
Data Analysis in Geophysics
ESCI 7205

Class 7

Bob Smalley

Basics of UNIX commands

A few comments –

“extended keyboard” keys (arrow keys, number
keys, cut, paste, etc.) typically don’t work

between systems, or possibly over the network.

Have to be careful while editing in vi/vim.

Use more command to
see what is in shell script
(file) run.csh.

This csh script simply
runs a series of
tomographic inversions
using different
parameter setups.

Simple example

%more 0.5/run.csh!
mkdir 0.5_3 ! !!
tomoDD2.pwave tomoDD.3.inp!
mv red* 0.5_3!
cp tomo* 0.5_3!
mv Vp* 0.5_3!
!
mkdir 0.5_20!
tomoDD2.pwave tomoDD.20.inp!
mv red* 0.5_20!
cp tomo* 0.5_20!
mv Vp* 0.5_20!

When we run the script,
it runs the commands in
the file – so it runs the
program tomoDD2, and
moves the output files
to specially named
directories.
It then does it again with
a different input data
set.

Simple example

%more 0.5/run.csh!
mkdir 0.5_3 ! !!
tomoDD2.pwave tomoDD.3.inp!
mv red* 0.5_3!
cp tomo* 0.5_3!
mv Vp* 0.5_3!
!
mkdir 0.5_20!
tomoDD2.pwave tomoDD.20.inp!
mv red* 0.5_20!
cp tomo* 0.5_20!
mv Vp* 0.5_20!

The prep work of
writing the script allows
us to save time and
effort later.

Simple example

%more 0.5/run.csh!
mkdir 0.5_3 ! !!
tomoDD2.pwave tomoDD.3.inp!
mv red* 0.5_3!
cp tomo* 0.5_3!
mv Vp* 0.5_3!
!
mkdir 0.5_20!
tomoDD2.pwave tomoDD.20.inp!
mv red* 0.5_20!
cp tomo* 0.5_20!
mv Vp* 0.5_20!

This is an example only.
If we really wanted to
run the same program
multiple times, we would
write this as some sort
of loop.
This way we would only
write the commands
once, and pass the info
that changes to the
commands.

Simple example

%more 0.5/run.csh!
mkdir 0.5_3 ! !!
tomoDD2.pwave tomoDD.3.inp!
mv red* 0.5_3!
cp tomo* 0.5_3!
mv Vp* 0.5_3!
!
mkdir 0.5_20!
tomoDD2.pwave tomoDD.20.inp!
mv red* 0.5_20!
cp tomo* 0.5_20!
mv Vp* 0.5_20!

Standard example

Create a file (typically with an editor), make it
executable, run it.

% vim hello.sh!
i#!/bin/bash!
echo hello world.!
a=`echo hello world. | wc`!
echo This phrase contains $a lines, words and characters<Esc>!
:wq!
%chmod ug+x hello.sh!
%./hello.sh!
hello.sh!
hello world.!
This phrase contains 1 2 13 lines, words and characters!
%
!
(i and <Esc> etc. above in magenta don’t show up on screen.)!

Shell Scripting
The #! in the first line (known as shebang).

The first line can be used to tell the system what
language (shell) to use for command

interpretation.

It is a very specific format

#!/bin/bash!

or
#!/bin/csh –f!
!

(the –f is optional for csh – gives “fast”
initialization – see man page (-f Fast start. Reads neither

the .cshrc file, nor the .login file (if a login shell) upon startup.))

If you want your shell script to use the same shell
as the parent process you don’t need to declare

the shell with the shebang at the beginning.

BUT

You can’t put a comment (indicated by #) in the
first line.

So the first line has to be one of

#!/shell_to_use
or

Some command (not a comment, and not
“shell_to_use” without the shebang)

Scripting Etiquette

Most scripts are read by both a person and a
computer.

Don’t ignore the person using or revising your

script (most likely you 6 months later – when you
will not remember what you did, or why you did it
that way – especially if you were in a UNIX mood

when you wrote it.)

Verify inputs for legality, print out error message
if something wrong (!UNIX).

Advice

1.  Use comments to tell the reader what they
need to know. The # denotes a comment in
bash and csh.

2.  Use indentation to mark the various levels of
program control. (loops, if-then-else blocks)

3.  Use meaningful names for variables and
develop a convention that helps readers
identify their function.

4. Avoid unnecessary complexity…keep it
readable (this rule is definitely not UNIX philosophy compatible).

Usually you will find the obvious stuff will be
commented and described fully (as in

homeworks).

