!
-B1g1a -P -C$0.cpt > $0.ps!
!
!

Plotting multiple 1x1 degree tiles possible, but
more slightly complicated (see me).

I can’t get SRTM data into grdraster format
input file (any volunteers?)

General GMT shell script will look something like
this

Call to set up base map – this may or may not plot
any data

Series of GMT calls to add various kinds of data

Last GMT call “closes” file

Majority of work is in manipulating the data files
using all the standard UNIX tools.

Finally, you can put the finishing touches on
your figure with Adobe Illustrator (which works with
PostScript files)

Change line

thicknesses, types
(dash, etc.), fill

colors; annotate;
etc.

Make focal
mechanism

transparent.

Paste in other stuff.

Lots well documented problems
going over to Adobe – principally

with annotation/text.

B
ef

or
e

ed
it

wi
th

 Il
lu

st
ra

to
r

A
ft

er
 e

di
t w

ith
 Il

lu
st

ra
to

r

Creating a map

gmtset: change individual GMT default
parameters

(grdimage: plot topography)

pscoast: Plot coastlines, filled continents,
rivers, political borders (, map border).

psxy: Plot symbols, polygons, and lines in 2-D

pstext: Plot text strings

psmeca: Plot focal mechanisms

psvelo: plot gps velocity vectors

Setup

!
#!/bin/bash!
!
ROOT=$HOME/unixside!
GEODATA=$ROOT/geolfigs!
SAMDATA=$ROOT/geolfigs!
VBSE=-V!
!
REGION=-75/-65/-38/-15!
PROJ=-Jm0.9!

WHITE=255!
DKGRAY=64!
LTGRAY=192!
VLTGRAY=225!
EXTGRAY=250!
GRAY=128!
BLACK=0!
BLACKP1=1!
BLACKP2=2!
BLACKP3=3!
BLACKP4=4!
WHITEM1=254!
WHITEM2=253!
!
RED=255/0/0!
RED1=254/0/0!
DKRED=196/0/0!
BLUE=0/0/255!
GREEN=0/255/0!
LTGREEN=192/255/192!
DKGREEN=0/196/0!
YELLOW=255/255/0!
ORANGE=255/192/0!
MAGENTA=255/0/255!

DKMAGENTA=181/0/223!
CYAN=0/255/255!
LTCYAN=196/255/255!
LTBLUE=192/192/255!
VLTBLUE=225/255/255!
VLTBLUE=240/250/255!
LTRED=255/225/225!
PINK=255/225/255!
BROWN=160/64/32!
LTBROWN=224/128/96!
REDBROWN=255/96/64!
VLTBROWN=229/225/209!
MUDBLUE=193/213/232!

MOREPS=-K!
CONTINUEPS="-K -O"!
ENDPS=-O!
PORTRAIT=-P!
OUTFILE=$0.ps!
!

Get Bathymetry

GRDRASTERREGION=$REGION!
DATASET=10!
DATAGRID=-I2m/2m!
grdraster $DATASET -G${ROOTNAME}_2mtopo.grd $DATAGRID -R
$GRDRASTERREGION $VBSE!
!

Get Topography

!
DATASET=9!
DATAGRID=-I30c/30c!
grdraster $DATASET -G${ROOTNAME}_topo.grd $DATAGRID -R
$GRDRASTERREGION $VBSE!

Illuminate topography

BATHILLUM=270!
TOPOILLUM=315!
NORM=-Nt!
grdgradient ${ROOTNAME}_topo.grd -A$TOPOILLUM -G${ROOTNAME}
_topo.intns $NORM $VBSE!
INTNSFILE=${ROOTNAME}_topobath
!

Resample (up/interpolate) bathymetry

!
grdsample ${ROOTNAME}_2mtopo.grd -G${ROOTNAME}_30stopo.grd
$DATAGRID -F -R$GRDRASTERREGION $VBSE!
!

Illuminate resampled bathymetry

!
grdgradient ${ROOTNAME}_30stopo.grd -A$BATHILLUM -G${ROOTNAME}
_30stopo.intns $NORM $VBSE!

Combine bathymetry and topo data sets.

