
Data Analysis in Geophysics
ESCI 7205

Class 6

Bob Smalley

Basics of UNIX commands

Basics of the Unix/Linux
Environment

Some more useful commands

Additional useful commands

wc: word count

%wc suma1.hrdpicks !
37753 253998 3561084 suma1.hrdpicks!

Reports number of lines, words

(separator=space), and characters in the file.

Additional useful commands

cmp: compare files and report equal or not.

496:> cmp hw1.txt hw1a.txt!
hw1.txt hw1a.txt differ: char 175, line 12!
497:>!

No output if the same, else reports byte and line
numbers at which the first difference occurred

(starts at 1).

Additional useful commands

diff: show differences between two files

498:> diff hw1.txt hw1a.txt!
12c12!
< 2) [2] Create a directory in your account for this course - you
might call it something like ESCI7205.!
---!
> 2) [2*] Create a directory in your account for this course -
you might call it something like ESCI7205.!
14c14!

Sometimes useful (if files completely different is mess).
Less than sign, suck, for to left, file 1, greater

than sign, spit, for file to right, file 2.
(if have extra lines, will re-synch, afterwards.)

Additional useful commands
sort: alphabetical or numeric sort function

sort alphabetically
!

525:> more samgps.dat!
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE!
COGO -31.15343 -70.97526 CAP [3] 1993 1996 2002 CHILE OKRT!
MORA -30.20823 -70.78971 CAP [3] 1993 1996 2002 CHILE OKRT!
MOR2 -30.20823 -70.78971 CAP [?] CHILE OKRT!
TOFO -29.45939 -71.23842 CAP [4] 1993 1996 2001 2002 CHILE OKRT !
SILA -29.24037 -70.74956 CAP [3] 1993 1996 2002 CHILE OKRT!
HUAS -28.47848 -71.22235 CAP [3] 1993 1996 2002 CHILE OKRT!
. . .!
526:> sort samgps.dat!
ABAC -24.433 -66.217 SAGA [-] ARGENTINA NORT!
ABEL -25.667 -65.483 SAGA [-] ARGENTINA NORT!
ACOL -30.78337 -66.21338 CAP [3] 1993 1997 2000 ARGENTINA OKRT!
ACPM -33.447181 -70.537434 CAP2 [c] continuous (2005-) CHILE!
ADLS -26.08449 -67.4191 CAP [2] 1993 1997 ARGENTINA OKRT!
AGAL -24.317 -66.467 SAGA [-] ARGENTINA NORT!
. . .!

506:> more flong.dat!
2!
1!
20!
9!
11!
10!

sort default is alphabetical

513:> sort flong.dat!
1!
10!
11!
2!
20!
9!

Alphabetically “10” comes before “2 “ (note the
space) because is is sorting on the first

character, then the second…
!

alpaca.ceri.memphis.edu506:> more flong.dat!
2!
1!
20!
9!
11!
10!

Sort numerically
!
514:> sort -n flong.dat!
1!
2!
9!
10!
11!
20!

Sort numerically on second column or position

530:> sort -n -k 2 samgps.dat | head -3!
W01A -87.41565 -149.43328 WAGN [2] 2002 2005 OKRT!
W01B -87.41518 -149.44311 WAGN [2] 2002 2005 OKRT!
W02A -85.61192 -68.55633 WAGN [3] 2002 2005 2008 OKRT!
!

Sort numerically and remove duplicates
% more dirList!
812!
799!
812!
825!
799!
825
% sort –n -u dirList !
799!
812!
825!

Sort using a different separator (default is white
space)

% sort -n -t"," –k3 SUMA.NEW.loc.csv !
1,1,1918,9,22,9,54,49.29,,,-1.698,,,98.298,,,15.0,,0.0,,0.0,ehb!
10,10,1935,11,25,10,3,7.39,,,,5.886,,,93.737,,,35.0,,0.0,,0.0,ehb
100,100,1964,1,7,0,50,7.03,,,,1.801,,,99.483,,,15.0,,5.0,,0.0,ehb!

More sort fun !
cat tsort.dat!
b 1 1 3!
a 1 1 3!
c 1 2 5!
b 2 1 4!
c 1 1 5!
sort -k 2 tsort.dat!
a 1 1 3!
b 1 1 3!
c 1 1 5!
c 1 2 5!
b 2 1 4!
sort -k 2,3 tsort.dat!
a 1 1 3!
b 1 1 3!
c 1 1 5!
c 1 2 5!
b 2 1 4!
sort -k 2,3 -u tsort.dat!
b 1 1 3!
c 1 2 5!
b 2 1 4!