The stuff the original author did not understand
that well – but somehow got to work – will
generally not be commented (or usefully
commented, or may even be commented

incorrectly!) (as in homeworks).

Header

Adding a set of comments at the beginning that
provides information on

1.  Name of the script

2.  How the script is called
3.  What arguments the script expects

4. What does the script accomplish
5.  Who wrote the script and when

6.  When was it revised and how

#!/usr/bin/bash -f!
#Script: prepSacAVOdata.pl!
#Usage: $script <unixDir> <dataDir> <staFile> <phaseFile> <eventFile>!
#------------------------------------!
#Purpose: To prepare SAC AVAO data for further processing!
(1) generate event information file and add the event info!
(name, event location) to the SAC headers!
(2) generate event phase file and add the phase info!
(time and weights) to the SAC headers!
#Original Author (prepSacData.pl: Wen-xuan Du, Date: Mar. 18, 2003!
Modified: May 21, 2004!
#!
#Last Modified by Heather DeShon Nov. 30, 2004!
A) Reads AVO archive event format directly (hypo71):!
subroutines rdevent and rdphase!
B) Reads SAC KZDATA and KZTIME rather than NZDTTM, which is!
not set in AVO SAC data!
. . .

csh example
%set b = “Hello world.”!
%set a = `echo $b | wc`!
%echo $a!
1 2 13!

bash example
%b=“Hello world.”!
%a=`echo $b | wc`!
%echo $a!
1 2 13!

Variables

A variable is used to store some piece of
(typically character string) information.

The $ tells the shell to return the value of the

specified variable.

cs/csh and sh/bash have different syntax for
assigning the value of a shell variable.

(in bash cannot have spaces on either side of the equals sign, csh does not care, works
with our without spaces.)

Constants
A constant is used to store some piece of

(typically character string) information that is not
expected to change.

In bash, variables are made constants by using

the readonly command.

% x=2!
% readonly x!
% x=4!
-bash: x: readonly variable!
%

` . . . `: backquotes/command substitution can be
used in shell scripts.

The output of backquotes can go into a variable,
switch, redirected input (<<), etc.

a=`echo ls`!
echo $a!

Reading command line arguments.

You can send your script input from the command
line just like you do with built-in commands. It also

gets environment variables from the shell.

517:> vi hi.sh!
"hi.sh" [New file]!
i #!/bin/bash!
echo Hello, my name is $HOST. Nice to meet you $1.<Esc>!
:wq!
"hi.sh" [New file] 2 lines, 63 characters !
518:> x hi.sh!
519:> hi.sh Bob!
Hello, my name is alpaca.ceri.memphis.edu. Nice to meet you Bob.!
520:>!

think of the command line as an array whose
index starts with 0.

When you enter

%command arg1 arg2 arg3 arg4 . . . arg10 arg11 . . . Arg_end!

The shell produces the following array that is

passed to the shell script.

array[0]=command!
array[1]=arg1!
array[2]=arg2!

. . .!
array[end]=arg_end!

Within the script, access to this array is
accomplished using the syntax $n, where n is the

array index.

$0=command!
$1=arg1!
$2=arg2!
. . .!

$9=arg9!
${10}=arg10 !!
${11}=arg11!

!
note the format for numbers ≥10, the braces are

required (they are optional for numbers ≤9)

Remember the discussion of identifying the shell
you are running?

%echo $0!

The shell is (just) a program.

Your shell receives these variables from its parent

process, just like any other program.

So apply Unix think.

Reading user input
(even though it goes against the grain of Unix filter/think philosophy)

read: reads screen input into the specified
variable.

Script – introduce.sh!

#!/bin/bash!
echo Please, enter your firstname and lastname!
read FN LN!
echo "Hi! $FN, $LN !" !

Running it

528:> introduce.sh!
Please, enter your firstname and lastname!
Bob Smalley!
Hi! Bob Smalley !!
529:> !

Reading (sucking in) multiple lines.
Use the syntax “<< eof“.

Where eof defines the (character string) end-of-

file delimiter.

This syntax redirects standard-in to the shell
script (or the terminal if you are typing) until it
finds the characters specified in the eof field.

(You have to be sure those characters are not in
the file/text being sucked in – else it will stop

there.)

Example.
File - my_thoughts.dat

I have a thousand thoughts in my head!
and one line of text is not enough to get them !
all out. Hello world.!
!