Have to do for both color topo and shading.

grdmath $VBSE ${ROOTNAME}_topo.grd ${ROOTNAME}_30stopo.grd AND
= ${ROOTNAME}_topobath.grd!
grdmath $VBSE ${ROOTNAME}_topo.intns ${ROOTNAME}_30stopo.intns
AND = ${ROOTNAME}_topobath.intns!
!

(see grdmath man page

Name #args Returns!
!-----------------------!
!. . .!
!AND!2 1!NaN if A and B == NaN, B if A == NaN, else A.!

 . . .

Select color table, some more setup, render
shaded color topo. This call has all the setup

info (projection, offset, orientation, etc.)

CPTFILE=$ROOT/dem/GMT_globe.cpt!
XOFFSET=4.8!
YOFFSET=3.6!
grdimage $INTNSFILE.grd -I$INTNSFILE.intns -C$CPTFILE -R
$REGION $PROJ $MOREPS -X$XOFFSET -Y$YOFFSET $PORTRAIT $VBSE >
$OUTFILE!

Draw coastline

pscoast -R$REGION $PROJ -B5g10 -W1 $CONTINUEPS -Dh $VBSE >>
$OUTFILE!
!

Draw Wadati-Benioff zone contour lines

!
LINE=-W2./$DKRED!
WBZFILE=${ROOTNAME}.WBZ!
\rm $WBZFILE!
touch $WBZFILE!
cat $SAMDATA/0836_25km_bend_notrench.gmt >> $WBZFILE!
cat $SAMDATA/575.gmt >> $WBZFILE!
nawk 'BEGIN {print "$"} !/\$/ { print $2, $1}' $SAMDATA/
sj-100-km-well-defined.gmt >> $WBZFILE!
nawk '{ print $1, $2}' $SAMDATA/0836_100km_extn.gmt >>
$WBZFILE!
psxy -R$REGION $PROJ -M$ $CONTINUEPS $LINE $WBZFILE $VBSE >>
$OUTFILE!

Draw lines from earthquake to stations

sac <$MACRO | nawk -f sachdr.nawk > $0.tmp!
!
EQLAT=-16.26!
EQLON=-73.64!
psxy -R$REGION $PROJ -M$ -L -W1/$YELLOW $CONTINUEPS $VBSE
<<END>> $OUTFILE!
`nawk '{print '$EQLON','$EQLAT'}{print $1,$2}{print "$"}'
$0.tmp`!
END!

Plot stations

psxy -R$REGION $PROJ -Sc0.3 -G$CYAN -L -W.1/0 $CONTINUEPS
$0.tmp $VBSE >> $OUTFILE!

Could also have done with

#sac <$MACRO | nawk -f sachdr.nawk | psxy -R$REGION $PROJ -
Sc0.1 -G$CYAN -L -W.1/0 $CONTUNUEPS $VBSE >> $OUTFILE!
#psxy -R$REGION $PROJ -Sc0.3 -G$CYAN -L -W.1/0 $CONTUNUEPS
$VBSE <<END>> $OUTFILE!
#`sac <$MACRO | nawk -f sachdr.nawk`!
#END!

Plot earthquake

echo $EQLON $EQLAT | psxy -R$REGION $PROJ -Sc0.3 -G$RED -L -W.
1/0 $CONTINUEPS $VBSE >> $OUTFILE!

Plot focal mechanism

MECASIZE=.5!
psmeca -R$REGION $PROJ -Sd$MECASIZE/0/0 -G$RED $ENDPS -L -
W0.5/$BLACK $VBSE << END >> $OUTFILE!
`nawk '{print $1, $2, $3, $4, $5, $6, $7, $8, $9, $10}'
eq.cmt`!
`nawk '{print $1, $2, $3, $4, $5, $6, $7, $8, $9, $10}'
eq.usgsmt`!

To
po

 to
 c

ol
or

, n
o

sh
ad

in
g

To
po

 to
 c

ol
or

 (c
ol

or
 re

sc
al

ed

fo
r w

id
er

 ra
ng

e)
, n

o
sh

ad
in

g

CPTFILE=$ROOT/dem/GMT_globe.cpt!
grdimage $INTNSFILE.grd -C$CPTFILE… !

grd2cpt $INTNSFILE.grd -Cglobe -E128
> ${ROOTNAME}.cpt!
CPTFILE=$ROOTNAME.cpt!
grdimage $INTNSFILE.grd -C$CPTFILE… !