To figure all this out

Read the man page to see what else it will do.

NAME!
 sort - sort, merge, or sequence check text files!
!
SYNOPSIS!
 /usr/bin/sort [-bcdfimMnru] [-k keydef] [-o output] [-
S kmem] [-t char] [-T directory] [-y [kmem]] [-z recsz] [+pos1
[-pos2]] [file...]!
!
 /usr/xpg4/bin/sort [-bcdfimMnru] [-k keydef] [-o output] [-
S kmem] [-t char] [-T directory] [-y [kmem]] [-z recsz] [+pos1
[-pos2]] [file...]!

From now one, you will be expected to read the
man pages for all the commands we have used or
will use to see how to use them and what they will

do.

You have to read the man pages for all the
commands

and then think of all the side effects each can

have to figure out what you can do.

Time

cal: displays a calendar

Default is current month

Will also display the year

Good way to figure out day of year (doy - often
incorrectly called julian day) using the –j flag

$ cal!
 September 2009!
Su Mo Tu We Th Fr Sa!
 1 2 3 4 5!
 6 7 8 9 10 11 12!
13 14 15 16 17 18 19!
20 21 22 23 24 25 26!
27 28 29 30!
!

$ cal -j!
 September 2009!
 Su Mo Tu We Th Fr Sa!
 244 245 246 247 248!
249 250 251 252 253 254 255!
256 257 258 259 260 261 262!
263 264 265 266 267 268 269!
270 271 272 273!
!

Time

date: displays date and time

%date!
Wed Aug 27 17:12:01 CDT 2008!
!
!
%date –u –r 10!
Thu Jan 1 00:00:10 UTC 1970!

Basic Math

bc: basic math calculator

+, -, *, /, %, ^, sqrt!
!

also test Boolean expressions and
>,<,==,!=, etc.

quit or CNTL-D to exit

expr: evaluate the expression
more powerful, command line calculator for

integer math and string comparison

units: unit conversion

Job Control

top: lists all processes currently running

ps: process status, another way to display
process identification numbers (PID)

585:> ps -aef!
 UID PID PPID C STIME TTY TIME CMD!
 root 0 0 0 Jun 13 ? 0:04 sched!
 root 1 0 0 Jun 13 ? 0:10 /etc/init –!
. . .!
rsmalley 9790 9580 1 23:17:45 pts/12 0:00 ps -aef!
rsmalley 9578 9575 1 18:50:33 ? 0:04 /usr/lib/ssh/sshd!

kill: allows you to hard kill processes by their
PID (get from ps). You can only kill your own jobs (unelss you are root).

586:> kill -9 9578!

CNTL-Z: suspends the current job (use to end
man program).

fg: resume job and runs it in the foreground
(grabs screen).

bg: resume the job in the background (initially set
on the command line by adding the & to the end

of the command/script).

jobs: lists all jobs running in the background,
including their PIDs.

Finding/Searching

find: search for files

Syntax: find path expressions!

Read the (confusing) man page.

Is powerful UNIX tool.

Starts where we are (.), looks there and below in
the directory structure.

!
508:> find . -name cap_ice* -print!
./dem/cap_icezooms_.5v2.ps!
. . . .!
/from_midtown/dem/cap_ice_.5v2.ps!

Don’t need the “-print” anymore (but you may
see it).

In old days, found the files, but needed
instructions on what to do with them (did not
automatically send to standard out, kept it a

secret).

Finding files in the working directory and below
which have been modified in the last n (=-1 here)

days:

find . -mtime -1!

List all the files and subdirectories from the
subdirectories starting at root, with 777

permissions?

find / -perm 777!

Use option “-iname” for a case insensitive search
in working directory and below, by default find

searches are case sensitive.

find . –iname "error”!

Delete temporary files in working directory and
below using find and xargs commands together

with a pipe

find . -name "*.tmp” | xargs rm –f!

xargs can be used to do whatever you want to
each file found by the find command.

xargs along with find gives you immense power
to do whatever you want (including stuff you
don’t want [and/or did not anticipate] – big
opportunities for disaster) with each search

result.

Find all text files in working directory and below
which contain the word Exception using find

command

Two ways to do it

find . –name "*.txt" –print | xargs grep “Exception” !
!
find . –name "*.txt" –exec grep “Exception” ‘{}‘ \;!

find . –name "*.txt" –exec grep “Exception” ‘{}‘ \;!
!

