
CERI Tools of the Trade Seminar Series

Wed, Oct 17, 2007

Graphics (mapping) with GMT

http://gmt.soest.hawaii.edu/
Has online documentation, mailing list with

archives, etc.

Goal – make scientific illustrations (“generic” of GMT is generic to
geo sciences) – include

color/bw/shaded topography and bathymetry,

point data (earthquakes, seismic or gps stations, etc.),

line data (faults, eq rupture zones, roads),

vector fields w/ error ellipses,

focal mechanisms,

Etc.

 Maps

 3D surface

 Cross sections

 Other stuff

Software stands between the user and the machine. – Harlan D. Mills

From the GMT tutorial

GMT follows the UNIX philosophy in which complex tasks are
broken down into smaller and more manageable components.

Individual GMT modules are small, easy to maintain, and can be
used as any other UNIX tool.

 GMT was deliberately written for command-line usage, not a
windows (or interactive) environment, in order to maximize

flexibility.

From the GMT tutorial

We standardized early on to use PostScript output instead of
other graphics formats.

Apart from the built-in support for coastlines, GMT completely
decouples data retrieval/management from the main GMT

programs. (puts the onus on user! UNIX philosophy)

GMT uses architecture-independent file formats
(flat files – least common denominator).

A software mogul usually Bill Gates, but sometimes another makes a speech. If the
automobile industry had developed like the software industry, the mogul proclaims, we
would all be driving $25 cars that get 1,000 miles to the gallon. To which an automobile

executive retorts, Yeah, and if cars were like software, they would crash twice a day for
no reason, and when you called for service, they’d tell you to reinstall the engine. -

Anonymous

What is “Unix Philosophy”?

(can computer operating systems have a “philosophy”?)

Doug McIlroy

(i) Make each program do one thing well.

To do a new job, build afresh rather than complicate old programs
by adding new features. (no bells and whistles)

The only way to learn a new programming language is by writing programs in it. -Dennis
Ritchie

What is “Unix Philosophy”?

Machine shop vs. appliance
(gives you the tools, you to make appliance)

Advantage - POWERFUL

Disadvantages

-  Lots of reinventing the wheel

-  Requires more educated user (user hostile)

-  Requires more work from user rather than developer
(can UNIX/GMT do this? No, but YOU can write a program!)

Programming can be fun, so can cryptography; however they should not be combined. -

Kreitzberg and Shneiderman

“UNIX Philosophy”

(ii) Expect the output of every program to become the input to

another, as yet unknown, program.

(GMT breaks this rule a little – final output is usually PostScript –
which is input to a specific program called a PostScript

interpreter.)

Don't clutter output with extraneous information.

Unfortunately this may make things confusing for the uninitiated
user.

Output is for “next program” in a pipe, not the user.

Simple things should be simple and complex things should be possible. -Alan Kay

“UNIX Philosophy”

Also idea/use of – redirection (<, << and >, >>), command

substitution (`…`)

Idea of “filter” –

program takes input from Standard IN,
does something to it and

sends it to Standard OUT

(notice that – only considers single input source and the “user”
is not part of this model).

Put lots of single minded programs in a row to do what you need.

Any fool can write code that a computer can understand. Good programmers write code
that humans can understand. -Martin Fowler

“UNIX Philosophy”

(ii) Continued

Avoid stringently columnar or binary input formats.

(Avoid, but sometimes necessary. Not closely followed in GMT.)

Don't insist on interactive input.

This does not fit in with use of pipes.

Control implemented by use of “command line switches”

(strictly followed in GMT)
The trouble with programmers is that you can never tell what a programmer is doing until

it's too late. -Seymour Cray

An interactive debugger is an outstanding example of what is not needed - it encourages
trial-and-error hacking rather than systematic design, and also hides marginal people

barely qualified for precision programming. – Harlan D. Mills

REVIEW

Write programs that do one thing and do it well.

(lean and mean)

Write programs to work together.

(pipes)

Write programs to handle text streams, because that is a universal
interface.

(fine if you’re a system programmer, not always so useful for
scientific data crunching. Scientific data oftentimes binary.)

The UNIX philosophy was followed as strictly as possible in the
development of GMT.

(set of 60+ stand alone “filters”/programs

35+ supplementary filters/programs)

Effective use of GMT is really effective application of the UNIX
philosophy.

Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it. -

Kernigan

output is “PostScript” program– generally ascii text, but not too
readable. (GMT files can get amazingly BIG)!
% Map boundaries!
%!
S 1050 1050 1050 0 360 arc S!
S 1050 1050 1074 0 360 arc S!
S 24 W!
S 1050 1050 1062 -135 -90 arc S!
S 1050 1050 1062 135 180 arc S!
S 1050 1050 1062 45 90 arc S!
S 1050 1050 1062 -45 0 arc S!
S 1050 1050 1062 -90 -90 arcn S!
S 2 W!
S [] 0 B!
%!
% End of basemap!
%!
S [] 0 B!
%%Trailer!
%%BoundingBox: 0 0 647 647!
% Reset translations and scale and call showpage!
S -295 -295 T 4.16667 4.16667 scale 0 A!
showpage!

The software isn't finished until the last user is dead. -Anonymous

So what does/can GMT do?

Filtering 1-D and 2-D data

 – simple processing

 – GMT is NOT a general Number Cruncher

 (use FORTRAN == FORmula TRANlator

 or

 C {followed languages A and B}

 or

 something else that’s appropriate.)

 - output is reprocessed data

So what does/can GMT do?

Filtering 1-D and 2-D data –

Plotting 1-D and 2-D data – includes

points, lines (symbols, fill, geologic symbols on faults, etc.)

vector fields

2-D images – grayscale and color, illumination

3-D perspective of 2-D images

histograms, rose diagrams

text

focal mechanism beachballs

It's OK to figure out murder mysteries, but you shouldn't need to figure out code. You
should be able to read it. -Steve C McConnell

So what does/can GMT do?

Filtering 1-D and 2-D data

Plotting 1-D and 2-D data

Data preparation

gridding, resampling, conversion

contouring

data base: extraction, merge

cross section

projection/map transformation (map sphere to plane)
- output is reprocessed data

Bookeeping and Bunch of other stuff

Program testing can be used to show the presence of bugs, but never to show their
absence! -Edsger Dijkstra, [1972]

GMT documentation

i) Tutorial

ii) Technical Reference and Cookbook
– both available on web (http://gmt.soest.hawaii.edu/) as

 HTML on line
 PDF
 PostScript

iii) UNIX “man” pages – available on web and also as standard
man pages on local installation.

iv) Entering GMT program/filter name all by itself, or certain
errors in command specification (switches, not data) – dumps
man page to standard error.

