
Data Analysis in Geophysics
ESCI 7205

Class 5

Bob Smalley

Basics of UNIX commands

Basics of the UNIX/Linux
Environment

Connecting remotely

On a Mac running OS-X to connect to the SUNs,
from a terminal window enter

ssh –X alpaca.ceri.memphis.edu –l rsmalley!

The –X flag gives us X-windows graphics
capability.

Next is the name of the machine we want to
connect to (alpaca.ceri.memphis.edu).

The –l flag passes the username.
(Without this flag, it will pass whatever your username is on the mac.)

Try running nedit on the SUN.
On the mac – we get X graphics automatically

On the PC it is a few more clicks, but first we
need (to install) two programs

SSH Secure Shell Client and Exceed (part
of the Hummingbird package).

Double click on exceed (it will start up and
put an icon in the tray, it does not have a

window).
Double click on SSH Secure Shell Client

You will get this window (left). Now we have to
connect to a machine. Click on File and then

connect.

This brings up the connect dialog. Put in the host
name you want to connect to and your username.
Leave the other stuff alone (default). Click connect.

It will now ask for your password.

And we are finally connected.

Start nedit in the background (the trailing &).
This permits the terminal to continue accepting

commands.

Using Screen Sharing/VNC

Select this
under Finder

(will be highlighted –
does not come

through on screen
capture)

Using Screen Sharing/VNC

Select address from list, type it in, or browse
among machines offering connections.

(will be highlighted – does not come through on screen capture)

Then click connect

Using Screen Sharing/VNC

Now you get a login screen
It will have automatically put in your username on

the LOCAL machine.

Using Screen Sharing/VNC

You may have to change the username to a
different one on the REMOTE machine.

Plus put in your password.

Not a good idea to have the computer remember
your password.

Using Screen Sharing/VNC

Now you will have to log into the REMOTE
machine.

The login process is 2 levels – one to connect to
the machine (as an authorized user) and one to login (possibly as

another authorized user).

Using Screen Sharing/VNC

In this example someone is logged in and the
screen is locked and you need to enter the

password

Using Screen Sharing/VNC

Sharing disks

Select this
again

(will be highlighted –
does not come

through on screen
capture)

Sharing disks

Now select
this instead
(will be highlighted –

does not come
through on screen
capture. When you
double click it goes
up top. Or type it in

up top.)

“afp” is apple file protocol – it is
how the Mac shares disks with

other Macs.

Sharing disks

You have to
log in.

Sharing disks

Select the
disks you

want to
mount. (it

will be blue)

Sharing disks

They show up on
the desktop and
can be accessed

under /Volumes in
the UNIX file

structure.

Sharing disks

You can also “mount” disks from the UNIX and PC
systems using “samba”

smb://TCP/IP address or name

Basics of the UNIX/Linux
Environment

Text Editing

Text Editing Options

Mouse-driven options

nedit: this X-window GUI text editor (that you
start from the command line, not by clicking on an
icon) allows interactive mouse or keyboard driven

text manipulation; colored text and auto-
recognition of various standard scripting and

programming languages is helpful for debugging
scripts and code; appears to be a student

favorite at CERI and is available on the Mac and
SUN UNIX systems.

Text Editing Options

Mouse-driven options

emacs: a less sleek looking GUI text editor
(available at CERI) that allows interactive mouse
or keyboard driven text manipulation; it is very

powerful and is an old favorite of computer
programmers.

(see Steve Brewer if you want to use emacs.)

Text Editing Options

Keyboard-driven options

vi or vim:

vi/vim (vi improved) is a non-GUI text editor that
relies primarily on keyboard driven text

manipulation; steep learning curve but very
powerful;

vim - adds colored text and auto-recognition of
various standard scripting and programming

languages to vi, helpful for debugging.

vi (& probably vim) found on ALL UNIX systems.