The -exec action takes a Unix command (along
with its options) as an argument. The arguments

should contain {} (usually quoted), which is
replaced in the command with the name of the

currently found file. The command is terminated
by a semicolon, which must be quoted (escaped)

so the shell will pass it literally to the find
command.

The -exec action in find is very useful, but since
it runs the command listed for every found file it
isn't very efficient. On a large system this makes

a difference!

Finding files only in current directory not
searching on sub directories:

find . -maxdepth 1 -type f -newer first_file!
!

Or
!
find . -type f -newer first_file –prune!

Find all files in current directory and
subdirectory, greater than some size using find

command in Unix (and then do and ls –l on them
using –exec)

find . -size +1000c -exec ls -l {} \; !

Use the c after the number to specify the size in
bytes, otherwise you will get (confused because
find –size reports) results based on size of the

file in disk blocks not bytes.

To find files using a range of file sizes, a minus or
plus sign can be specified before the number.

The minus sign means "less than," and the plus

sign means "greater than."

Suppose if you want to find all the files within a
range you can use find command as below

find . -size +10000c -size -50000c -print  

 
This find command example lists all files that are
greater than 10,000 bytes, but less than 50,000

bytes:

Find files which are some days old and greater
than some size in Unix.

Very common scenario where you want to delete
some large old files to free some space in your
machine. You can use combination of "-mtime"

and "-size" to achieve this (and then do and ls
–l on them using –exec).

find . -mtime +10 -size +50000c -exec ls -l {} \;  

This command will find which are more than 10
days old and size greater than 50K.

Common Find Gotcha:

If the given expression to find does not contain
any of the action primaries -exec, -ok, or -print,

the given expression is effectively replaced by:

find \(expression \) –print.

The implied parenthesis can cause unexpected
results.

i.e., consider these similar commands:

$ find -name tmp -prune -o -name *.txt!
./bin/data/secret.txt!
./tmp!
./missingEOL.txt!
$ find -name tmp -prune -o -name *.txt –print!
./bin/data/secret.txt!
./missingEOL.txt!
!

The lack of an action in the first command means
it is equivalent to:

find . \(-name tmp -prune -o -name *.txt \) –print!

This causes tmp to be included in the output.

The implies parenthesis are important.

i.e., consider these similar commands:

$ find -name tmp -prune -o -name *.txt –print!
./bin/data/secret.txt!
./missingEOL.txt!
$ find -name tmp –prune -print -o -name *.txt -print!
./bin/data/secret.txt!
./missingEOL.txt!
./tmp!

!

For the second find command (top one here) the
normal rules of Boolean operator precedence

apply, so the pruned directory does not appear
in the output.

Compare with bottom command with action (-
print) for both arguments to –o (boolean or).

You can use "awk" (will do it next) in combination
of find to print a formatted output e.g. next

command will find all of the symbolic links in your
home directory, and print the files your symbolic

links points to:

find . -type l | xargs ls -ld | awk '{print $10}’!
!

"." says starts from current directory and include
all sub directories, "-type l" says list all links

Finding/Searching

find: search for files

To make this really useful (as if what we have seen
already is not dangerous enough), we need a way
to search for patterns in the filenames (or within

files).

use regular expressions (not shell wildcards).

So now we are going to have two kinds of special
characters, or metacharacters.

Those that mean something special to the shell
(such as the “$” on a shell or environment variable

or the “/” in a path).

Those that are used to specify a pattern as a
regular expression.

And will need a way to “turn off”, or escape, the
special meaning as either a shell or regular

expression metacharacter.

These rules are global.

Say I want to look for all files that start with a “v”
or “V”, and have any “extension” (the “.dat”, part

of the file name).

514:> find . -name *olcanoes*!
find: bad option Volcanoes.dat!
find: path-list predicate-list!

This does not work for some reason.

The find command is not “using” the “*”
properly.

(This is because the shell recognized it as a shell

wildcard and got hold of it first and did something
with it instead of passing it on to find.)

Metacharacter
Escaping

We have to “escape” the shell’s interpretation of
the “*”, so it gets passed to find to be used as a

regular expression there. Use \!
!
-bash 520 dem # find . -name Volcanoes.dat!
./Volcanoes.dat!
-bash 521 dem # find . -name *olcanoes*!
find: volcanoes: unknown option!
-bash 522 dem # find . -name *olcanoes*!
./volcanoes!
./Volcanoes.dat!
./volcanoes.f!
-bash 523 dem # find . -name *olcanoes*!
./volcanoes!
./Volcanoes.dat!
./dem/volcanoes.f!
-bash 535 dem # cd ..!
-bash 536 unixside # find . -name *olcanoes*!
./dem/volcanoes!
./dem/Volcanoes.dat!
./dem/volcanoes.f!