Programs must be written for people to read, and only incidentally for machines to
execute. -Abelson and Sussman

I program, therefore I am -Assaad Chalhoub

Tutorial –

Installation/Maintenance - done for us (by Mitch – THANKS.

 Somewhat complicated, not for average user.)

Setup – basic setup done for us

 (don’t have to define GMTHOME, path, etc. if

 use standard CERI .login and .cshrc files)

 - Some common data sets (GTOPO-30, ETOPO-5,
 Predicted bathy, etc.) are installed

 - “.gmtdefaults” file in your home or working directory

 (if you’ve copied something from the tutorial or
 gotten it from someone else and it comes out

“funny”, the “default” settings may be the culprit).

Tutorial –

Easiest way to get started

 1) Find system with GMT already set up

 2) Get working program (shell script) from someone
 else and modify (hack) it.

 Lots examples in

 - Tutorial

 - available on www

 - available from your “friends”

When I am working on a problem, I never think about beauty. I think only of how to solve
the problem. But when I have finished, if the solution is not beautiful, I know it is wrong. -

R Buckminster Fuller

Choice of shell/scripting language –

I use tcsh (variant of C Shell) as the basic interactive shell (I think
this is the default at CERI. i.e. if you don’t know what I’m talking
about you’re using this one.)

I use the “Bourne Shell” (sh) or “C Shell” (csh) for shell scritps,
depending on where the “seed” came from. Other popular shells –
ksh, bash, zsh, rc, es. (the “beauty”/”power” of UNIX allows you
to roll your own if you don’t like what’s available.)

Minor differences between tcsh and csh or sh may mean that
something that works from the command line does not work in a
shell script. Frustrating.

When debugging, novices insert corrective code; experts remove defective code. -R.
Pattis

Choice of shell/scripting language –

from the GMT tutorial

“All the examples in this tutorial assumes (sic) you are running the
cshell; if you are using something different then you are on your
own.”

I will take the same attitude – but most of my shells are in sh.

Alzheimer's Law of Programming: Looking at code you wrote more than two weeks ago is
like looking at code you are seeing for the first time. -Via Dan Hurvitz

What goes on in GMT

Act in haste and repent at leisure; Code too soon and debug forever. -Raymond
Kennington

Sources of operational parameters/job control

i) command line options/switches or program defaults

ii) carried over from execution of previous commands

III) from your .gmtdefaults file

 (first in working directory if ∃

 if ~∃, then home directory if ∃

 finally, system/program defaults)

 Why a defaults file?

- too many parameters to require setting all explicitly (powerful)

- customize – can have different defaults in different directories

Basic GMT use

Most GMT programs read input from terminal (stdin) or files, and
write output to terminal (stdout) (a few write to files).
To write output to files one can use UNIX redirection:

GMTprogram switches

GMTprogram switches input-file

- Some GMT programs will accept input-file names, pipes and
input redirection in lieu of stdin

- Some GMT programs require input-file names (usually if need
more

 than one input file)
From a programmer's point of view, the user is a peripheral that types when you issue a

read request. -P. Williams

Basic GMT use

GMTprogram switches input-file > output-file

GMTprogram switches input-file >! output-file

- The exclamation point (!) overwrites existing files.

This may fall over if the file is not pre-existing, behavior may
depend on whether you are in an “interactive shell” or “shell
script” and which shell you are using.

Don't get suckered in by the comments -they can be terribly misleading: Debug only the
code. -Dave Storer

Basic GMT use
GMTprogram switches input-file >> output-file

- append output to existing file (cannot be combined with !)

GMTprogram switches < input-file >> output-file

- Some GMT programs will accept redirected input

Someprogram | GMTprogram1 | GMTprogram2 >>
Output-file

 (or | lp if you are brave)

- prepare input using other program and PIPE to GMT

- Some GMT programs will accept piped input

Those who do not understand Unix are condemned to reinvent it, poorly. - Spencer

Basic GMT use
GMTprogram switches << XXX >> output-file
…Stuff…
XXX

- Some GMT programs will accept in-line input – reads
whatever follows -- up to character string XXX -- as input.

Usually looks something like
GMTprogram switches << END >> output-file
.1 .1
.2 .2
END

Can also do with “commnad substitution”:
GMTprogram switches << FIN >> output-file
`someprogram swithches < input-file…`
FIN

 I object to doing things that computers can do. -Olin Shivers

GMT uses all standard UNIX “features” (“tricks”)

File name expansion (“wild cards”)

* Matches anything

? Matches single character

[list] Matches single characters from list

[range] Matches single characters from range

These are actually specific cases of the more general “regular
expression” in UNIX

OK lets look at some examples:

OK lets look at some examples:

1) We start by making the basemap frame for a linear x-y plot.

2) We want it to go from 10 to 70 in x, annotating every 10, and from
-3 to 8 in y, annotating every 1.

3) The final plot should be 4 by 3 inches in size.

Note GMT does not make any helpful assumptions such as

a) You want to plot the whole x and y range of the data and

b) You want it to fit nicely on the page

You have to specify EVERYTHNG (comes under the excuse of
being “powerful”)

OK lets look at some examples:

Here's how we do it:

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first
plot": -P >! plot.ps

We will first look at how the requirements above are specified to
make the map.

This is done using the command line options/switches.

Requirements 1 and 3 are specified to GMT togehter

1)  We start by making the basemap frame for a linear x-y plot.

3) The final plot should be 4 by 3 inches in size.

psbasemap draws a map frame and sets up the map parameters (so
they don’t have to be respecified in later GMT program calls)

The –J option selects the type of projection

In this case we want a linear x-y plot, or no projection, which is

specified by

x or X.

There are 25 projections available in GMT, each specified by one
letter.

There are no provisions for providing your own projection.

Requirements 1 and 3 are specified to GMT together

The –J option also sets the axis scales (distance per unit, x) or
axis length (X)

Where the “unit” is specified in .gmtdefaults or explicitly – inches,
i, or cm, c.

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first
plot": -P >! plot.ps

2) We want it to go from 10 to 70 in x, annotating every 10, and from
-3 to 8 in y, annotating every 1.

This is really two conditions

i)   We want it to go from 10 to 70 in x, and from -3 to 8 in y.

Specified by the REGION (-R) option, which (in the usual form) is

-Rxmin/xmax/ymin/ymax

2) We want it to go from 10 to 70 in x, annotating every 10, and from
-3 to 8 in y, annotating every 1.