Text Editing Options

Keyboard-driven options

pico: a pared down non-GUI text editor very
similar to the email program pine. If you don’t

know what pine is, use nedit instead.

nedit or vi/vim.

nedit is available on the CERI Mac and SUN UNIX
machines because Deshone/Bob/Mitch have

installed it.

nedit has a shallow learning curve (execute it and
start using! If you need the manual, there is a bug

in the program!).

(Also the Mac OS program TextEdit)

nedit or vi/vim.

vi (and typically vim) is available as standard on all
UNIX and UNIX-like systems.

vi and vim are hard to learn.

vi and vim are much more powerful (i.e. harder)
than nedit.

(vi is aliased to vim on the Mac)

*note to OSX users not on the CERI Student Lab machines, nedit can be downloaded
and installed on OSX but you need to be sys admin and know what you are doing….it is

not a simple dmg unpack. Xcode is a similar but more powerful editor for code
development.

to start nedit

%nedit &!

Which shows another UNIX feature we have

mentioned before – the optional “&”.

When the “&” is placed at the end of a command
line it opens the program in the background so

that you can continue to use the terminal window.

&!

This is a general feature.

So if you have a program that will take 10 minutes
to run and is putting its output into a file (not the

screen) and it does not need interactive input,
you can run it with the & at the end and it will go

off and do its thing in the “background” and you
can continue working in the window.

This was a much more important before the days
of window based GUIs.

Now just open more windows and move between
them.

This is what it looks like
(using a mac that is ssh’d into the suns)

Works similar to WORD. File/open – get dialog
box. Select file to open.

This is the file. It is a shell script (bourne shell –
sh). It makes a map using the GMT package.

Here’s what you get when you 1st run it, and 2nd
display it (two steps).

But first – a little more about files on UNIX.

Files on UNIX are “flat”

Just strings of bytes with the information
contained in the file.

What do we mean by this?

The files do not have headers or tailers with
metadata about the file, icons, etc.

UNIX does not provide

Indexed

or relational database

files.
(but you can write a program to provide them! Oh

the power of UNIX.).

To UNIX

EVERYTHING is a file, which is a string of bytes.

All equal.

Command line editors

ed

Don’t even think of using ed.
(it is a “line” editor, edits one line with cryptic

commands.)
(except you will use it without realizing when you

use vi!)

If you accidently type it, enter ^D to get out.

Command line editors

edit

Don’t even think of using edit.

If you accidently type it, enter “exit” to get out.
(SUN only, does not exist on Mac)

Command line editors

sed

sed:

powerful command line text editor.
(“the ultimate” stream editor, non-interactive).

It takes standard in, edits each line, and spits it to

standard out.

It uses regular expressions for pattern matches.

Very powerful (i.e. hard to use).

sed:

sed has several commands, but most people only
learn the substitute command: s.

The substitute command changes all occurrences
of the regular expression into a new value.

A simple example is changing "day" in the "old" file
to "night" in the "new" file:

%sed s/day/night/ <old > new!
!

You don’t see anything!

sed:

%echo day | sed s/day/night/  
night!

It does what you tell it.
(here you send edited file to screen, so you see it

but don’t actually have it saved.)
!
%echo Sunday | sed 's/day/night/’!
Sunnight!

sed:

4 parts to substitute command

s Substitute command

/../../ Delimiter

day - Regular Expression Pattern Search
Pattern

night - Replacement string

sed:

Most examples of sed are incomprehensible
(heavy use of regular expressions [will do regular expressions

soon] plus sed only expressions)

sed 's/[^]*/(&)/' < old > new!
sed 's/[^][^]*/(&)/g' < old > new!
sed 's/^\([^:]*\):[^:]:/\1::/' </etc/passwd >/etc/password.new!
!

count the number of lines in the three files f1 f2
f3 that don't begin with a ”#”!