There are three ways to escape metacharacter
interpretation.

Backslash “\”, escapes the next character from
interpretation [the first time \ is encountered],

i.e. the next character is treated as a regular
character.

!

olcanoes!
'*olcanoes*’!
"*olcanoes*”!

Works for all programs (the shell is just another
program).

!

olcanoes!

So the splat is not used as a wildcard by the shell
(all the files in the directory), the first program to

encounter it, and it is passed as a * to the
program find where it is (finally) used as a

wildcard (any combo of characters).

The backslash “\”, is the strongest method to
escape a character.

It works everywhere.

If you want to place text on two or more lines for
readability, but the program expects one line, you

need a line continuation character. Just use the
backslash as the last character on the line:

% echo This could be \  
a very \  
long line\!  
This could be a very long line!!
%!

This escapes or quotes the end of line
(eol,<CR>) character, so it no longer has a

special meaning.

(In the above example, the backslash before the exclamation point is necessary if you
are using the C shell, which treats the "!" as a special character.)

Another example of the thought processes
involved in taking advantage of the power of Unix.

What would you enter if you were looking for a file
named “*olcanoes”?

(rhetorical question).

Next two methods.

Protect metacharacters from interpretation by
the shell only.

Single quotes.

‘quote’, ‘escape’, or ‘protect’ everything inside

the quotes them from the shell.
!

'*olcanoes*’!

Next two methods.

Protect metacharacters from interpretation by
the shell only.

Double quotes.
!

"*olcanoes*”!

“quote”, “escape”, or “protect” everything inside
the quotes from the shell

except variables and backquoted expressions (`)
(we will get to that soon),

which are expanded by the shell and replaced
with their value.

Quote syntax

What happens if you forget the quotes depends
on the shell and which quotes you forgot/used

incorrectly.

In csh/tcsh, the variable b below would be set to
Hello, and the shell would ignore the string world.

545:> echo $0!
-tcsh!
546:> set b=hello world!
547:> echo $b!
hello!

In sh/bash, the variable b below would be set to
hello, and the shell would try to run the command

world producing an error message.

alpaca.ceri.memphis.edu501:> /bin/sh!
$ b='hello world'!
$ echo $b!
hello world!
$ b=hello world!
world: not found!
$!

Single vs. double quotes example.

503:> set a = A!
504:> echo $a!
A!
505:> set b = ‘letter $a’!
506:> echo $b!
letter $a!
!

Shell did not expand variable a to its value.
Treated string $a literally as the characters $a.

!
507:> set c = “letter $a”!
508:> echo $c!
letter A!
509:>!
 !

Now shell expanded variable a to its value, A, and
passed value on.

Works same in csh/tcsh and sh/bash.

Back to commands

grep: search for a pattern inside files (or
standard in, or <<).

(general regular expression,

general regular expression processor,
. . .)

(name created using UNIX naming philosophy)

highly useful and it is worth your time to sit down
with the man page.

Simple examples

Find the string PELD in the file samgps.dat.

grep sends all lines in input (standard in, file
[don’t need redirect, but can use it], or pipe) that

contain the string “PELD” to the standard out.

!

533:> grep PELD samgps.dat!
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT!

Takes standard Unix “regular expressions”, of
which we have seen a few.

This finds all the lines that start with a “P” (“^” is

the metacharacter for the beginning of a line) and
sends them to standard out.

!
!
534:> grep ^P samgps.dat!
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT!
PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT!
PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT!

Finds all the lines with “ARGEN” and sends them
to standard out.

!

535:> grep ARGEN samgps.dat!
TND2 -37.3 -59.2167 CAP|C1960 [0] ARGENTINA NORT dropped!
ZAPX -38.82775 -70.02394 CAP|C1960 [?] ARGENTINA OKRT!

Finds all the lines with “3 ARGEN” and sends them
to standard out.

!
!
510:> grep "3 ARGEN" samgps.dat!
ZAPL -38.82775 -70.02394 CAP|C1960 [4] 1993 1997 1997 2003 ARGENTINA!
BSON -42.01391 -71.20485 CAP|C1960 [3] 1993 1997 2003 ARGENTINA OKRT!