-Rxmin/xmax/ymin/ymax

Notice that unlike MATLAB, GMT does not make any assumptions
about what you want (such as the reasonable one that you just

might want the region to show all the input data).

You have to specify every detail. (i.e. powerful)

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first
plot": -P >! plot.ps

 ”Feature it” – response of GenRad Development Engineer Dick Benson to bug reports.

There are two forms for the –R option

1)   For projections where the boundaries follow lines of latitude
and longitude (“rectangle” on sphere)– specify sides

2) For regions where the sides do not follow lines of latitude and

longitude (will make more sense when we do map projections)-
specify corners by appending an “r” to end

Idea of “region” to plot specified this way breaks down for
azimuthal projections (outside border of plot is a circle, you

really want to specify center and radius) – will see some
examples later.

it is better to solve the right problem the wrong way than the wrong problem the right way
- McIlroy

2) We want it to go from 10 to 70 in x, annotating every 10, and from
-3 to 8 in y, annotating every 1.

ii) We want to annotate x every 10, and y every 1.

This is specified by the –B option (Border?).

This is the most complicated GMT option. Two features are used

Annotation – every 10 for x (first one) and every 1 for y (second

one). If you wanted the same annotation for x and y you would
not have to do it twice

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first
plot": -P >! plot.ps

it is better to solve the right problem the wrong way than the wrong problem the right way
- McIlroy

Not in specs, but controlled by the –B option, the plot title.

This is a little more complicated.

Labels are between colons, with

“.” for plot title,
nothing for x axis label,
“,’\” for y axis label.

If label/title is more than one word, has to be in double quotes.

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first

plot": -P >! plot.ps

If this sounds confusing you can look at the man page for
psbasemap for the full explanation and more examples.

The man page for the –B option, however, is practically
incomprehensible.

The BUGS section of the man page states

“The -B option is somewhat complicated to explain and
comprehend. However, it is fairly simple for most applications

(see examples). “

If your code isn’t worth documenting then it isn’t worth keeping -Jonathan Nagler

Remaining options/switches

-P

Sets the output to Portrait (long side vertical) mode.
“Default” is Landscape (long side horizontal) mode.

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first

plot": -P >! plot.ps

This option actually switches “states”.

If .gmtdefaults defines portrait mode as the default, then –P will
send it to landscape.

(make a figure and see how it comes out, if you don’t like the
orientation stick in a –P).

So, what did we get for all our effort?

Good start – but usually we make plots to show some sort of data

– so how do we do that?

Now let’s look at a more complicated example:
Lets call it “full_court_press.sh”

#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

This is a little more than “a little more” complicated.

But it follows the UNIX philosophy – a bunch of simple things
stuck together to do something more complex.

Gives you the idea that most useful GMT produced figures are

going to be a LOT of GMT calls

Here’s what the output looks like

(actually the output is a ascii file containing a PostScript program,
this is what it looks like after displaying with GhostScript or

printing to a PostScript printer).

Let’s look at it piece, buy simple piece.

Set shell

#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1,
...

Set shell to Bourne Shell.

Could also have set it to csh (change first line to #!/usr/bin/
csh -f, this works because this script does not contain
anything that is specific to one shell script – such as variable
name definition. Use -f, fast, option which stops it from running
your .cshrc).

Next piece

Name the output file.

psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Being lazy and disorganized - I don’t want to have to type the
output file name in lots of times nor keep track of which shell
script made which postscript file in my directory.

So I want to find a short and easy way to name the file and I might
want to associate the output file name with the name of the shell
script that made it.

Enter UNIX argument passing.

When you call a shell script, the system passes a max of 10
predefined, pre-named “arguments” to the shell script.

So if I enter

“myscript arg1 arg2”

UNIX automatically gives me (in this case 3 arguments)

 $0 the name of the shell script

 $1 the value of arg1 (character string)

 $2 the value of arg2

All I have to do to use these arguments in my shell script
(within some constraints) is stick them in.

The Shell will expand them to their proper values.

So my output file will be named

“full_court_press.sh.ps”,

since $0 will get expanded to “full_court_press.sh”

(the name of the shell script)

Next piece.

Get (actually make) input data – part 1

#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

sample1d, resamples the input - which in this case is redirected
(<<) to being obtained in-line from this file (from end of the
command line – which is somewhat far away – to END).

Next piece.
Get (actually make) input data – part 1

#!/bin/sh
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

We have to sepcify the resampling step (-I1, which is steps of 1).

We will leave everything else at the default values (which column is

the independent variable: zero, type of interpolation, etc.)

sample1d provides to standard out a list of numbers from 0 to
100 in steps of 1.

Next piece.

Get input data – part 2
We want x and sqrt(x)

#!/bin/sh
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Pipe the resampled data into the program nawk, a handy dandy
UNIX tool that processes ascii data files a line at a time.

nawk is a great tool for preprocessing data for GMT.

Next piece.
Generate input data – part 2

Using nawk, one does not have to write programs to make

intermediate files in GMT input format, but can go right to the
source data file, read it, modify each line into GMT input format

and pipe this directly into the GMT program.

sample1d -I1 << END | nawk '{print $1, sqrt($1)}' | psxy -
R0/100/0/10 \
-JX4/2 -Ba20f10g10/a2f1g2WSne -W5t15_15:0 -Y2 -P -K > $0.ps
0 0
100 0
END

The nawk command says to print the first column ($1) and the

square root of the first column (sqrt($1))of every line.

We will (break the UNIX philosophy and) make an intermediate file
as we will need it more than once.

Next piece.

Plot it
#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Finally we get to the subject of this ToT – GMT

psxy is the GMT program that plots points and lines.

Next piece.

Plot it
#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

psxy accepts the “standard”/”global” options of the GMT
filters that produce PostScript output.

We already know what –R, -J, –B and –P do, although the –B
option here is a bit more complicated looking.

Next piece.

Plot it
#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Output file $0.ps (new - is first instance, append in second –
this takes care of UNIX part)

Use \ to continue command on next line

Next piece.

...
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
...

So, what’s all that extra stuff on the –B? Each of the letters
controls a different feature/aspect of the plotting of the axis

a is for annotation spacing

f is for frame (famous map frame of black/white bars – turned
off for x/X, ticks)

g is for grid spacing

WSne says to plot the annotation and ticks on the West and South
sides and ticks only on the north and east sides. (how would you
put annotation without ticks?)

Next piece.

Draw a line -W5t15_15:0
...
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
...

