Data Analgsls 18 Geophgslcs
ESCl 7205

Class 24

mad

) -

30b Sma”eg

Short intro C.

_

Cisa hjgher—-level language that is Aesignecﬂ to be

iNnde endent O]C com utational Plahcorm

(as are Fortran, COBOL, ALGOL, PL/1, APL, Matlab, C++, ...
- and all Prettg much dismal failures at it.).

Higlqer—-level Ianguages must be translatccl into

the low-level machine language in order to run
(same as Fortran, COBOL, ALGOL, PL/1, APL, C++, ...).

This is done via comPilcr and 9ie|ds an executable
Drogram spechcic to that Plahcorm.

Differences between C & C++

CH+ grew out of Candis mos’irlxj a superset of the
latter, but it is considered a different |anguage

Tlﬁeg are not cleveloped to be cross~compatib|e
and C++ does not supersecie the use of C

Differences between C & C4++

C++ iﬂtrocJuces many Features that are not
available in C and in Practice almost all code
written in C++is not valid C code

There are many C syntaxes which are invalid or
behave igerently in C++

This is all we are going to say about C++

(see the master programmer example or WI’19> .

The standard reference for Cis

The C Programming L anguage

By
Kemighan and Ritchie

Commonlg known as "K&R”

Now in its 2" edition covering ANSI C (1988)
(first edition 1978)

Basics of C
Simplc C programs have the Fo”owing structure

o Comments (can really be anywhere)
e Libra ry | NClUSIONS have to be defined before using
e Defines
* FUNCLIONS (have to be defined before using, so in source code file should

come b@core main Program that uses ’chem)

e Main Program

C program source fle names MUST end in . c
(.cpp for C++)
(i you don't like that use the power of UNIX to

write your own OS and coml:)iler.)

Comments

Done with a Pair of delimiters "/*" to start, and
"* /" to end, comment is enclosed within them.
Theg match up across lines.

]

* File: hello.c

* This program prints the message “Hello, world.”

W

To make turning comment on/ot easilg use

Commented out

/«%

ancl not commentecl out
é¢7?;§§g7/

i++; /*

Libraries

|ibraries are collections of too
known as functions in C) that
ol:)erations.

s (subroutines —

~erform spechcic

(theg are also available for all high level languages) HLLs, notjust C.)
(C is most otten comParecl to BASIC, where it "wins" hancls-—down, rather than "real’
Ianguages where the Fight is more fair.)

| ibraries are not part of the basic C |anguage.

(thcg may even be written in another language)

As part of the UNIX “lean and mean' Plﬁilosoplqg
Eemember the power of UNIX) C does not
include

e 1/O (basic or otherwise)

» math (begond what is in the CPU as an
instruction: +, =, *, /, and, or, ex-or, not,
shift).

(and theg got away with it

Writin]g 1/O routines, math (exponentiation for
examp e) are leFt to thc user to write as theg see

tit/need.

Luckg forus — someboclg has developed some of
these things

(but Wwe are Nnow relinc]uishing the power of UNIX to them).

But before moving on to

. Librarg inclusions
e Defines
e Functions
* Main Program

We have to deal with the earlier remark

"(have to be defined before using)"

Declarations

Variables and functions must be declared in C and
CH++ 11

numeric variable types include:

| ntegers

int:integers (usua”g 4 bgte Now)
short: short integers (2 bgte)
long: longintegers 8 bgtc) more memorg}

int Xx;

Declarations

Variables and functions must be declared in C and
C++

numeric variable tgpes include:

Floati ng Poi nt

float: single~l:>recision real Hoating Point
number (4 bgtc—:)
double: c:louble~|:>recision real Hoating Point (8
byte, more Precision but also more memory}

Declarations

Variables and functions must be declared in C and

CH++
string variable ty
char: character variab

"nothi ng'

DCS

e (btge)

void: no‘clﬁing but a name (not rea”g a variable as
it does not refer to something stored in memory
referred to with that name, but something that
needs to be defined because all names have to be
defined — used for functions).

Declarations

Variables and functions must be declared in C and
CH++

struct: structures

(Blocks of variables that don't all have to be the
same tgpe.)

Iater

Back to the discussion of libraries.