What does this do?

grep CAP.*ARGENTINA samgps.dat
!

!
-bash 538 geolfigs # grep CAP.*ARGENTINA samgps.dat!
TNDL -37.32423 -59.08637 US|CAP|C1960 [7] 1993 1997 1997 1998 1998 2001
2003 ARGENTINA OKRT Tandil!
TND2 -37.3 -59.2167 US|CAP|C1960 [0] ARGENTINA NORT dropped!
ZAPL -38.82775 -70.02394 US|CAP|C1960|C2010 [5] 1993 1997 1997 2003 2010
ARGENTINA OKRT Zapala!
!

Finds all lines with the string CAP followed by 0 or
more characters then the string ARGENTINA.

(like find but for file contents rather than file

names. Combined with regular expressions is very
powerful.)

I probably use grep every time I’m on a Unix
system!!

Command Substitution

Command substitution

Invoked by using the back or grave quotes
(actually French grave accent, `). (ex in bash)

a=`echo ”hello world." | wc`!

What does this do?

Command substitution tells the shell to run what
is inside the back quotes and substitute the

output of that command for what is inside the
quotes.

So the shell runs the commmand

echo hello world. | wc!
!

Producing (which you don’t see)
!
1 2 13!

takes the output (the “1 2 13” above), substitutes it for
what is in the back quotes (echo ”hello world | wc.),

and sets the shell variable equal to it
!
a=`echo ”hello world." | wc`!

does this (is as if you typed)

a=‘1 2 13’!

Compare/contrast this to what the pipe (“|”)
does.!

Trivial example of substituting into a switch.
As a variable (why do I need the quotes?)

509:> set options=‘-la’!
510:> ls $options!
total 2203891!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 CHARGE-2002-107!
drwxr-xr-x 94 rsmalley user 31232 Sep 19 17:46 .!
dr-xr-xr-x 3 root root 3 Sep 19 17:51 ..!
drwxr-xr-x 2 rsmalley user 512 Oct 1 2004 .acrobat!
-rw-r--r-- 1 rsmalley user 237 Oct 1 2004 .acrosrch!
!

Directly!
!
511:> ls `echo $options`!
total 2203891!
-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 CHARGE-2002-107!
drwxr-xr-x 94 rsmalley user 31232 Sep 19 17:46 .!
dr-xr-xr-x 3 root root 3 Sep 19 17:51 ..!
drwxr-xr-x 2 rsmalley user 512 Oct 1 2004 .acrobat!
-rw-r--r-- 1 rsmalley user 237 Oct 1 2004 .acrosrch!

Variables are set to the final output of all
commands within the back single quotes.

In csh and bash.

509:> set options=‘-la’!
513:> set ops = `echo $options`!
514:> echo $ops!
-la!
515:> !
!
-bash 662 dem # options='-la'!
-bash 663 dem # echo $options!
-la!
-bash 664 dem # ops=`echo $options`!
-bash 665 dem # echo $ops!
-la!
-bash 6668 dem # !

This is a very useful and powerful feature.

Standard Error

What does >&! mean?

We have already seen the > (it means redirect output) and ! (it

means clobber any existing files with the same name).

So far we have discussed standard-in and
standard-out.

But there is another standard output stream -

introducing

standard-error.

carpincho:ESCI7205 smalley$ ls nonexitantfile!
ls: nonexitantfile: No such file or directory!

The message above shows up on the screen, but

in this case it is actually standard-error, not
standard-out.

!
$ ls nonexitantfile > filelist!
ls: nonexitantfile: No such file or directory!
$ ls -l filelist!
-rw-r--r-- 1 smalley staff 0 Sep 21 16:01 filelist!
$!

Can see this by redirecting standard-out into a

file. The error message still shows up and the file
with the redirected output is empty.

(it has 0 bytes, our standard Unix output, ready for the next command in pipe.)

>& is the csh/tcsh syntax for redirecting
standard-error to standard-out.

(else standard-error it goes to the screen)

Append standard-error to standard-out
>>&!

You can’t handle standard-error alone.
(With what we have seen so far, in csh/tcsh.)

The sh/bash syntax uses 1 to [optionally] identify
standard-out and 2 to identify standard-error.

To redirect standard-error in sh/bash use
!
2>!

To redirect standard-error to standard-out
!
>&!

(! has usual meaning – clobber)
To pipe standard-out and standard-error

!
>& |!