Make line 5 units thick (where units depends on the device and
default settings) -W5t15_15:0

Make it dashed with dashes 15 units long followed by 15 unit long
open spaces -W5t15_15:0

And a phase offset for the
dashes of zero -W5t15_15:0

Next piece.

Misc. 1
#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

-Y2 offset plot 2 units
in the Y direction (else
x axis labels get cut off
across bottom of plot)

Misc. 2
#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

-K do not close PostScript file
(don’t output “showpage”) so
more PostScript can be appended
to the file

-O do not initialize PostScript
(does not output PostScript header
stuff) so this can be appended to
existing file (that hopefully does not
have a showpage at the end).

Misc. 3
...
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Several common “gotchas”

– no showpage (can see on screen, but does not print – actually
prints a blank page) (have a –K in last GMT call)

-  showpage in middle of file (forgot the –K somewhere) – only get
part of file on screen or in final print or get ghostscript error
message.

- Have header in middle of file (forgot –O somewhere), get
ghostscript error message.

Next piece.
Draw symbols every 10th point

#!/bin/sh
#plot square root x
sample1d -I1 << END | nawk '{print $1, sqrt($1)}' > {$0}_1.dat
0
100
END
psxy -R0/100/0/10 -JX4/2 -Ba20g10/a2f1g2WSne -W5t15_15:0 \
-Y2 -P {$0}_1.dat -K > $0.ps
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Resample our temporary file

– taking every 10th point

Pipe output to psxy

Next piece.
Draw symbols -St0.2

...
sample1d {$0}_1.dat -I10 | psxy -R -JX4/2 -St0.2 \
-G255/0/0 -W5/0/255/0 -O >> $0.ps

Make triangles, t, 0.2 units big -St0.2

Make line outlining/drawing the symbols 5 units wide, and draw
them in green (R/G/B) -W5/0/255/0

Fill symbols color red (R/G/
B) -G255/0/0

Colors specified in R/G/B
format (intensity of Red,

Green and Blue color guns –
primary colors for additive

system.

We’re done!

That wasn’t so bad now, was it?

There are two other non-map-projected forms of the x/X projection

Two other non-map-projected forms

First

Logarithmic - add l (lower case letter L) after scale of axis you
want logarithmic -JX4l/2

Second

Power/exponential – add p and exponent after scale of axis you
want exponential (can scale axes individually)

-JX4p0.5/2

Common command options on first, and possibly subsequent,
calls

Need on all calls

-R Define region for plot – will need on first call and at least
“–R” on subsequent

-J define projection for plot – will need this on all calls if need
to define region

Common command options on first, and possibly subsequent,
calls

(Generally) Need on first call only

-B Borders -- annotation, frame, grid. Only need on first (or
a single) call.

-P Switch between landscape and portrait modes

-X Shift X axis

-Y Shift Y axis

Common command options on first, and possibly subsequent,
calls

Need when needed

-K Don’t close PostScript (showpage), use when more will
follow

 need on all but last GMT call

-O Don’t initialize PostScript, use when appending to pre-
existing file

- need on all but first GMT call
- use both –K and –O when putting a large number of GMT

call outputs together

Common command options on first, and possibly subsequent,
calls

Need when needed

-V Verbose (prints out stuff to standard error for user).

-H Header records (tells GMT to skip first H lines of ascii
input file)

How about
making

pretty

MAPS?

(this was
made by the
shell script I

put in
Mitch’s GMT

-ToT web
page.)

Map projections available in GMT

List of “standard” command
line options.

The –J option sets the
“projection”

One has to look at the man
page for each one as
“different things vary”

We will now look at the
examples from the tutorial

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps

“All” gmt programs plot
“maps” through the
projection command line
option or switch (even the x-
y plot).

All projections give you two
selections for specifying the
scale

(note GMT takes the
attitude that a map has to
have a predetermined/
known scale – nicely filling
the page does not cut it.)

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 > map1.ps

-Jmparameters (Mercator
[C]).

Specify one of: -Jmscale or
-JMwidth

Give scale along equator
(1:xxxx or UNIT/degree).

-Jmlon0/lat0/scale or -
JMlon0/lat0/width

Give central meridian,
standard latitude and scale
along parallel (1:xxxx or
UNIT/degree, UNIT = number
inches or cms).

Mercator Projection:

One way to address plotting sphere on a plane (which is whole
‘nother subject)

Conformal (maintains shapes)

Cylindrical projection

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic Projection": \
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps

Region is “rectangle”
on the spherical
earth.

-N for boundaries
(international, US/
Canadian/Mexian
state boundaries
“built in”), rivers.

-A to get rid of small
water/island features

Projection (b/B) –
need to know
something (center
and standard
parallels).

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic Projection": \
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps

-Jblon0/lat0/lat1/lat2/scale or -JBlon0/lat0/lat1/lat2/width (Albers [E]).

Give projection center, two standard parallels, and scale (1:xxxx or
UNIT/degree).

Albers

Also conformal (maintains/conserves shape)

Conical projection

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 \
-G255/255/255 -S150/50/150 -P >! map.ps

azimuthal orthographic
projection mimics looking at
earth from infinite distance

New option

-Dc

Controls resolution of
coastline

f full

h high

l low

c crude

Helps manage file sizes.

Some useful maps

The world centered
on Memphis.

Use to get back
azimuth and
distance to
earthquakes at a
glance.

NOTE:

GMT will fall over in
this projection if
there is land at the
anti-pode and you
try to fill it.

(fill should be
donut between
coastline and
outside of map but
PostScript
interpreter – which
does fill - will do
something else).