Since C 1s sO striPPecJ down — libraries are much
more iml:)ortant to C than the Previous languagcs
we have seen/used.

#include <stdlib.h> /*the standard general purpose library*/
#include <stdio.h> /*the standard input/output library*/
#include <math.h> /*the standard math library*/

#include “hrdfavorites.h” /*a personal extended library*/

You usua”g have to declare at |east the
stdlib.h 1Cor a Program to comPile.

Since C 1s sO striPPecl down — libraries are much
more iml:)ortant to C than the Previous ‘anguages
we have seen/used.

#include <stdlib.h> /*the standard general purpose library*/
#include <stdio.h> /*the standard input/output library*/
#include <math.h> /*the standard math library*/

#include “hrdfavorites.h” /*a personal extended library*/

Tlne next two |ibraries that you almost always
need are

tl"le I/O hbra r93 stdio.h (how often do you write programs with

absolutelg no input or output’?) , all

the math librarg, math.h.

#include <stdlib.h> the standard general purpose library

#include <stdio.h> the standard input/output library
#include <math.h> the standard math library
#include “hrdfavorites.h” a personal extended library

The final |ibrar93 hrdfavorites.h,is something
you (actua“g someboclg whose initials are "hrd")
wrote.

Notice the filenames all end in . h

Also notice the ones that come with C are within
angle brackets <> while ones you write (or are
local™) are in quotes “ .

#include <stdlib.h> the standard general purpose library

#include <stdio.h> the standard input/output library
#include <math.h> the standard math library
#include “hrdfavorites.h” a personal extended library

Actuaugj these statements in your C program do
not include the |ibrar9 routines/code in your
program, that haPPens in the comPile/ ink
command where you have to saeci% them ndwhere

they live - i.e. their path) 3 ain (the linker gets pre-compiled versions of these
Y P ges p P

routines from the librarg/ archive file) .

#include <stdlib.h> the standard general purpose library

#include <stdio.h> the standard input/output library
#include <math.h> the standard math library
#include “hrdfavorites.h” a personal extended library

All these "h files" (as theg are called) actua“g do
is define all the names and ?PCS of the functions
and variables associated with the libraries.

(C requires evergthing to be defined)

Functions come next since theg have to be
defined before theg are used in the main program
(or other functions — so the order of Aegining
functions is important

(although this rule seems to be common|9 broken and you can Put the functions in an
order in your source code — depends on how many "trips“ the compiler makes througfg
the code when compiling — tg[:)icallg one or two. The one triP compilers need things in the
"proper” order, the two triP ones get to fix things up the second time throug).

(This has imPlica’cions for building ibraries hcﬁou ever have to do that. And whg random
ibraries were evelopeci.}

Simplc programs don't have functions, which are
defined the same way the main program is, so we'l

just skil:) ahead to that.

The main Program comes next

Main Program is in a "block" defined bg the braces
and contains the program itself

volid main(int argc, char *argv[])
{
printf(“Hello.\n");

}

Ogiciallg, we are defining a function called main |
that returns nothing (declared as void), has
some inPut arguments, and has a bodg contained

inthe {}.

As Yogi Berra said - "it's déjé vu all over again"

Just as the shell is "just another Program"l

The main C program is "lust another function"!
(Cwas dcvelopecl bg same group of guys that developecl UNIX, can't you tell).

50 you have to do all the c:léncinitions, etc., you
would have to do for any other function.

Under the declare evetytiﬁing rules - even tl’iings

that are never expiicitlg "‘called” such as the main

program - you have to say what each "tiwing" IS 1N
terms of its "result” (in memorg).

The function main does not Procluce a result that
is stored in memory.

We (have to) tell the comPiler that using the void
tch declaration.

Other Possibilities for function types are int,
float, double, char, struct, ...and Pointers
to all of them.

Declaring variables and functions in a function

Here are some examples of variable and function
declarations

void main(int argc, char *argv[])

{

int a,b,c;
double dd,ee,ff;

-
Variables must be declared at the be inning of

your program / function blocé

Lines of code within blocks have to be terminated

by *;

Scope of variables

(where theg are 'known’)

void main(int argc, char *argv[])

{

int a,b,c;
double dd,ee,ff;

These variables are only known' in this block, le.
between the {}.