!
sed 's/^#.*//' f1 f2 f3 | grep -v '^$' | wc -l!

sed:

Is very useful when you really need it.

vi and vim

(uses the same command set as ed/edit/sed! This
is Unix, reuse the same tools.)

to start it up

(on Student Mac Lab machines vi is aliased to
vim)

%vim [name-of-file]!

vi and vim are have what is called a “modal”
interface.

They have two modes

“normal” = command mode
insert = input mode

Entering text takes place in insert mode and the
editing power comes to the fore in command

mode.

Use “esc” (escape) to return to command mode
from insert mode.

moving the cursor

h (or backspace or left arrow) – cursor left!
j (or return or down arrow) – cursor down!

k (or up arrow) – cursor up!
l (or space or right arrow) – cursor right

h j k l

vi/vim - moving the cursor in command mode

moving the cursor

w – beginning next word!
b – beginning preceeding word!

w

b

vi/vim - moving the cursor in command mode

moving the cursor

G – move cursor to beginning of last line!
nG – move cursor to beginning of line n

G

vi/vim - moving the cursor in command mode

0 $ ^

$ -- go to end of line (eol)!
0 -- go to beginning of line (bol)!
^ -- go to first character at bol!

vi/vim - moving the cursor in command mode

vi/vim - moving the cursor in command mode

^f -- scroll screen forward one screen!
^b -- scroll screen backwards one screen!

^d -- scroll screen forward one half screen!
^u -- scroll screen backwards one half screen!

^
control key

^f

^b

^u

^d

vi/vim - moving the cursor in command mode

^l -- redraw screen!
^r -- redraw screen removing deleted lines!

^
control key

^l

^r

moving the cursor

Don’t use the arrow keys
(even though you can – unless you are not on a teletype that does not have them – no

arrow keys on keyboard above).
(they are much slower as you have to take you right hand off the keyboard.)

to enter insert mode from command mode

I,i

A,a

i -- insert!
a – append!

A -- append at eol!
I -- insert at bol!

o – start new line and enter insert mode!

to exit insert mode

esc

esc (escape) to exit insert mode and return to
command mode.

type esc to exit insert mode

to substitute a single letter from command mode

r

r – replace (overwrite) character under cursor!
R – replaces (overwrites) characters until you

exit (esc)!

deleting text from command mode

dd

Nx -- delete next N (N can be blank = 1)
characters behind cursor!

NX -- delete next N (N can be blank = 1)
characters in front of !cursor!

Ndw -- delete next N (N can be blank = 1)words!
Ndd -- delete next N (N can be blank = 1)lines!

X,x

dw

copy, paste, repeat from command mode

p

Nyy -- copy (yank) N (N can be blank=1) lines to
the “clipboard” (does not remove/erase them)!
Nyw – copy (yank) N (N can be blank=1) words !
p – paste from the clipboard after the cursor!

!
. -- repeat last command!

yy yw

.

undo and redo from command mode

u -- undo last change!
U -- undo all changes to the line!

^R -- redo change!

U,u

^

control key

.

^R

Search from command mode

/

/[word(s)] <CR>-- search for the next instance of
the word or words!

Uses regular expressions for the pattern
matching. !

n<CR> -- go to next instance of word or words!

n

:s/ return :g/ :

search and replace from command mode

/

:s/[old]/[new]/[g] <CR> -- substitute old string
with new string; does only first instance on line
or add optional final “g” for globally on line.!

!
Uses regular expressions for the pattern

matching.!

n

:s/ return :g/ :

search and replace from command mode

/

:gs/[old]/[new]/[g]<CR> or :%s/[old]/[new]/[g]<CR>
- substitute old string with new string on every
line; does only first instance on each line or
add optional final “g” for globally on line.!

Uses regular expressions for the pattern
matching.!

n

:s/ return :g/ :

search and replace from command mode

/

:g/[key]/s/[old]/[new]/[g]<CR> -- globally find
string “key”, substitute all old string with new

string (first instance per line unless have
optional “g” then all instances on line).!
Uses regular expressions for the pattern

matching.!

n

:s/ return :g/ :

misc

J - takes the line below the current line and appends it to the
current line. (end up with one, longer line.)