Part I of shell script

Set stuff up
#!/bin/sh
#call with “stn_az_map lat lon name”
ROOT=/gaia/home/smalley
WORLDCOAST=0/360/0/180
RED=250/50/50
BLUE=50/50/255
GREEN=50/255/50
MOREPS=-K
ADDPS=-O
CONTINUEPS=”-K –O”
FILL=200
SCALE=1.75
XOFFSET=0.75
YOFFSET=1.5
GRIDCNTR=180/90/7/90
OUTPUTFILE=$0_$3.ps
rm $OUTPUTFILE

Notice abundant “comments” (use variable names that are self
documenting)

#set up map to be centered on lat lon given in command line
#draw crude coastlines, ocean blue, land green
#do not draw lat long grid (no frame specs on –B, could put w/next)
pscoast -R$WORLDCOAST -Je$1/$2/$SCALE/180 -B:."Station $3 Map": -
S200/200/255 -G200/250/200 -W1 -Dc -P $MOREPS -X$XOFFSET -Y$YOFFSET >
$OUTPUTFILE

#set up new map centered on north pole and draw only the lat long grid
psbasemap -R$WORLDCOAST -Je$GRIDCNTR -B15g15 -O -K >> $OUTPUTFILE

#RESET map to be centered on lat lon given in command line
#to put on some earthquake data read from this file
#data specified in lat long order, psxy assumes long lat (x,y) so
#use the “-:” switch to let psxy know (another common gotcha)
psxy -R$WORLDCOAST -Je$1/$2/$SCALE/180 -Sc0.1 -G250/250/50 -W1/0/0/0
$CONTINUEPS -: <<END >> $OUTPUTFILE
-9.09 158.44
35.35 78.13
END

#add plate boundaries, notice don’t have to respecify details of region
and projection but do need –R -Je
psxy -R -Je -M$ -W1/$RED $CONTINUEPS $ROOT/ptect/ridges >> $OUTPUTFILE
psxy -R -Je -M$ -W1/$GREEN $CONTINUEPS $ROOT/ptect/xforms >> $OUTPUTFILE
psxy -R -Je -M$ -W1/$BLUE $ADDPS $ROOT/ptect/trenches >> $OUTPUTFILE

Another version of an azimuthal,
equiangular map centered on
Memphis and it’s anti-pode.

Now it’s a lot easier to identify
landmasses on the other side of the
globe by their shapes.

Also shows that great circles (the
radial lines) converge at the anti-
pode.

(also solves antipode fill problem)

Nazca-South America Euler pole

Data plotted in South America reference frame using
oblique Mercator projection referenced to Euler pole

(points on South America plate have zero – or near zero
– velocities.)

Plate motion follows lines of latitude (horizontal lines)
Kendrick et al, 2003

Typical task:

Somebody gives you a file with earthquake data (and if you are
lucky a description of the file)

So we have

lat in col 8, lon in col 9, depth in col 10 and magnitude in col 11

ZDEQ 64 1 1 5 14 26.76 37.285 143.002 26.9 4.4 0 15 27.0229 5
1.82 7.21 2.95 200.86 9 0 1 5
 DEQ 64 1 1 12 21 58.64 -6.872 129.763 111.1 0.0 0 58 95.0280 7
1.19 6.21 2.69 66.99 17 11 3 27
…

Typical task:

We can use the following nawk command (can put it into shell
script) to produce GMT output for psxy – lat long and magnitude
for example (psxy can scale the symbols from the data – use
magnitude for scaling). I usually do it on the fly and pipe or suck it
into the GMT program. If it’s needed in more than one place – put
it in a temporary file.

nawk '{print $9, $8, $11}' EBH.HDF

Produces the following output for GMT

143.002 37.285 4.4
129.763 -6.872 0.0

So what do we do with our nawk command

nawk '{print $9, $8, $11}' EBH.HDF

You can put this into GMT several ways

If this is the only file you want to plot – this would work

nawk '{print $9, $8, $11}' EBH.HDF | pxsy …

If you had a number of files that needed conversion you could do
it this way (only need one psxy call)

psxy … << END …
…
`nawk '{print $9, $8, $11}' EBH.HDF`
…
END

Converting each file on the fly.

If you want to do the same thing to a list of files

filelist=“$SAMDATA/eq-rupt-1995.dat $DEM/eq-rupt-1960.dat”
for FILE in $filelist
do
psxy -R -$PROJ$SCALE -M$ -: $CONTINUE -W$LINETHICK/$PURPLE $FILE \
$VBSE >> $OUTPUTFILE
done

Other ways to make list
(notice the different kinds of quotes: “,’ and `)

filelist=`ls -1 $ROOT/dem/topocontours/andes_3000_*`

contourlist=‘1 2 3 4’

Some other nawk tricks – doing math and passing variables to
nawk (quote heaven)

SCALE=`echo $STNDTMLON | \
nawk ‘{print ($1>=0?$1:360+$1)”/”’${jTRESCALE}_1’*’$FACTOR’}’ `

1975061019 3539818n 682 64w2567 864 / 1!
 rrd P 2 75 61019 413.86122327430.36 S 3 41 1956160 3199.M 194 0 0 0 0 !
 cup PD1 75 61019 4 9.46 93528222.26 S 3 48 1566 80 D -20320 68 0 0 0 0 !
 csj P 3 75 61019 414.26124428230.46 S 4 41 1983320 4499. 156 0 0 0 0 !
 pwp P 3 75 61019 412.66103826826.26 S 4 48 171399.M 15599. 213 0 0 0 0 !
 mtp PC0 75 61019 412.76115926627.06 S 3 41 1875 16 ? 0320 3 0 0 0 0 !
 abv PC1 75 61019 4 5.56 645 1213.66 S 3 48 1151 80 ? 7320 -58 0 0 0 0 !
 10
19750617 445237218n4581 65w1307 515 / 2!
 rrd PC0 75 617 44536.53 755216 48 1309 16 ? -29 0 0 0 0 0 !
 abv P 3 75 617 44543.83 908 94 48 1527320 484 0 0 0 0 0 !
 mtp P 0 75 617 44538.43 856207 48 1454 16 15 0 0 0 0 0 !
 pwp P 0 75 617 44538.13 768200 48 132 114 0 0 0 0 0 !
 csj P 0 75 617 44534.83 73622048.32 S 4 48 1282 16 -599. 369 0 0 0 0 !
 cup P 0 75 617 44532.48 522196 48 976 16 -101 0 0 0 0 0 !
 10 !

Another example

Non-simple input data format

We look in the file

What’s this?

1975061019 3539818n 682 64w2567 864 / 1!

First line – looks like earthquake location information

Pick it apart

Year, month, day, hour, minute, second, lat (in degrees, N/S, min,
seconds =DMS format), lon (DMS format), other stuff that we

can’t guess

Is all run together

 rrd P 2 75 61019 413.86122327430.36 S 3 41 1956160 3199.M 194 0 0 0 0 !
 cup PD1 75 61019 4 9.46 93528222.26 S 3 48 1566 80 D -20320 68 0 0 0 0 !
 csj P 3 75 61019 414.26124428230.46 S 4 41 1983320 4499. 156 0 0 0 0 !
 pwp P 3 75 61019 412.66103826826.26 S 4 48 171399.M 15599. 213 0 0 0 0 !
 mtp PC0 75 61019 412.76115926627.06 S 3 41 1875 16 ? 0320 3 0 0 0 0 !
 abv PC1 75 61019 4 5.56 645 1213.66 S 3 48 1151 80 ? 7320 -58 0 0 0 0 !
 10!