To
po

 to
 g

ra
ys

ca
le

, n
o

sh
ad

in
g

To
po

 to
 g

ra
ys

ca
le

,
wi

th
 s

ha
di

ng

rd2cpt $INTNSFILE.grd -Cgray -E128 > ${ROOTNAME}.cpt!
CPTFILE=$ROOTNAME.cpt!
#topo to graysacel plus shading!
grdimage $INTNSFILE.grd -I$INTNSFILE.intns -C$CPTFILE…!

rd2cpt $INTNSFILE.grd -Cgray -E128 > ${ROOTNAME}.cpt!
CPTFILE=$ROOTNAME.cpt!
#topo to graysacel plus shading!
grdimage $INTNSFILE.grd -C$CPTFILE…!

Sh
ad

in
g

(in
te

ns
ity

)
to

gr

ay
sc

al
e,

 h
ig

h
co

nt
ra

st

Sh
ad

in
g

(in
te

ns
ity

)
to

gr

ay
sc

al
e,

 lo
w

co
nt

ra
st

Sh
ad

in
g

(in
te

ns
ity

)
to

 c
ol

or

grdgradient!
grdgradient 4.3.1 - Compute directional gradients from grid files!
!
usage: grdgradient <infile> -G<outfile> [-A<azim>[/<azim2>]] [-D[a][o][n]]!
[-E[s|p]<azim>/<elev[ambient/diffuse/specular/shine]>]!
[-L<flag>] [-M] [-N[t_or_e][<amp>[/<sigma>[/<offset>]]]] [-S<slopefile>] [-V]!
!

!<infile> is name of input grid file!
!

!OPTIONS:!
!-A sets azimuth (0-360 CW from North (+y)) for directional derivatives!
! -A<azim>/<azim2> will compute two directions and save the one larger in

magnitude.!
!-D finds the direction of grad z.!
! Append c to get cartesian angle (0-360 CCW from East (+x)) [Default:

azimuth]!
! Append o to get bidirectional orientations [0-180] rather than directions

[0-360]!
! Append n to add 90 degrees to the values from c or o!
!-E Compute Lambertian radiance appropriate to use with grdimage/grdview.!
! -E<azim/elev> sets azimuth and elevation of light vector.!
! -E<azim/elev/ambient/diffuse/specular/shine> sets azim, elev and!
! other parameters that control the reflectance properties of the surface.!
! Default values are: 0.55/0.6/0.4/10!
! Specify '=' to get the default value (e.g. -E60/30/=/0.5)!
! Append s to use a simpler Lambertian algorithm (note that with this form!
! you only have to provide the azimuth and elevation parameters)!
! Append p to use the Peucker picewise linear aproximation (simpler but

faster algorithm)!
! Note that in this case the azimuth and elevation are hardwired to 315 and

45 degrees!

! This means that even if you provide other values they will be ignored.!
!-G output file for results from -A or -D!
!-L sets boundary conditions. <flag> can be either!
! g for geographic boundary conditions!
! or one or both of!
! x for periodic boundary conditions on x!
! y for periodic boundary conditions on y!
! [Default: Natural conditions]!
!-M to use map units. In this case, dx,dy of grid!
! will be converted from degrees lon,lat into meters (Flat-earth

approximation).!
! Default computes gradient in units of data/grid_distance.!
!-N will normalize gradients so that max |grad| = <amp> [1.0]!
! -Nt will make atan transform, then scale to <amp> [1.0]!
! -Ne will make exp transform, then scale to <amp> [1.0]!
! -Nt<amp>/<sigma>[/<offset>] or -Ne<amp>/<sigma>[/<offset>] sets sigma!
! (and offset) for transform. [sigma, offset estimated from data]!
!-S output file for |grad z|; requires -D!
!-V Run in verbose mode [OFF].!

!

Why is GMT so popular?

The price is right!

(But there’s also no such thing as a free lunch!)