J

saving and exiting vim

ZZ

:w :q

:w[!] [filename] -- [optionally over] write to
file filename!

:w – overwrites input file given on vi call,
remains in vi !

:

shift shift

return

!

saving and exiting vim

ZZ

:w :q

:wq -- overwrites input file given on vi call
and quits!

ZZ -- overwrite and quit!

:

shift shift

return

saving and exiting vim

ZZ

:w :q

:q --- quit (does not save). Stops you and you
get a message if you have changed anything - !
E37: No write since last change (add ! to override)!

:q! --- force quit without saving (ignores any
changes)!

:

shift shift

return

vi and vim

Common options

-R read only mode (also view in vim – alias for
vim -R)

-r {file} recovery mode using swap file after

a crash

vim

Has ability to do column editing

Review

When you want to search for a string of text and
replace it with another string of text, you can use

the syntax

:[range]s/search/replace/[g][c][i].

Range can be -
n,m for lines n to m

n,$ for lines n to last (1,$ for whole file)
or g,% for whole file

g – global in the line, c – confirmation, i – ignore
case.

Review!

:[range]s/search/replace/[g][c][i].

The range, global and confirm fields are optional
(given in brackets []).

if you just run

:s/search/replace/!

it will search only the current line and match/

replace only the first occurrence of the match.

Review

Ex with range specified, plus “g” at end is for
global (on line) replace (all matches on line, not

just first)

:8,10 s/search/replace/g!

If you want to search an entire file, and replace all
matches, you can use % to indicate the whole file
as the range, and g for all matches on each line:

:%s/search/replace/g !

other useful features in vi/vim

:![unix command] -- allows you to run
standard unix commands without exiting vim; very

useful with GMT

Example

$:!ls *.SAC!

In command mode the “:” tells vi that we are doing
a command from the ed/edit/sed command list.

If you look in the man pages for vi or vim, it will

refer you to the man pages for ed for the
command descriptions.

other useful features in vi/vim

:set hlsearch -- will highlight all instances of a
string when using /[word] to search

>aB -- indent the block/loop defined by {}
when cursor is located within the block in

question

:sp -- split the screen

^WW -- use to move from one split screen to the
next; useful when writing subroutines within the

same file

other useful features in vi/vim

: set number or :set nonumber -- turn line
numbers on/off

:X -- jump to line number X example :1!

There are whole books on vi and vim. We are just
scratching the surface.

Once you learn one of these, you tend to use
them instead of the GUI/“word” like editors.

From the author of “The best of vim tips” web

page “15 Years of Vi + 7 years of Vim and still
learning 05Aug11 : Last Update “

(I’m not quite sure if this is good or bad!)

Basics of the UNIX/Linux
Environment

Regular Expressions

Regular Expressions

If you master regular expressions, searching for
text becomes easy.

Regular expressions are accepted input for grep,

sed, awk, perl and other unix commands.

Much like learning the shells, it is all about syntax
& we’ll just scratch the surface here.

Regular Expressions

Unfortunately Regular Expressions use some of
the wildcards (very) differently than the shell.

It is quite common for the same character to show

up multiple times in an expression and mean
different things in each instance!

Basic “regular expressions”

. : Matches a single character
!
523:> grep P..D samgps.dat!
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE OKRT!
MOAT -54.9572 -66.79024 SCARP|CAPP|TDF [4] 1998 2000 2007 ARGENTINA

But probably not what I was looking for (I was
most likely looking for the station PELD and

stations whose name starts with P and ends with
D, not the other combination – side effects – it

does exactly what you tell it).!