Script - suckitin.sh
!
#!/bin/bash!
cat << END!
`cat my_thoughts.dat`!
END!
!

Run it!
!
540:> suckitin.sh!
I have a thousand thoughts in my head!
and one line of text is not enough to get them !
all out. Hello world.!
541:> !

Note – we would never program something this
way.

We could have just done
!

540:> cat my_thoughts.dat!

But we are trying to demonstrate how input

redirection (plus command substitution).

How does this script work?
!
#!/bin/bash!
cat << END!
`cat my_thoughts.dat`!
END!

The cat command reads standard-in, which is

redirected, by the <<, to the lines that follow in
the shell script (or the keyboard if not in a shell script).

We then use command substitution to produce

input to the cat command from the file
my_thoughts.dat.

Finally we terminate the input redirection with the
string “END”

This is a very powerful way to process data.

my_processing_program << END!
`my_convert_program input_file1`!
`cat input_file2`!
END!

!

If we only needed to process file 1 (no file2), we
could have used a pipe or input redirect

my_convert_program < input_file1 | my_processing_program!

But there is no way (we have seen so far) to pipe both
outputs into the program (the pipe is serial, not

parallel).

Another example
my_processing_program << END!
class example!
10.3!
41!
`my_convert_program input file1`!
`cat input_file2`!
END!

!
Here we have a character string input,

“class example”,
some numbers,

followed by the other data.

Again we can not use a pipe.
(Also notice that, following the Unix philosophy, the program is not “interactive”, it is not

prompting for the inputs. You have to know what it wants and how it wants it.)

Another example
my_processing_program inputvari1 inputvari2 << END!
$1!
class example!
10.3!
41!
`my_convert_program input file1`!
`cat input_file2`!
`ls $2`!
END!

!

Now we have added two inputs from the command
line.

The first one puts the string inputvari1 into
stdin for my program to read

The second one puts the results of looking for a
file called inputvari2 into stdin for my program

to read.

further examples: command substitution in
conjunction with the gmt psxy command

#!/bin/sh!
#missing beginning and end of script. This command alone will
not work!
psxy -R$REGN -$PROJ$SCALE $CONT -W1/$GREEN << END >> $OUTFILE!
-69.5 -29.5!
-65 -29.5!
-65 -33.5!
-69.5 -33.5!
-69.5 -29.5!
`cat my_map_file.dat`!
END

This will read the data between the psxy
command and the END and plot it on the map

that is being constructed (the redirected,
appended output).

further examples of <<:
running sac from within a script.

Script to pick times in sac file using taup!
Usage: picktimes.csh [directory name]!
#!
sacfile=$1!
!
sac << EOF >&! sac.log!
r $sacfile!
sss!
traveltime depth &1,evdp picks 1 phase P S Pn pP Sn sP sS!
qs!
w over !
q!
EOF!

Shell Scripting
Loops and Logic

do!
. . .!
done!

Does the commands in the “block” between do
and done.

in bash, this construct is used in conjunction with
loop structures for, while, and until and list

based.!

for:

A 'for loop' is a programming language statement
which allows code to be repeatedly executed,

looks like it is based on counting (this first
example is really list based as we will see later).

for VARIABLE in 1 2 3 4 5 .. N!
do !
. . .!
done!
!

example
!
for i in 1 2 3 4 5!
do!
 echo "Welcome $i times”!
done!

More examples

!
for i in $(seq 1 2 20)!
do!
 echo "Welcome $i times”!
done!
!
for ((c=1; c<=5; c++))!
do!

!echo "Welcome $c times..."!
done!
!
for ((; ;))!
do!
 echo "infinite loops [hit CTRL+C to stop]”!
done!

while:

Based on condition - continues to loop as long as
the condition tests true

#!/bin/bash!
. . .!
while read vari1 vari2 … varin!
do!
 . . .!
done < inputfile!

This will read from the input file till it hits EOF
(read returns 0, true, if there were no errors,

on EOF [or an error] it returns a non zero
value – false)

Full example
!

! ! !Script!
!
#!/bin/bash!
cat<<EOF>cities.dat!
105.87 21.02 Hanoi LM!
282.95 -12.1 LIMA LM!
178.42 -18.13 SUVA LM!
EOF!
!
while read clon clat city junk!
do!
 echo $city $clon $clat!
done < cities.dat!