Redirect standard-error to file

$ls nonexitantfile > filelist 2> errreport!
$cat errreport!
ls: nonexitantfile: No such file or directory!
$!

Redirect standard-error to standard-out into a
file. Can’t do second redirect to a file. Use
subshell command format, redirect output

subshell to file. combofile has both standard-out
and standard-error.

$(ls a.out nonexistantfile >&)>combofile!
$more combofile!
nonexistantfile: No such file or directory!
a.out!
$!

Subshells

Combining stdout and stderr In tcsh

the best you can do is (Unix think)

(command > stdout_file) >& stderr_file!

which runs "command" in a subshell.

stdout is redirected inside the subshell to
stdout_file.

both stdout and stderr from the subshell are
redirected to stderr_file, but by this point stdout

has already been redirected to a file, so only
stderr actually winds up in stderr_file.

Subshells can be used to group outputs together
into a single pipe.

sh/bash

!
(when a program starts another program [more exactly,

when a process starts another process], the new process runs as a
subprocess or child process. When a shell starts
another shell, the new shell is called a subshell.)

So in our earlier example using command
substitution we could have done

(my_convert_program input file1; cat input file2) |\
my_processing_program << END!

Where we are using the \ to continue the

command on the second line.

The semi-colon “;”, allows us to enter multiple
commands, to be executed in order, in the sub-

shell
(In typical Unix fashion, the “;” works in the shell and shell scripts also. Try it.).

Misc commands and
stuff

finger - find out information about users
who - who is currently logged in and
w - who is currently logged in what are they doing
whoami – reports your username
id - tells you who you are (username, uid, group, gid)

uname – reports basic system information
whois – reports information about hosts
which/whereis - locates commands/files
whatis - gives brief summary of a command
talk - chat with other users on the system

(instant messaging of the 60’s! There is nothing
new under the sun.)

write/wall - send messages to all users

Types of commands

Built-in commands: commands that the shell itself
executes.

Shell functions: self-contained chunks of code,
written in the shell language, that are invoked in

the same way as a command.

External commands: commands that the shell runs
by creating a separate process.

Special shell variables

$< : special BSD Unix csh command that
essentially acts as read except it is not white

space delimited

set name = “$<“!

instead of

read firstname lastname!

Special shell variables

$# : the number of arguments passed to the shell.

Useful when checking calling arguments (did you
enter the correct number of them?), writing

if:then:else blocks and loops.

We will cover this more later.

Special shell variables

“$@”: (need quotes) represents all command line
arguments at once, maintaining separation, same

as
“$1” “$2” “$3”!

“$*” : (should have quotes) represents all
command line arguments as one, same as

!

“$1 $2 $3 $4”!

Without quotes, $* equals “$@”!

$ arglist.sh first second\ third!
!
Listing args with "$@":!
Arg #1 = first!
Arg #2 = second!
Arg #3 = third!
Arg list seen as separate words.!
!
Listing args with "$*":!
Arg #1 = first second third!
Entire arg list seen as single word.!
!
Listing args with $* (unquoted):!
Arg #1 = first!
Arg #2 = second!
Arg #3 = third!
Arg list seen as separate words.!
$!

Special shell variables

$- : Options given to shell on invocation.

$? : Exit status of previous command.

$$: Process ID of shell process.

$! : Process ID of last background command.

Use this to save process ID numbers for
later use with the wait command.

Special shell variables

$IFS : Internal field separator
the list of characters that act as word separators.
Normally set to space and newline (maybe tab) (is

a bash, not tcsh variable).

$ echo $IFS!
!
$ echo $IFS | od -x!
0000000 0a00!
0000001!
$ echo $IFS | od -c!
0000000 \n!
0000001!
$

Special files

/dev/null : null device is a special file that
discards all data written to it (but reports that the

write operation succeeded), and provides no
data to any process that reads from it (yielding

EOF immediately).

Also know as the bit bucket, black hole, or a
WOM (write only memory).

Special files
/dev/tty: redirects script’s stnd-in to the terminal

Script
#!/bin/sh!
printf "Hello. My name is hdmacpro. What is yours?\n"!
read name < /dev/tty!
printf "Nice to meet you %s.\n" $name!
printf "Hello. My name is hdmacpro. What is yours?\n?"!
read name!
printf "Nice to meet you %s.\n?" $name

Run it
517:> tsttty.sh!
Hello. My name is hdmacpro. What is yours?!
bob!
Nice to meet you bob.!
Hello. My name is hdmacpro. What is yours?!
?Bob!
Nice to meet you Bob.!
? 518:> !