Basic “regular expressions”

“*”: Matches zero or more instances of the
preceding character

529:> grep AT1*0 samgps.dat!
AT01 -31.00523 -68.49972 US|MATE|CAPP [2] 1997 1999 ARGENTINA!
AT02 -30.86703 -68.49559 US|MATE|CAPP [4] 1997 1998 1999 2004!
AT03 -30.89345 -68.42641 US|MATE|CAPP [5] 1997 1998 1999 2000!
AT04 -30.98976 -68.80327 US|MATE|CAPP [5] 1997 1998 1999 2002!
AT05 -30.84826 -68.94951 US|MATE|CAPP [5] 1997 1998 1999 2000!
AT06 -30.87866 -68.68793 US|MATE|CAPP [5] 1997 1998 1999 2000!
AT07 -30.34463 -68.60229 US|MATE|CAPP [4] 1997 1998 1999 2004!
AT08 -30.24569 -68.46489 US|MATE|CAPP [4] 1997 1998 1999 2004!
AT09 -30.27979 -68.53166 US|MATE|CAPP [3] 1997 1999 2004 ARGE!
AT10 -30.28933 -68.54643 US|MATE|CAPP [4] 1997 1999 2000 2004!

Basic “regular expressions”

“*”: Matches zero or more instances of the
preceding character

529:> grep 'AT1*0' samgps.dat

What were we looking for?

AT0…, AT10…,AT110…,AT1110…!

Basic “regular expressions”

How do we look for anything and everything
(zero or more instances of any character).

The regular expression “*” (the shell wildcard
from earlier that does just that – in the shell)

does not do it – we just saw that it does zero or
more instances of the preceding character.

Basic “regular expressions”

We have enough information.

All we have to do is think UNIX.

Basic “regular expressions”

The “.” represents any character.

The “*” is any number of repetitions (including

none or zero) of the preceding character.

Basic “regular expressions”

How about

“.*”

(dot, splat)

Any character plus zero or more repetitions of
any character.

You can think of regular expressions as wildcards

on steroids (or LSD).

Basic “regular expressions”

“.*”: Matches zero or more instances of
preceding character

Looking for lines strings with “YA” and “ARG” with
any number characters between

-bash 618 # grep YA samgps.dat!
YAVI -22.13792 -65.48923 US|CAP|POSGAR07 [1] 2006 ARGENTINA OKRT !
HYAT -48.73171 -75.33964 US|CAP|GFZ|SCARP|TRANSFER|BOAT|SENH|PIF !
CCYA -21.63037 -65.04788 US|CAP3 [2] 2003 2009 BOLIVIA OKRT!
LYAR -18.134395 -70.568644 CALT|CLSD [c] continuous (2005-) CHILE!
YANI -37.363806 -73.657833 US|CAP|C2010|RAPID|OPEN [c] continuous!
YAPE -29.45242518 -56.91402597 POSGAR07 [1] 2006 ARGENTINA NORT!
-bash 619 # grep YA.*ARG samgps.dat!
YAVI -22.13792 -65.48923 US|CAP|POSGAR07 [1] 2006 ARGENTINA OKRT !
YAPE -29.45242518 -56.91402597 POSGAR07 [1] 2006 ARGENTINA NORT!
!

This is how you look for two strings(but have to be in order)

So now we have two kinds of special characters,
or metacharacters.

Those that mean something special to the shell

(such as the “$” on a shell or environment variable
or the “/” in a path, or the *).

And those that are used to specify a pattern in

Regular Expressions, such as the *.

And will need a way to “turn off”, or escape, the

special meaning in both cases.

\ : Escapes the following metacharacter. Tells it
to use the following metacharacter as a regular
character (i.e. look for a *, don’t use it to mean

zero or more occurrences).

% grep '*' suma.stations | head –n2!
*AGD +11.529000 +042.824000!
* AIS -37.797000 +077.569000!

!