Next batch of lines looks like phase information then line with “10”

GMT wants lat, long

Fact that fields are run together is a problem

Have to pick input lines apart by column

Have to select lines with earthquake location and ignore those with
phase info

#!/bin/sh -f!
nawk 'substr($0,19,1) == "n" || substr($0,19,1) == "s" \!
{ print (substr($0,19,1) == "s" ? "-" : "") \!
substr($0,17,2)+(substr($0,20,2)+substr($0,22,2)/60)/60, \!
(substr($0,27,1) == "w" ? "-" : "") \!
substr($0,24,3)+(substr($0,28,2)+substr($0,30,2)/60)/60}' \!
timesortedallc.pha !

1975061019 3539818n 682 64w2567 864 / 1!
 rrd P 2 75 61019 413.86122327430.36 S 3 41 1956160 3199.M 194 0 0 0 0 !

#!/bin/sh -f!
#make a simple map with point data!
!
LATMIN=10!
LATMAX=30!
LONMIN=-80!
LONMAX=-55!
SCALE=0.6!
MEDYELLOW=255/255/192!
LTBLUE=192/192/255!
RED=255/0/0!
DONTCLOSE=-K!
DONTINIT=-O!
CONTINUE="-K -O"!
INVLATLON="-:"!
!
pscoast -R$LONMIN/$LONMAX/$LATMIN/$LATMAX -Jm${SCALE} \!
-B10 -G$MEDYELLOW -S$LTBLUE $DONTCLOSE -P > $0.ps!
psxy -R -Jm${SCALE} -Sc0.2 -G$RED -W1/0 $DONTINIT \!
$INVLATLON << END >> $0.ps!
`preqs2gmt.sh`!
END!

Set it up

pscoast to draw background
map

psxy to draw the earthquakes
(red circles with black outline)

preqs2gmt.sh to prepare data
on the fly

result

Example of GMT man page – expanded for understanding

psxy reads (x,y) pairs from files [or standard input] and generates
PostScript code that will

plot lines, polygons, or symbols

at those locations on a map. If a symbol is selected and no symbol
size given, then psxy will

interpret the third column of the input data as symbol size.

Symbols whose size is <= 0 are skipped.

If no symbols are specified then the symbol code (see -S below)
must be present as (specify symbol in) last column in the input.

Example of GMT man page – expanded for understanding

psxy reads (x,y) pairs from files [or standard input] and generates
PostScript code that will

Multiple segment files (lift pen) may be plotted using the -M
option. If -S (symbol plotting) is not selected, a (great circle) line
connecting the data points will be drawn instead.

Example of GMT man page – expanded for understanding

psxy reads (x,y) pairs from files [or standard input] and generates
PostScript code that will

To explicitly close polygons, use -L.

Shade with -G. If -G is set, -W (line width and color) will control
whether the polygon outline is drawn or not.

If a symbol is selected, -G and -W determines the fill color and
outline/no out line, respectively.

The PostScript code is written to standard output (screen!).

Things you can plot with PSXY - Point or line data with symbols

star
Bar

Circle
Diamond

Ellipse
front [various symbols such as thrust fault barbs, warm front

symbol, etc.]
Hexagon

Invtriangle
Letter
Point

Square
Triangle
Vector
Wedge
cross

Make focal mechanisms – use GMT filter psmeca

make/obtain input file – see psmeca documentation for large
number of ways to define focal mechanism data

35.59 !-90.48!12 !220 !65 !150 !4.5975 -0.25 -0.25  
35.86 !-89.95!16 !220 !75 !150 !4.0727 -0.25 0.25  
36.37 !-89.51!7.5 !350 !84 !145 !4.2020 -0.25 0.25  
36.54 !-89.68!9 !85 !60 !-20 !3.7118 0 0.5  
36.56 !-89.83!8 !90 !67.5 !20 !4.1068 -0.25 -0.25  
36.64 !-90.05!15 !304 !78 !-28 !4.6309 0 -0.5  
37.16 !-89.58!15 !140 !75 !50 !4.2547 0.25 0  
37.22 !-89.31!1.5 !280 !70 !-20 !3.5783 -0.25 0.25  
37.36 !-89.19!16 !30 !70 !170 !3.8250 0.25 0.25  
37.44 !-90.44!15 !350 !60 !135 !4.0126 0.25 0.25  
37.48 !-90.94!5 !260 !40 !-70 !4.5728 0.25 -0.25  
37.91 !-88.37!22 !0 !46 !79 !5.2612 -0.35 0.1  
38.55 !-88.07!15 !310 !70 !0 !4.3154 -0.25 -0.25  
38.71 !-87.95!10 !135 !70 !15 !4.9309 -0.25 0.25  
!

#!/bin/sh -f!
REG=-92/-88/35/39!
psmeca -R$REG << END -Jm4. -Bg1f1a1 -P -Sa2./0/0 -CP -: -K > $0.ps!
`nawk '{print $1, $2, $3, $4, $5, $6, $7, $1+$8, $2+$9}'
practice_data.dat`!
END!
psxy -R$REG practice_data -Jm4. -Sc0.25 -: -G255/0/0 -W3/0 -O >> $0.ps!

Make map with focal mechanisms (psmeca)

and earthquake locations (psxy)

-S for focal mechanism input format definition

-C for plotting beach ball away from earthquake location and
connecting it to point at earthquake location with a line

Uses “offsets” specified in
columns 8 and 9 to reposition

the focal mechanism.

You could put the lat, long you
wanted in cols 8 and 9, but why
calculate all of them by hand?

You have to specify the offsets
or each beachball depending
on how things look, no easy

way to do automatically.

35.59 !-90.48!12 !220 !65 !150 !4.5975 -0.25 -0.25!

`nawk '{print $1, $2, $3, $4, $5, $6, $7, $1+$8, $2+$9}'!

psvelo -R -$PROJ$SCALE -Sr$VELLEN/0.95/0 -W1/$PURPLE -G$PURPLE \!

$VELARROW $CONTINUE $VBSE andaman_nicobar_coseis.dat \!

>> $OUTPUTFILE!