!Run it!
!

516:> junk.sh!
Hanoi 105.87 21.02!
LIMA 282.95 -12.1!
SUVA 178.42 -18.13!
517:!

This script first
makes the input data
file, then reads it and
prints out a part of
it. Notice where the
redirected input is

located – at the end
of the “command” (can
get confusing when many lines away

from beginning).

The structure of the while loop

While the test is true, do the block of code
between the “do” and “done”

while test!
do!
 !
!. . . block of code . . .!

!
done!

The structure of the while loop

The redirected input goes at the end.

As we saw before, one can enter the while
command from the command line

(there is nothing special about it as far as the
shell is concerned)

(also notice where the semicolons, that separate
lines, and the input redirect goes).

%while read line; do echo "$line \n"; done < cities.dat!
105.87 21.02 Hanoi LM \n!
282.95 -12.1 LIMA LM \n!
178.42 -18.13 SUVA LM \n!
%!

until:

Based on condition - until continues to loop as
long as the condition exits unsuccessfully (is

false)
(the until loop is used much less than the while loop)

#!/bin/bash!
myvar=0!
until [$myvar –eq 5] ! !#until this expression is true!
do!
echo $myvar!
myvar=$(($myvar + 1))!
done!
!
% sh –f junk.sh!
0!
1!
2!
3!
4!

Break:
allows you to break out of a loop

can be used with a number to specify what do
loop to break out of

while condition1 # Outer loop, loop 2!
do!
…!
while condition2 # Inner loop, loop 1!
do!
…!
break 2 # Break out of outer loop (usually after

! ! ! ! ! ! ! ! ! ! ! ! ! ! !some test)!
done!
done!
... # Execution continues here after break!

List based - using a list to provide the items to
loop over.

!
list=`ls z*xyz`!
for ITEM in $list!
do!
 #echo plot contour $ITEM!
 psxy -R$REGION -$PROJ$SCALE -M$ -W5/$VLTGRAY $CONTINUE\!
 !$ITEM $VBSE >> $OUTPUTFILE!
Done!
!

(in the first example I wrote out the list
for VARIABLE in 1 2 3 4 5 .. N)

!

-bash 623 rinex # fs=`ls anit*o`!
-bash 624 rinex # echo $fs!
anit0770.11o anit0780.11o!
-bash 625 rinex # for f in $fs!
do head -10 $f!
done!
 2.11 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE!
GPP.DLL V3.00 15 - APR - 11 04:25 PGM / RUN BY / DATE!
ANIT MARKER NAME!
 MARKER NUMBER!
 OBSERVER / AGENCY!
 Z-XII3 1D02 REC # / TYPE / VERS!
 ANT # / TYPE!
 0.0000 0.0000 0.0000 APPROX POSITION XYZ!
 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N!
 1 1 WAVELENGTH FACT L1/2!
 2.11 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE!
GPP.DLL V3.00 15 - APR - 11 04:25 PGM / RUN BY / DATE!
ANIT MARKER NAME!
 MARKER NUMBER!
 OBSERVER / AGENCY!
 Z-XII3 1D02 REC # / TYPE / VERS!
 ANT # / TYPE!
 0.0000 0.0000 0.0000 APPROX POSITION XYZ!
 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N!
 1 1 WAVELENGTH FACT L1/2!
-bash 626 rinex # !

if/then/elif/else/fi

If the test is true, then run the block of code
between the then and the fi (if spelled backwards

– logical way to signify the end of an if block).

if [$1 = "Heather”]!
then!

!printf "Hi %s. We were expecting you.\n" $1!
fi!

if/then/elif/else/fi

If the test is true, run block of code between then
and else. If the test is false, run block of code

between else and fi.

if [$1 = "Heather”]!
then!

!printf "Hi %s. We were expecting you.\n" $1!
else!

!printf "Hi %s. Nice to meet you.\n" $1!
fi!

if/then/elif/else/fi

If [test] is true, run block of code between then
and elif. If it was false, do next [test]. If true,

run block of code between else and elif. If false,
do next [test], etc., or, finally (everything false
to here) do block of code between else and fi.

if [$1 = "Heather”]!
then!

!printf "Hi %s. We were expecting you.\n" $1!
elif [$1 = "Andy"]!

!printf "Hi %s. We were expecting you too.\n" $1!
elif [$1 = ”Gregg"]!

!printf "Hi %s. We were expecting you too.\n" $1!
else!