[] : Matches members of the sets/ranges within
the brackets (set [abclmn] any single match of a,b,c,l,m,n. range [a-c] any
single match of letters in range of a to c, i.e. a,b,c.)
!
% grep '[DB]EQ' SUMA.NEW.loc!
3478 2005 7 4 16 7 35.23 10.301 93.576 29.9 4.9 0.0 ehb
DEQ Md!
3480 2005 7 5 1 52 4.16 1.822 97.068 30.0 6.2 6.8 ehb
BEQ Md!
3481 2005 7 5 7 57 27.19 2.244 94.978 15.7 5.1 4.5 ehb
DEQ Md!

^ : Represents the beginning of a line

534:> cat samgps.dat!
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002 CHILE!
COGO -31.15343 -70.97526 CAP [3] 1993 1996 2002 CHILE OKRT!
MORA -30.20823 -70.78971 CAP [3] 1993 1996 2002 CHILE OKRT!
MOR2 -30.20823 -70.78971 CAP [?] CHILE OKRT!
TOFO -29.45939 -71.23842 CAP [4] 1993 1996 2001 2002 CHILE !
SILA -29.24037 -70.74956 CAP [3] 1993 1996 2002 CHILE OKRT!
HUAS -28.47848 -71.22235 CAP [3] 1993 1996 2002 CHILE OKRT!
PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT!
GRDA -27.71571 -69.55836 CAP [2] 1993 1996 CHILE OKRT!
CALD -27.0827 -70.86208 CAP [5] 1993 1996 1999 2001 2002 CHILE!
PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT!
532:> grep ^P samgps.dat!
PELD -33.14318 -70.67493 CAP [5] 1993 1997 1998 1999 2002!
PSTO -28.17157 -69.79377 CAP [3] 1993 1996 2002 CHILE OKRT!
PNAZ -26.14822 -70.65368 CAP [3] 1993 1996 2001 CHILE OKRT!
PPST -20.97508 -68.83487 CAP [3] 1993 1996 2001 CHILE OKRT!
PSAG -19.6023 -70.21962 CAP [3] 1993 1996 2001 CHILE OKRT!

$: Represents the end of the line

file example IND.pha!
1918 9 22 9 54 49.29 -1.698 98.298 15.0 0.0 0 0 !
COC 274.71 1 P !
MAN 346.71 1 P !
ZKW 450.71 1 P !
1926 6 28 3 23 26.82 -0.128 101.514 15.0 0.0 0 0
COC 303.18 1 P !
!
%grep ‘P_*$’ IND.pha | head –n2!
COC 274.71 1 P!
MAN 346.71 1 P!
!
or!
!
%grep –c ‘P_*$’ IND.pha the –c flag counts matches!

831857!

UNIX think practice.

What represents an empty line?

Basic “regular expressions”

We now have all the pieces, we just have to put
them together in UNIX think.

Any guesses?!

What represents an empty line?

^$!
!

A “beginning of line” (bol), followed by an “end
of line”.

(this does not get lines that “look empty” to us,
but not UNIX, because they contain only spaces

or tabs. This is what makes it such fun!)

Non-printable characters

Here the escape means use the following regular
character for a special character (you can’t see a

tab, but it is a “character” to UNIX).

The following syntax works with a range of
commands and programs that recognize regular

expressions (sed, awk, perl, printf, etc)

\t : for a tab character
\r : for carriage return

\n : for line feed or new line.
\s : for a white space

ASCII table

What is actually in a file

-bash 628 geolfigs # cat play!
line 1!
!
 !
line 4!
-bash 629 geolfigs # od -hc play!
0000000 696c 656e 3120 0a0a 0a20 696c 656e 3420!
 l i n e 1 \n \n \n l i n e 4!
0000020 000a !
 \n !
0000021!
-bash 630 geolfigs # !

The cat output shows us the file as characters.
The second output (od = octal dump) shows us
the hexadecimal (h, top line) and character (c,

bottom line) elements of the file.

What is actually in a file

-bash 628 geolfigs # cat play!
line 1!
!
 !
line 4!
-bash 629 geolfigs # od -hc play!
0000000 696c 656e 3120 0a0a 0a20 696c 656e 3420!
 l i n e 1 \n \n \n l i n e 4!
0000020 000a !
 \n !
0000021!
-bash 630 geolfigs # !