Various ways to define vector data (ve, vw, or mag, az)

Vector length, error ellipse confidence for plot, label font size

Arrow shaft width, head length and width

Data - Lat lon vlat vlon 1siglat 1siglon corr

Plot

- Velocity vectors
with error ellipses

- Anisitropy bars

- Rotational
wedges

- Strain crosses

Make a cross section

(2 parts, draw map, draw
cross section)

Data and non working version of shell script from
http://www-geology.ucdavis.edu/~gps/GMT/LONG_VALLEY/hypocenter.html

Set PARAMETERS FOR CROSS-SECTION PLOT  
center="-118.85/37.55"  
azimuth="160.0"  
#3. DEFINE A BOX  
width="-5/5"  
length="-15/15"  
\rm LV_seismicity.tmp  
nawk '{print $1,$2, $3}' LV_seismicity.dat | project -C${center}\
-A${azimuth} -Q -W${width} -L${length} -V > LV_seismicity.tmp  
!
PLOT CROSS-SECTION HYPOCENTERS ON MAP  
nawk '{print $6,$7}' LV_seismicity.tmp | psxy -J${projection} \!
-R${range} -P -M -Sc0.03 -G0/0/255 -O -V -K >> ${psfile}  
PLOT CROSS-SECTION BOX  
SET PARAMETERS TO PLOT  
brange="-15/15/-15/0"  
bprojection="x0.2/0.2"  
btick="a5f5g0/a5f5g0"  
psxy box_dim -R${brange} -J${bprojection} -B${btick} -W1 -P -O \!
-K -X-1.25 -Y-4 -V >> ${psfile}  
PLOT HYPOCENTERS ON CROSS-SECTION  
nawk '{print $4, $3*(-1.0)}' LV_seismicity.tmp | psxy -P -M \!
-J${bprojection} -R${brange} -Sc0.03 -G0/0/0 -O -V >> ${psfile}!

Plot contours

echo make pgr contours  
PGRFILE=pgr5e18  
SPACING=4m  
xyz2grd $SAMDATA/$PGRFILE -G$SAMDATA/$PGRFILE.grd -ISPACING /!

-: -R$REGION  
grdinfo $SAMDATA/$PGRFILE.grd  
grdcontour $SAMDATA/$PGRFILE.grd -C1 -Jx1.0 -D$PGRFILE.con -M /!

-R$REGION > /dev/null  
!

#have to hand edit the contour file to do 2 things -- as made the
first point in each contour  
#is stuck on the end of the new contour seperator line - have to
add <cr>, also does VERY bizzare  
#stuff with > for segment seperator, change to $ and works fine.  
#exit  
 
psxy -R$REGION -$PROJ/$SCALE -M -W$LINETHICK/$ICECOLOR /!

$CONTINUE $PGRFILE.con $VBSE >> $OUTPUTFILE!

Returning to

making

pertty

MAPS?

How to do:

color or b&w topo

with shaded topo

How to combine topo
and bathymetry

First – have to find data – what’s available

DEM’s (Digital Elevation Models) of world – several resolutions,
several kinds of data (GTOPO-30, ETOPO-5 , SRTM, seasat,
obs/pred bath, gravity)

Earthquakes
Moment Tensors
Digitized geologic data
Other Geophys. Data

Roads, Cities, etc.

What tools there are to handle these data sets –
GMT is one of them.

Where to get them?
(we have some online at CERI – makes it easy. Have not fully
figured out SRTM yet.)

use grdraster to extract a subregion from the global
bathymetry data set and make a new grid file for GMT.

grdraster.is not part of “standard” GMT. Is a “supplemental”
GMT program.

There are a bunch (order 35-40) of supplemental GMT programs
like this around.

Many are written by others and become “attached” to GMT and
can be found on the GMT web page, but they are not officially
part of GMT.

psmeca and psvelo (to draw focal mechanisms and vector fields)
are in this class.

use grdraster to extract a subregion from the global
bathymetry data set and make a new grid file for GMT.

$GRDRASTERREGION has same format at the REGION definition (min lon/max lon/min
lat/max lat) and been previously set up to define the region

echo do seafloor
DATASET=10
DATAGRID=-I2m/2m
grdraster $DATASET -G${ROOTNAME}_2mtopo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with 2m topo grdraster

Let’s look at the documentation first

Typing grdraster all by itself dumps the man page.
- reports available data sets, unit, data coverage area, spacing and

registration (pixel or grid – not important for now, except that
when combining data sets they have to be the same).

alpaca/smalley 142:> grdraster
grdraster 3.4.3 - Extract a region from a raster and save in a grdfile
usage: grdraster <file number> -R<west/east/south/north>[r] \
[-G<grdfilename>] [-I<dx>[m][/<dy>[m]]][-bo[s][<n>]]
 <file number> (#) corresponds to one of these:

Data Description Unit Coverage Spacing Registration

1 "ETOPO5 global topography" "m" -R0/359:55/-90/90 -I5m G
2 "US Elevations from USGS" "m" -R234/294/24/50 -I0.5m P
3 "Geo/Seasat grav from Haxby" "mGal" -R0/359:55/-90/90 -I5m G
4 "Geo/Seasat geoid from Haxby" "m" -R0/359:55/-90/90 -I5m G
5 "Sea floor age from Cande" "Ma" -R0/359:55/-90/90 -I5m P
6 "Sea floor age from Muller et al., 1998" "Ma" -R0/360/-72/90 -I6m G
7 "Sea floor age errors Muller et al., 1997" "Ma" -R0/360/-72/72 -I6m G
8 "1=land, 0=sea bitmask" "T/F" -R0/360/-90/90 -I5m P
9 "USGS/SS ETOPO30s" "m" -R0/360/-90/90 -I0.5m P
10 "2min Observed/Predicted Topo" "m" -R0/360/-72/72 -I2m P
11 "et30wbath" "m" -R-78/-63/-25/-12 -I0.5m P

First use grdraster to extract a subregion from the global data
set

echo do seafloor
DATASET=10
DATAGRID=-I2m/2m
grdraster $DATASET -G${ROOTNAME}_2mtopo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with 2m topo grdraster

We have selected the 2m predicted sea floor topography – data
set 10.

We have set the grid to the proper sample spacing (get from
previous slide w/ data set properties).

We are going to put the data into a file called ${ROOTNAME}
_2mtopo.grd

Now we do the same for the land topographic data, using
GTOPO-30, which only has data for land.

echo do topo
DATASET=9
DATAGRID=-I30c/30c
grdraster $DATASET -G${ROOTNAME}_topo.grd $DATAGRID \
-R$GRDRASTERREGION -V
echo done with gtopo grdraster

Now we select the ETOTO-30 topography – data set 9.

Notice that the grid has a different sample spacing than the
bathymetry, otherwise this code snippet is the same.