AWK/NAWK
Quick intro for HW

awk :
[Aho, Weinberger, Kernighan]

new-awk = nawk

Powerful pattern-directed scanning and
processing language.

So powerful that we will devote a lot of time to it.

One of the most used Unix tools.

For now we will present the bare basics that will
allow us to start processing data.

nawk reads a file and processes it a line at a time.

The input line is parsed into fields separated by

spaces or tabs.

The fields are addressed as $1, $2, etc.

$0 is the while line.

Here is the basic syntax for performing simple
nawk processing from the command line.

nawk ‘[/regex/...] {print $n, $m, …}’ file!

Where /regex/ is an optional (the []s) regular

expression contained within forward slashes “/”s.
(There can be more than one {the …}, combined logically &&, ||, !).

$n, $m, etc. are the columns of the file to print

out

file specifies the input file

 A basic, and useful, nawk example.

Print out a number of columns of a file (say the lat
and long contained in columns 6 and 7) for

plotting by GMT).

Here is the file mydatafile.dat

 CAT YEAR MO DA ORIG TIME LAT LONG DEP MAGNITUDE!
 PDE 1973 01 05 123556.50 46.47 -112.73!
 PDE 1973 01 07 225606.10 37.44 -87.30 15 3.2!
 PDE 1973 01 08 091136.80 33.78 -90.62 7 3.5!
!

What do we do about the first line (a “header”,
useful to humans, confuses programming.)!

If a regular expression is specified, nawk will only
print out the lines which contain a match to it. All
the other lines in the example start with PDE – so

use that to find data)

% nawk ‘/PDE/ {print $7, $6}’ mydatafile.dat!
-112.73 46.47!
-87.30 37.44!
-90.62 33.78!
!

Prints out the seventh and sixth column (x,y order, the
guys who wrote GMT came from mathematical plotting where x is usually first, not

geographical processing where lat is usually first) for all lines in the file
mydatafile.dat containing the character string

“good data”.

!

If we did not have the search for lines with /PDE/
it would print out the seventh and sixth column for

all lines in the file mydatafile.dat.
!
% nawk ‘ {print $7, $6}’ mydatafile.dat!
LONG LAT!
-112.73 46.47!
-87.30 37.44!
-90.62 33.78!
!

Which would make GMT very unhappy.!

The input to nawk can also be piped or redirected
from stdin.

% cat mydatafile.dat | nawk ‘ {print $7, $6}’!
!

or!
!
% nawk ‘ {print $7, $6}’ << END!
`cat mydatafile.dat`!
END!
!
!

(Although one would never do either of the
above in practice!! Why?)

!

This is enough awk/nawk knowledge to do the
homework.

Shell Scripting
Basic scripting

What is a shell script?

It is a program that is written using shell
commands

(the same commands you type to do things in the

shell).

When to use a shell script?

Shell scripts are used most often for combining
existing programs to accomplish some small,

specific job, typically one you want to run often/
multiple times.

Once you've figured out how to get the job done,
you put the commands into a file, or script, which

you can then run directly.

Why use shell scripts?

- Repeatability -

why bother retyping a series of common
commands?

Why use shell scripts?

- Portability -

Once you have a useful tool, you can move you
shell script from one machine/flavor Unix to

another.

POSIX standard – formal standard describing a
portable operating environment.

IEEE Std 1003.2 current POSIX standard.

Why use shell scripts?

Simplicity

Simplest shell script

You have to do the same N commands every day.

Put them in a shell script and just type the file/
shell script name (to run it).

Next simplest shell script

You have to do the same N commands every day
but on a different input file each day.

Same as before, but now you have to pass the

name of the file when you run it and have to refer
to that file somewhere in the shell script.

Next simplest shell script

You have to do the same N commands every day
but on different input files each day.

You may also have to vary what needs to be done
based on some properties of the files, etc.

Same as before, but now you also have to be able
to test conditions and make decisions about what

to do next based on the results of those
decisions (if-then-else).

Next simplest shell script

You have to do the same N commands every day
but on different input files each day.

You may also have to vary what needs to be done
based on some properties of the files, etc.

You will also need some way to repeat the process

for many files (loops).

Some programming features that do not exist in shell scripts.

Subroutines and Functions.

You have some tasks that need to be repeated in
many of your programs.

You can write a general program to process these
tasks and then use, or call them, them within other

programs.