!printf "Hi %s. Nice to meet you.\n" $1!
fi!

Can have logical combination of [tests]

|| is or, && is and

!
if [$1 = "Heather”] || [$1 = “Andy”]!
then!

!printf "Hi %s. We were expecting you.\n" $1!
elif [$1 = "Andy"]!

!printf "Hi %s. We were expecting you too.\n" $1!
else!

!printf "Hi %s. Nice to meet you.\n" $1!
fi!

if [$1 = "Heather”] || [$1 = “Andy”]!
then!

!printf "Hi %s. We were expecting you.\n" $1!
elif [$1 = "Andy"]!

!printf "Hi %s. We were expecting you too.\n" $1!
else!

!printf "Hi %s. Nice to meet you.\n" $1!
fi!

Would this script ever output
“We were expecting you too”?

(i.e. what is wrong with it?)

NOTE

The formatting with respect to spaces, and lines
of the “if []”, “then”, (“else”, “elif”), “fi”

are very specific.

if [. . .]!
then!
 . . .!
fi!

It has to be written exactly as above – where the

test and code to be performed replace the “. . .” .
(look back at previous slide to see where spaces go)

The part in red is the test, it may be different (but
still a rigid format)

Example - Do (at least simple) error checking of
a call and print some sort of message for error.

if [$# -ne 5]!
then!
 printf "Usage:\t\t$script <unixDir> <dataDirList>\
<staFile> <phaseFile> <eventFile>\n”!
 printf "<unixDir>:\tdirectory in the unix system\ where
pick file is stored;\n”!
 printf "<dataDirList>:\tlist of data directories\ under
<unixDir>; 'dataDir.list';\n”!
 printf "<staFile>:\tstation file;\n”!
 printf "<phaseFile>:\tphase info file for program\
'ph2dt';\n”!
 printf "<eventFile>:\tevent info file (one line for\!
 one event);\n”!
exit (-1)!
fi

if does everything between “then” and “fi” (in
the box) if the test is true. We will get to the test later.

Check there are 5 input parameters.

$ to have shell return the value of a variable.

is the shell variable (the shell gives you this variable when it starts a

script) that contains the number of parameters (does

not include the shell name) on input line.

-ne is the numerical test for not equal (also have
alphabetical tests) (-eq is the numerical test for equal).

if [$# -ne 5]!
then!
. . .!
fi!
!

So if the number of input parameters is not 5, it
will do what is between “then” and “fi”. !

One of the things done in the error processing (in
the box) is the command “exit(-1)”.

if [$# -ne 5]!
then!
 . . .!
 exit (-1)!
fi!

This returns a message, a numeric “return

value” (in this case a -1) to the parent process.

The parent process can access this return value

using the shell variable ?!
(to obtain the value one uses $? (of course)).

This allows the parent process to get information
about what happened in the daughter process.

You can set the return code to give you

information about the type or error, etc.

This information can be used to control the
execution of the parent process.
(does the parent process continue, quit, try to fix it, etc.?)

Many programs return a value of 0 (zero) upon
successful completion.

From the ls man page -

EXIT STATUS!
 0 All information was written successfully.!
!
 >0 An error occurred.

So we can tell if it terminated successfully (but

not what the error was if not).

The case statement is an elegant replacement for
if/then/else if/else statements when making

numerous comparisons.

This recipe describes the case statement syntax
for the Bourne family of shells

!
case "$var" in  
value1)  
commands for value 1;  
;;  
value2)  
commands for value 2;  
;;  
*)  
commands for every other value (did not do any of the above);  
;;  
esac !

case "$var" in  
value1)  
commands;  
;;  
*)  
commands;  
;;  
esac!

The case statement compares the value of the
variable ($var in this example) to one or more

values (value1, value2, …).
Once a match is found, the associated commands

are executed and the case statement is
terminated.

The optional last comparison “*)” is a default
case and will match anything.

For example, branching on a command line
parameter to the script, such as ’start’ or ’stop’

with a runtime control script.

The following example uses the first command line
parameter ($1):

case "$1" in!
'start')!
/usr/app/startup-script!
;;!
'stop')!
/usr/app/shutdown-script!
;;!
'restart')!
echo "Usage: $0 [start|stop]"!
;;!
esac!

Shell Scripting
Intro – relational and logical operators, test

test!