You can find the ascii values for the letters (l=6c,
i=69, etc.), and the non-printing characters (\n=new

line) in the ASCII table.
The numbers on the left count the bytes (in base 8

so 0000020=16 in base 10. There are 17 bytes in the file.)

What is actually in a file

-bash 628 geolfigs # cat play!
line 1!
!
 !
line 4!
-bash 629 geolfigs # od -hc play!
0000000 696c 656e 3120 0a0a 0a20 696c 656e 3420!
 l i n e 1 \n \n \n l i n e 4!
0000020 000a !
 \n !
0000021!
-bash 630 geolfigs #

Notice that the line separator is just a new line
(\n).

The ^$ in the Regular expression matches the
pair \n\n in the file.!

What is actually in a file

-bash 628 geolfigs # cat play!
line 1!
!
 !
line 4!
-bash 629 geolfigs # od -hc play!
0000000 696c 656e 3120 0a0a 0a20 696c 656e 3420!
 l i n e 1 \n \n \n l i n e 4!
0000020 000a !
 \n !
0000021!
-bash 630 geolfigs # !

Notice that while lines 2 and 3 look the same to us
(blank lines), they are actually different to the

computer. Line 2 is really blank (0a0a=\n\n), while
line 3 has a space (0a 0a20=\n \n).

(the hex display 696c is “backwards” to the order of the
characters l i , see me if you want more info.)

To match regular expressions

/ regular expresssion here /!
!

The stuff inside the / is the field you are trying to
match or replace.

Don’t always need the /. Usually obvious when
you need them (eg not for grep, but yes when

substituting).

To match a word

/ word / is a good attempt at a match a word
(words are delimited by leading and following

space), but does not get the word when followed
by punctuation for example (“ word.”).

\<word\> the characters \< match the start
of a word, while \> match the end of a word

(have to escape the < and >, and don’t need
the /’s anymore)

now matches the word “word”.

Say you want to find a string and append
something to it.

Try this.

s/run/&s/!

Will match run and produce runs.

The & represents the match.

Say you want to find a string and append
something to it.

Try this.

\1 is first match, \2 is second.

So this will also do it.

!
:%s/\(run\)/\1s/!

You need the (), which needs to be escaped, \,

(else it will look for (run), not run)

The \(. . . \) delimiters are used to inform
the editor that the text that matches the regular

expression inside the parentheses is to be
remembered for later use (in the \1).

Now we can attempt to understand these

sed 's/[^]*/(&)/' < old > new!
sed 's/[^][^]*/(&)/g' < old > new!
sed 's/^\([^:]*\):[^:]:/\1::/' </etc/passwd >/etc/password.new!
!

count the number of lines in the three files f1 f2
f3 that don't begin with a "#:”!

!
sed 's/^#.*//' f1 f2 f3 | grep -v '^$' | wc -l!

Now we can attempt to understand these

sed 's/[^]*/(&)/' < old > new!
!

We need to see a few more definitions of regular
expression elements

!

[] defines a “class” of characters

What are character classes?

A character class matches a single character out
of all the possibilities offered by the character
class. Inside a character class, different rules

apply.

The rules in this section are only valid inside
character classes.

The rules outside this section are not valid in
character classes, except for a few character
escapes that are indicated with "can be used

inside character classes".
(see the regular-expressions.info web site link on the class web site)

Now we can attempt to understand these

sed 's/[^]*/(&)/' < old > new!
!

We need to see a few more definitions of regular
expression elements

!

[] defines a “class” of characters

Inside a class definition the ^ immediately after
the [means negation of the class (outside a class

definition it means the beginning of a line)

It is followed by a space [^]

So this matches any single character not equal to
a space.

Now we can attempt to understand these

sed 's/[^]*/(&)/' < old > new!
!