The data will go into a file called ${ROOTNAME}_topo.grd

We now have two complimentary data sets, one for topography
and one for bathymetry and we have to combine them.

Unfortunately, they have different sample spacing.

So we have to resample one of the data sets – lets do it to the sea

floor (since it has the lower resolution – we will therefore be
interpolating)

Use grdsample to resample the bathymetry as defined by

DATAGRID and put in a new file ${ROOTNAME}_30stopo.grd

echo prep and merge bathy
DATAGRID=-I30c/30c
grdsample ${ROOTNAME}_2mtopo.grd -G${ROOTNAME}_30stopo.grd $DATAGRID \
-F -R$GRDRASTERREGION -V

Now we use grdmath to combine (AND) the two data sets (they
have distinguishing values in the dataless points).

grdmath uses a stack and RPN – Reverse Polish Notation)

grdmath -F -V ${ROOTNAME}_topo.grd ${ROOTNAME}_30stopo.grd AND = \
${ROOTNAME}_topobath.grd
echo done with merge bathy

And put the new topo file in ${ROOTNAME}_topobath.grd

We are now done selecting the topographic and bathymetric data,

which is used to give the coloring or grayscale.

It is very hard, however, for the brain to interpret this view.

What is this?

One needs to add shadows (shading) for the brain to “get the
picture” (and even then there are some problems)

We will therefore “illuminate” the topography and generate an

intensity filter to be added to the color or grayscale image.

 “Raw” data “illuminated” from
 upper right lower right

GMT has a routine to do this grdgradient.

I’ll also illuminate the ocean floor and the topography from
slightly different angles – to bring out the “best” of both.

After generating the illumination, we have to combine the two files

using grdmath.

Output files will have .intns as extension.
NORM=-Nt
BATHILLUM=270
TOPOILLUM=315
grdgradient ${ROOTNAME}_topo.grd -A$TOPOILLUM \
-G${ROOTNAME}_topo.intns $NORM -V

grdgradient ${ROOTNAME}_30stopo.grd -A$BATHILLUM \
-G${ROOTNAME}_30stopo.intns $NORM -V

grdmath -F -V ${ROOTNAME}_topo.intns ${ROOTNAME}_30stopo.intns AND = \
${ROOTNAME}_topobath.intns

INTNSFILE=${ROOTNAME}_topobath

So now we have two grid files

One with the topographic data

One with the shading

Now we’re ready to plot them together to make the map.

Finally we make our first contribution to the map (PostScript
output file) using grdimage.

grdimage can combine the coloring of the data, based on the
CPT file, with the shading (which comes from the slopes of the
data).

grdimage can combine the coloring of the data, based on the
CPT file, with the shading (which comes from the slopes of the
data).

echo color topo
CPTFILE=/gaia/opt/gmt/share/GMT_globe.cpt
grdimage $INTNSFILE.grd -I$INTNSFILE.intns -C$CPTFILE -R$REGION -$PROJ
$SCALE $GRID -K -X$XOFFSET -Y$YOFFSET -V $ORIENT > $OUTPUTFILE
echo done with color topo

The CPT file is the color table file. GMT has a bunch of them
predefined (look in the directory referenced above).

You can also make your own (if you have lots of time)

GMT uses the R/G/B model for color

Now we can add other data (notice –K) –-- earthquakes, GPS
vectors, focal mechanisms, etc.

“copper” cpt file

Now we can add other data – earthquakes, GPS vectors, focal
mechanisms, etc.

psmeca -R -$PROJ$SCALE -Sd0.2/0/0 -G$RED $CONTINUE -L -W0.5/$BLACK \
india.cmt >> $OUTPUTFILE

Again being lazy, I don’t like to have to keep track of the last GMT
call (to keep track of whether or not I need the –O) so I use
$CONTINUE.

Then I check the output file for a showpage when I’m done – and
write the PostScript myself when I need it.

echo done with figure - clean up
SHOWPAGE=`tail -1 $OUTPUTFILE | nawk '{print $1}'`
echo check SHOWPAGE -${SHOWPAGE}-
if [$SHOWPAGE != showpage]
then
 echo add showpage
 echo showpage >> $OUTPUTFILE
fi

if [$CLEAN = yes]
then
 echo yes - clean up
 if [$TOPO != notopo]
 then

 \rm ${ROOTNAME}.cpt
 \rm ${ROOTNAME}.grd
 \rm ${ROOTNAME}.intns

 \rm ${ROOTNAME}_topo.grd
 \rm ${ROOTNAME}_topo.intns
 \rm ${ROOTNAME}_2mtopo.grd
 \rm ${ROOTNAME}_2mtopo.intns
 \rm ${ROOTNAME}_30stopo.grd
 \rm ${ROOTNAME}_30stopo.intns
 \rm ${ROOTNAME}_topobath.grd
 \rm ${ROOTNAME}_topobath.intns

 fi

 \rm ${ROOTNAME}.nawk
 \rm ${ROOTNAME}.tmp

fi

We then have to erase all the temporary files we made.

So here’s
our

pretty

MAP?

ETOPO -5

global

(5 min)

GTOPO-30

Land only

(30 sec)

SRTM

Land only

(3 sec)

GTOPO-30

GTOPO-30 SRTM

Plotting a single srtm file

#!/bin/sh!
\rm tst.grd!
grdgradient tile_31_69.grd -A270 -Gtst.intens -Ne0.6 -V \!
grd2cpt tst.intens -Cgray > $0.cpt!
grdimage tst.intens -Itst.intens -R-69/-68/-31/-30 -Jm7 \!
-B1g1a -P -C$0.cpt > $0.ps!
!
!

Plotting multiple 1x1 degree tiles possible, but more slightly
complicated (see me).

I can’t get SRTM data into grdraster format input file (any
volunteers?)

Have covered lots of stuff,

but even more stuff has not been covered

– there are 60 GMT and 35+ Supplemental programs!

Plus power of UNIX to manipulate them.

General GMT shell script will look something like this

Call to set up base map – this may or may not plot any data

Series of GMT calls to add various kinds of data

Last GMT call “closes” file

Majority of work is in manipulating the data files using all the
standard UNIX tools.

Finally, you can put the finishing touches on your figure with
Adobe Illustrator (which works with PostScript files)

Lots well documented
problems going over to

Adobe – principally
with annotation/text.

Why is GMT so popular?

The price is right!
(But there’s also no such thing as a free lunch!)

Offers unlimited flexibility since it can be called from the command
line,

inside scripts, and from user programs.

Has attracted many users because of its high quality PostScript
output.

Easily installs on almost any (including windows) computer.