Test or […]: condition evaluation utility

common scripting tool that tests expressions and
many details about files using a long list of flags

Returns

0 if expression true and

1 if expression false or does not exist
(backwards to normal logic!)

test
two formats in bash scripting

test [flags] expression!
!

test ! -s "$1”; echo $?!
0!

or
!

[expression]!
!
bash-2.05$ ['abc' == 'abc']; echo $?!
0!
bash-2.05$ ['abc' = 'abc']; echo $?!
0!
bash-2.05$ ["abc" != "def"];echo $? !
0!

Note – we are testing character strings.

[(the left bracket special character) is a
dedicated command. It is a synonym for test, and

a builtin for efficiency reasons.

(you also need the closing])

Relational Operators (between character strings)

Returns 1 if true and 0 if false

All relational operators are left to right
associative.

= or == : test for equal to
< : test for less than

> : test for greater than
!= : test for not equal

To test numerical values
!
$ test 3 -gt 4, echo $?!
1!
$ [3 -gt 4], echo $?!
1!

Note – the numerical tests are specified with a
different format (Fortran like).

Returns

0 if expression true and
1 if expression false or does not exist

(backwards to normal logic!)

Relational Operators (between numerical values)
!

Returns 1 if true and 0 if false
!

All relational operators are left to right
associative

!
-lt (<) !
-gt (>) !
-le (<=) !
-ge (>=) !
-eq (==) !
-ne (!=)

bash-2.05$ a=1!
bash-2.05$ b=2!
bash-2.05$ c=3!
bash-2.05$ [$a = 1];echo $? Or [$a = 1]!
0!
bash-2.05$ [$a -eq 1];echo $?!
0!
bash-2.05$ [$a > 1];echo $? !
0!
bash-2.05$ [$a \> 1];echo $? !
1!
bash-2.05$ [[$a > 1]];echo $? !
1!
bash-2.05$ [$a -gt 1];echo $?!
1!
bash-2.05$ [$b -eq 1];echo $?!
1!
bash-2.05$ [$b -eq $c];echo $?!
1!
bash-2.05$ [$b -eq $(($c-1))];echo $?!
0!
bash-2.05$ [$b == $(($c-1))];echo $?!
0!
bash-2.05$ [$b == $(($c-2))];echo $?!
1!

What is this? Seems to say it is true?

Needs to be escaped, but why?!
!
Why works with double brackets w/o
excape?!
!
!

Test combinations with

-a (and) and –o (or)

if [$# -eq 0 -o $# -ge 3]!
then!
. . .!
fi!
!
if [\($REGPARM = spat -o $REGPARM = chile \) -a $CMT = 1]!
then!
. . .!
fi!
!

(the [. . .]’s above are a form of the test
expression)

(the backslashes are needed to “escape” the
parentheses in the test expression)

You can use the return values together with &&
and ||!

using the two test constructs!
!

examples!
$ test 3 -gt 4 && echo True || echo false!
false!
$[$a = 1]&&[$b == $(($c-1))];echo $?!
0!
$[$a = 1]&&[$b == $(($c-1))]&&[$b -eq $c];echo $?!
1!
$[$a = 1]&&[$b == $(($c-1))]||[$b -eq $c];echo $?!
0!
$[$a = 1]&&([$b == $(($c-1))]||[$b -eq $c]);echo $?!
0!
$[$a = 1]||([$b == $(($c-1))]&&[$b -eq $c]);echo $?!
0!

Some tests

-d Directory
-e Exists (also -a)
-f Regular file

-h Symbolic link (also -L)

(remember 0 is TRUE and 1 if FALSE!!!)
!

$ [-e 'eqs.vim']; echo $?!
0!
$ [-e 'eqs']; echo $?!
1!
$ filename=eqs.vim!
$ echo $filename!
eqs.vim!
$ [-e $filename]; echo $?!
0!
$ test -d "$HOME" ;echo $?!
0!

More fun with syntax

The [[…]] construct is the more versatile Bash
version of […].

It is know as the extended test command,
(although [[is a keyword, not a command).

No filename expansion or word splitting takes
place between [[and]], but there is parameter

expansion and command substitution.

More fun with syntax

Using the [[...]] test construct, rather
than [...] can prevent many logic errors in

scripts.

For example, the &&, ||, <, and > operators
work within a [[]] test, despite giving an error

within a [] construct.