Offers unlimited flexibility since it can be called

from the command line,

inside scripts, and from user programs.

Has attracted many users because of its high
quality PostScript output.

“Easily” installs on almost any (including windows)
computer.

GMT Defaults

There are about 100 parameters which can be
adjusted individually to modify the appearance

of plots or affect the manipulation of data.
Each as a default value.

GMT defaults are kept in a file called

~/.gmtdefaults4. There are tons of them and
you can find out what they are and what the
mean reading the man page for gmtdefaults.

When a program is run, it initializes all parameters
to the GMT defaults, then tries to open the
file .gmtdefaults4 in the current directory.

If not found, it looks in a sub-directory ~/.gmt,
and finally in your home directory itself.

If successful, the program will read the contents
and set the default values to those provided in

the file.

If a script works for the author who gave it to you
and not for you (in terms of size, position on

page, etc.), your defaults are probably different.

To view your current gmtdefault setting!
!

%gmtdefaults –L!

To view the list of options for each default

parameter

%man gmtdefaults !

example of start of .gmtdefaults4!

!

#!

GMT-SYSTEM 4.2.1 Defaults
file!

#!

#-------- Plot Media Parameters
--!

PAGE_COLOR
= 255/255/255!

PAGE_ORIENTATION =
landscape!

PAPER_MEDIA =
letter!

#--- Basemap Annotation
Parameters --!

ANNOT_MIN_ANGLE =
20!

ANNOT_MIN_SPACING = 0!

ANNOT_FONT_PRIMARY =
Helvetica!

ANNOT_FONT_SIZE
= 14p!

ANNOT_OFFSET_PRIMARY = 0.075i!

!

Plotting Defaults

Changing the defaults

You can edit your local copy of .gmtdefaults4

using nedit or vim

 You can explicitly reset a default within a script
using the command gmtset

#!/bin/sh!
gmtset PAPER_MEDIA letter!

NOTE:

GMT uses the NETCDF data base package for
DEMs (and some other stuff).

Another “free” UNIX package.

This has to be installed and maintained
separately (and is done so by Mitch).

One has to put the SRTM files one downloads

from NASA, the USGS or other source into
NETCDF files (this is the hard part).

Have covered lots of stuff,

but even more stuff has not been covered

– there are 60 GMT and 35+ Supplemental
programs!

Plus power of UNIX to manipulate them.

Automating getting data from webpages.

Use i-Macro in Firefox to save keystrokes on
some web page, including saving the webpage.

Have i-Macro save the keystrokes in a file.

Then use the command

/usr/bin/open /Applications/Firefox.app http://run.imacros.net/?m=getPDE.iim!

To "rerun" the keystrokes, stored in the file
getPDE.iim, and get fresh data.

You will see Firefox open up and the web pages
will flash by. At the end you will have a new data

file!

The file getPDE.iim is found at

 /Users/robertsmalley/imacros/macros (or has

a soft link to there) !

And has the following contents (what you typed
into the various boxes on the web page). You can

edit this file to change region, start and stop
days, depth, file names, etc.

VERSION BUILD=7400919 RECORDER=FX!
TAB T=1!
TAB CLOSEALLOTHERS!
URL GOTO=http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SLAT2 CONTENT=-24!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SLAT1 CONTENT=-42!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SLON1 CONTENT=-77!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SLON2 CONTENT=-63!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SYEAR CONTENT=2010!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SMONTH CONTENT=2!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:SDAY CONTENT=27!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:EYEAR CONTENT=2015!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:EMONTH CONTENT=12!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:EDAY CONTENT=31!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:NDEP1 CONTENT=0!
TAG POS=1 TYPE=INPUT:TEXT FORM=ACTION:http://neic.usgs.gov/cgi-bin/epic/epic.cgi ATTR=ID:NDEP2 CONTENT=50!
TAG POS=1 TYPE=INPUT:SUBMIT FORM=ID:epic-form ATTR=NAME:SUBMIT&&VALUE:Submit<SP>Search!
SAVEAS TYPE=CPL FOLDER=/users/robertsmalley/unixside/geolfigs FILE=chilePDE.htm!