Subroutines and Functions are like little
standalone programs that take input arguments

and produce a result.
The main difference between them is how they

give you the result.

Flowchart For Problem Resolution

Don’t Mess With It!

YES NO

YES

YOU IDIOT!
NO

Will it Blow Up
In Your Hands?

NO

Look The Other Way

Anyone Else
Knows? You’re SCREWED!

YES YES

NO

Hide It
Can You Blame
Someone Else?

NO

NO PROBLEM!

Yes

Is It Working?

Did You Mess
With It?

Flowchart for computing N!

Has
-  tests/decisions

- loop

Interpreted vs. Compiled Languages

End members of methods for changing what you
write in a “high-level language” (variables,

mathematical operations, subroutines, etc.
FORTRAN, C, C++, PEARL, etc.) into the

individual machine instructions the computer’s
CPU executes (put numbers into CPU register,

multiply them, store result in memory).

Compiler

The name "compiler" is primarily used for
programs that translate source code written in a
high-level programming language to a lower level
language such as assembly language or machine

code (everything has to end up as machine code eventually).

Typically produces most efficient (in terms of run
time) implementation of a program.

Source to executable with compiled language.

Several steps.

- Edit the source code.

- Compile the source code into machine code.

- Link the machine code with libraries, etc.
(oftentimes done in one command together with
compile, but not necessarily and you can control

it and do it separately).

- Run the program (which is itself another, executable, file).

During development you will probably be doing
this kind of cycle.

Edit the Fortran source code.

Compile it, link it (here done automatically -
combine it libraries such as the library of VAX/
VMS extensions to Fortran, and files with extra
code, but you have to tell it what to use) and

make an executable file.

Then run it.
$ vi chinn2gmt_fm.f!
…!
$ f77 -W132 -lU77 chinn2gmt_fm.f ../opens.f -o chinn2gmt_fm!
$ chinn2gmt_fm!

Examples of some languages that are typically
compiled.

FORTRAN

C
C++

ALGOL
PASCAL

BASIC/Visual BASIC

Interpreter

The name ”interpreter" is primarily used for
programs that translate source code written in a

high-level programming language to machine
code a line at a time at the time of execution.

Typically produces less efficient (in terms of run
time) implementation of a program (for example,
in a loop it has to interpret the instructions each

time through the loop).

Source to executable with interpreted language.

Two steps.

- Edit the source code.

- Run the program

(It does the “compiling” and “linking”, or
translating to machine code, steps automatically,

but repeatedly.)

It does not produce an “executable” file. To run it
again it has to be interpreted again. (So there is
actually some interpreter program running and

your program is really input to it.)

Examples of some languages that are typically
interpreted

Shell scripts (always)

awk/nawk/gawk
BASIC

MATLAB
HTML

LISP (which stands for LISt Processor or (Lots of
((Irritating, Spurious) (Parentheses)))). Favorite

language for AI.

- Compiled languages are compiled.

- Modern interpreted languages are typically
hybrids (they will compile the code in a loop for
instance, instead of interpreting it each pass).

MATLAB is an example of the modern hybrid. It

has interpreted parts, compiled as needed parts,
and you can compile your code.

When you run a compiled program (again and
again) you skip the compile/link steps.

(this is fast)

(the compile/link process produces an executable file, which is the file that is run/

executed – not the source file.)

When you run an interpreted program (again and
again) the computer has to redo the

interpretation each time.

(this is slow)

(So while modern interpreters may internally take shortcuts such as compiling a loop, it is
local to each running of the program. Each time you run/execute the interpreted

program it returns to the source file and starts from scratch.)

Shell scripts are strictly interpreted.

The philosophy of shell scripting is to

- develop a tool with the shell and

- then write the final, efficient, implementation of
the tool in C (or other high level language).

The second step is typically (universally?)

skipped.

Interpreting vs. Compiling.

Compiling: good for medium, large-scale,
complicated problems, number crunching, when

you need the efficiency.

Interpreting: good for smaller scale, simpler
problems, when not number crunching, when your

efficiency is more important than the CPU’s.

(It is not worth spending an hour of your time to save a microsecond of execution time on
a program that will run once – unless saving that microsecond is the point of a homework

problem.)

- Olden days –

Computer was expensive, limited, resource.
Programmer – relatively less expensive.

Lots of effort went into writing small, efficient
programs.

- Today –

Abundance of inexpensive computer resources.
Programmer – very expensive.

(Buy a faster computer with another gigabyte of
memory!)

- Take home lesson -

Use the appropriate tool.