569 $ decimal=15!
570 $ octal=017 # = 15 (decimal)!
571 $ hex=0x0f # = 15 (decimal) !
572 $ if ["$decimal" -eq "$octal"]!
> then!
> echo "$decimal equals $octal"!
> else!
> echo "$decimal is not equal to $octal" # 15 is not equal to 017!
> fi # Doesn't evaluate within [single brackets]!!
15 is not equal to 017!
573 $ if [["$decimal" -eq "$octal"]]!
> then!
> echo "$decimal equals $octal" # 15 equals 017!
> else!
> echo "$decimal is not equal to $octal"!
> fi # Evaluates within [[double brackets]]!!
15 equals 017!
574 $!
574 $ if [["$decimal" -eq "$hex"]]!
> then!
> echo "$decimal equals $hex" # 15 equals 0x0f!
> else!
> echo "$decimal is not equal to $hex"!
> fi # [[$hexadecimal]] also evaluates!!
15 equals 0x0f!
575 $!

More fun with syntax

Similar to the let command, the double
parentheses((...)) construct permits

arithmetic expansion and evaluation.

In its simplest form, a=$((5 + 3)) would set
a to 5 + 3, or 8.

However, this double-parentheses construct is

also a mechanism for allowing C-style
manipulation of variables in Bash, for example,

((var++)).

575 $ var=1!
576 $ ((var++))!
577 $ echo $var!
2!
578 $ ((var>3));echo $?!
1!
579 $ ((var==2));echo $?!
0!
580 $ ((var=1));echo $?!
0!
581 $ echo $var!
1!
582 $!
!

Without the $ the ((construct returns the exit
status of the mathematical or logical operation.

With the $ it returns the value (and you still have the exit status).

$ B=$((A + 1)); echo $?, $A, $B!
0, 2, 3!
$ A=$((var++));echo $?, $A!
0, 3!

For completeness since I mentioned it

The let command carries out arithmetic
operations on variables.

In many cases, it functions as a less complex
version of expr.

let a=11 ! ! ! ! !# Same as 'a=11’!
let a=a+5 ! ! ! !# Equivalent to let "a = a + 5" # !
echo "11 + 5 = $a" !# 16!
let "a <<= 3" ! ! !# Equivalent to let "a = a << 3”!

Relational Operators (in arithmetic expressions $((. . .)))

Returns 1 if true and 0 if false

All relational operators are left to right

associative

== : test for equal to
< : test for less than

<= : test for less than or equal to
> : test for greater than

>= : test for greater than or equal to
!= : test for not equal

Bash does not understand floating point
arithmetic.

It treats numbers containing a decimal point as

strings.

Boolean (Logical) Operators

Boolean operators return 1 for true and 0 for
false

&& : logical AND

tests that both expressions are true left to right
associative

%echo $(((3 < 4) && (10<15)))!
1!
%echo $(((3<4) && (10>15)))!
0!

|| : logical OR

tests that one or both of the expressions are true
left to right associative.

%echo $(((3<4) || (10>15)))!
1!

! : logical negation

tests negation of expression.

Bitwise Operators

Bitwise Operators treat operands as 16 (actually

depends on word size on computer) bit binary values

Example: 4019 equals 0000111110110011base2
(0FB316 in hexadecimal) in integer format.

(Internally in the computer, integers are expressed in a format called two’s-complement.

Positive integers are in straight base 2. Negative integers are “funny”.)

Bitwise Operators

~ : bitwise negation changes 0’s to 1’s (bits) and
vice versa

& : bitwise AND
^ : bitwise exclusive OR

| : bitwise OR
<< : bitwise left shift (numerically is *2)

<<=n : bitwise left shift by n bits (numerically is *2n)

>> : bitwise right shift (numerically is ÷2n)

<<=n : bitwise left shift by n bits (numerically is ÷2n)

Shell Scripting
Intro - arithmetic

%echo $((3+4))!
7!
%echo $((x=2))!
2!
%echo $((++x))!
3!
%echo $((x++))!
3!

%echo $x!
4!
%((y=10))!
%echo $y!
10!

Arithmetic
bash shell arithmetic resembles C programming

language arithmetic
(very helpful if you don’t already know C!).

In bash, the syntax $(()) can be used to
calculate arithmetic expressions or to set

variables to complex arithmetic expressions

% echo $((10%3))!
1!
% echo $((10/3))!
3!

Basic Arithmetic Operators

shell arithmetic is integer only

+ : addition
- : subtraction
* : multiplication

/ : division
% : remainder or modulus

Assignment Operators

= : set variable equal to value on right
(no spaces allowed around equals sign)

!
%x=2; echo $x!
2!
!