Continuing on we are looking for a non-space
character, the [^], repeated zero or more

times, the *.

So that is what we are looking for?

The first string of non-spaces.

Now we can attempt to understand these

sed 's/[^]*/(&)/' < old > new!
!

When we find it, we will replace the first
occurrence of it with the string represented by

the (&) which is an open paren, followed by
whatever we found (indicated by the ampersand)

followed by a closed paren.

Now we can attempt to understand these

sed 's/[^]*/(&)/' < old > new!
!

Notice that the parens here are taken as regular
characters (no \)

-  why, since parens are metacharacters?

Answer – parens are metacharacters in the match
definition, so if I’m looking for parens I have to

escape them.
In the output I’m not using search metacharacters
for anything so they don’t have a special meaning,

I’m just specifying what to output.

You can work on the others

sed 's/[^]*/(&)/' < old > new!
sed 's/[^][^]*/(&)/g' < old > new!
sed 's/^\([^:]*\):[^:]:/\1::/' </etc/passwd >/etc/password.new!
!

count the number of lines in the three files f1 f2
f3 that don't begin with a ”#”!

!
sed 's/^#.*//' f1 f2 f3 | grep -v '^$' | wc -l!

Regular expressions are like mathematics where
each symbol is absolutely essential and means a
very specific thing and you better understand all

the ramifications and details.

It is not like literature where you can randomly
throw out 5% of the letters and still understand it.

Compress multiple occurrences of blank lines into a single blank line!
!
:v/./,/./-j!
!
Use :helpgrep '\/,\/' *.txt for an explanation.!
!
I'll break down this incredible collapse-multiple-blank-lines command for everyone, now that I finally figured out how it works.!
First, however, I'll rewrite it this way to illustrate that some of those slashes have totally different meaning than others:!
!
:v_._,/./-1join!
!
Note that to delimit expressions like these, just about any symbol can be used in place of the typical slashes... in this case, I used underscores.
What we have is an inverse search (:v, same as :g!) for a dot ('.') which means anything except a newline. So this will match empty lines and
proceed to execute [command] on each of them.!
!
:v_._[command]!
!
The remaining [command] is this, which is a fancy join command, abbreviated earlier as just 'j'.!
!
,/./-1join!
!
The comma tells it to work with a range of lines:!
!
:help :,!
!
With nothing before the comma, the range begins at the cursor, which is where that first blank line was. The end of the range is specified by a
search, which to my knowledge actually does require slashes. The slash and dot mean to search for anything (again), which matches the nearest non-
empty line and offsets by {offset} lines.!
!
/./{offset}!
!
The {offset} here is -1, meaning one line above. In the original command we just saw a minus sign, to which vim assumes a count of 1 by default, so
it did the same thing as how I've rewritten it, but simply with one character fewer to type.!
!
/./-1!
!
There is a caveat about join that makes this trick possible. If you specify a range of only one line to "join", it will do nothing. For example,
this command tells vim to join into one line all lines from 5 to 5, which does nothing:!
!
:5,5join!
!
In this case, any time you have more than one empty line (the case of interest), the join will see a range greater than one and join them together.
For all single empty lines, join will leave it alone.!
!
There's no good way use a delete command with :v/./ because you have to delete one line for every empty line you find. Join turned out to be the
answer.!
This command only merges truly "empty" lines... if any lines contain spaces and/or tabs, they will not be collapsed. To make sure you kill those
lines, try this:!
!
:v/^[^ \t]\+$/,/^[^ \t]\+$/-j!
!
Or, to just clean such lines up first,!
!
:%s/^[\t]\+$//g!

The trick with Regular Expressions is to be able
to generate them, not just understand them when

provided.

Generating them is usually an iterative process
(sort of like passing the law “to see what is in
it” [Pelosi], you have to execute the command

and see what it does. Then “fix” it, try again, etc.
Most normal people can’t write these things 100%

the first go.)!