+= : set variable equal to itself plus the value on
right (spaces allowed, but not required)

!
%x=2; echo $((x +=2)) !
4!
!

-= : set variable equal to itself minus the value on
right (spaces allowed, but not required)

!
%x = 2; echo $((x-=2)) !
0!

Assignment Operators

*= : set variable equal to itself times the value on
right (spaces allowed, but not required).

!
%x = 2; echo $((x *= 4)) !
8!

Assignment Operators
!

/= : set variable equal to itself divided by value
on right (spaces allowed, but not required).

!
%x = 2; echo $((x/= 2)) !
1!
!

%= : set variable equal to the remainder of itself
divided by the value on the right

%x = 4; echo $((x %= 3)) !
1!

Unary Operations

A unary expression contains one operand and
one operator.

++ : increment the operand by 1

Unary Operations

if ++ occurs after the operand, $x++, the original
value of the operand is used in the expression

and then incremented.

if ++ occurs before the operand, ++$x, the
incremented value of the operand is used in the

expression.

Unary Operations

-- : decrement the operand by 1

+ : unary plus maintains the value of the operand,
x=+x!

-: unary minus negates the value of the operand,
-1*x=-x!

-! : logical negation

Some tcsh/csh syntax

A shell with C language-like syntax.

Control structures

- foreach, if, switch and while

foreach : a tcsh command

is a powerful way to iterate over files from the tcsh command
line (can also put in shell scripts – don’t get prompts).

%foreach file (828/*BHZ*)#set variable file to each sac file!

foreach? echo $file!

foreach? set name = `echo $file | cut -f2 -d'/' `!

foreach? set sta = `echo $name | cut -f1 -d'.' `!

foreach? echo “copy $file to $sta.BHZ.SAC!

foreach? cp $file $sta.BHZ.SAC!

foreach? end!

828/GAR.BHZ_00.D.1989.214:10.24.59!

copy 828/GAR.BHZ_00.D.1989.214:10.24.59 to GAR.BHZ.SAC!

Aside – new command

cut

The cut command has the ability to cut out
characters or fields. cut uses delimiters.

!

file = 828/GAR.BHZ_00.D.1989.214:10.24.59!

Set name = `echo $file | cut -f2 -d’/’`!

Says return the second field (-f2), using ‘/’ as a delimiter (-
d’/’) (assign it to the variable name)

name = GAR.BHZ_00.D.1989.214:10.24.59!

set sta = `echo $name | cut -f1 -d'.' `!

Says return the first field (-f1), using ‘.’ as a delimiter (-d’.’)
(assign it to the variable sta)

sta = GAR!

If-then-else block in tcsh/csh

Two formats

!
if (expression) simple command!
!

or
!
if (expression) then!
 ...!
else!
 ...!
endif!

The tcsh/csh switch statement can replace
several if ... then statements.

switch (string)!
 case pattern1:!
 commands...!
 breaksw!
 case pattern2:!
 commands...!
 breaksw!
 default:!
 commands...!
 breaksw!
endsw!

For the string given in the switch
statement's argument,

commands following the case
statement with the matching

pattern are executed until the
endsw statement.

These patterns may contain ?

and * to match groups of
characters or specific

characters.

switch/case in tcsh syntax

foreach plane(0035.0 0050.0)!
set cnt=`expr $cnt + 1`!
switch ($cnt)!
 !case 1:!
 ! !set xpos=-5.!
 ! !set ypos=4.75!
 ! !set min=-2.5!
 ! !set max=2.5!
 ! !breaksw!
 !case 2:!
 ! !set xpos=-6.6!
 ! !set ypos=-3.5!
 ! !set min=2.5!
 ! !set max=7!
 ! !breaksw!

!endsw!
. . . such as excessive amounts of GMT!
end!

Another example

Get the arguments!
set source_dir = $1!
set target_dir = $2!
shift argv!
shift argv!
while ($#argv > 0)!
 set input = ($argv)!
 switch($input[1])!
 case -m:!
 set module = $input[2]!
 breaksw!
 case -auto:!
 set auto = 'Y'!
 breaksw!
 case -full:!
 set full = 'Y'!
 breaksw!
 endsw!
 shift argv!
end!

Built-in shell
variables

argv Special variable
used in shell scripts
to hold the value of

command line
arguments.