: i

void main(int argc, char *argv([]
{

int a,b,c;

double dd,ee,ff;
}

N

You have to declare the variables in the argument
list of the function call.

These are inPuts to (not outputs from) the
function.

These variables are also onlg known' in this block,
.e. between the {}.

void main(int argc, char *argv[])
{

int a,b,c;

double dd,ee,ff;

double my function(double)|;

efining’a function that

returns a clouble ancl

takes a double inl:)ut argument.

Prototgpi ng
Declaration on steroids.

D@Cining what each function returns and its list of
arguments is called Prototyping.

void — returns nothing

int — returns integer
float — returns float
char - returns character

struct — returns structure
*something — returns pointer to "something"

I you Forgct to "tyPc" a funciton, int is assumed
and the compiler will complain.

Declaring variables /functions

void | main(int argc, char *argv[])

double dd,ee,ff;
}

declare the "t Pe" of the function definition
(notice you on't need the word function).

Since the main function does not "return"
anything (put som thing in memory), its type is

void
(gou can get away with void main() hcgou are not Processin;dhexpecting any inPut
arguments and some compi!ers will even let you get away wit just main().)

void main(int ar%\
The two arguments are an integer and a Pointer

(coming up next) to a character array (which is
itself a Pointer) . These two tlﬁings come from the
shell (the ca”ing routine).

The integer has the number of command line

arguments, and the second argument Is a Pointer
to an array of character Pointers, each ointing
to the address of the begirming of the character

string for eacT) arcument.

All this extra t Ping IS sul:)l:)osccl to help make
sure your code is consistent and Protect you
from goursehC (VCI‘H un~UNIX like — trging to help
the user become abetter typer) -

You also have to initialize all variables before you
use them to avoid etting whatever happens to be
sittiﬂg in that location in memory.

(i.e. before using a variable on the RHS it should
show up bcing set to something on the LHS.)

This is important when cloing things like X++

There is no sPecial suntax for using a variable

once it has been declared.

#include < stdio.h>

#include < sedio-h> (= ot L1 0 tion definitions.

main()

{

int angle degree;
double angle radian, pi, value;

printf ("\nCompute a table of the sine function\n\n");
/* obtain pi once for all */
/* or just use pi = M PI, where M PI is defined in math.h */

pi = 4.0*atan(1.0);

printf (" Value of PI = %f \n\n", pi);
printf (" angle Sine \n");
angle degree=0; /* initial angle value */

while (angle degree <= 360) { /* loop until angle degree > 360 */
angle radian = pi * angle degree/180.0 ;
value = sin(angle radian);
printf (" %3d $f \n ", angle degree, value);
angle degree = angle degree + 10; /* increment loop index */

Structures.

we can declare a block of data containing
cligerent c:lata tgpes bg means omc a structure
declaration.

'Thetgpeksstruct

struct tag {

char lname[20]; /* last name */
char fname[20]; /* first name */
int age; /* age */

float rate; /* e.g. 12.75/hour */
i

Structures.
This defines a new type of variable named tag.

This variable will be a block of memory with 20
bgtcs for a character array /strin lname, 20
bgtes for a character array/strin f%ame, 4 bgtes
fora integer and 4 ytes ér a Hoat.

struct tag {

char lname[20]; /* last name */
char fname[20]; /* first name */
int age; /* age */

float rate; /* e.g. 12.75/hour */
i

Structures.

To use this structure we Clé‘FiﬂC a structure
variable of type tag

struct tag my struct; /* declare the
structure my struct */

and to assign /reference the elements of the
structure

strcpy(my struct.lname, "Jensen");
strcpy(my struct.fname, "Ted");

printf("\n%s ",my_ struct.fname);
printf("%s\n",my struct.lname);

Global Constants - define

You can define constants of any tHPC]:)g using
the #define comPiler directive. Its syntax IS

simple--for instance
P

#define ANGLE_MIN O
#define ANGLE_MAX 360

C istinguishes between lowercase and

u

DPCFCBSC ICttCFS in \/ariable names.

It 1s customarg to use caPital letters in clemcining

global constants.

These are traditiona”g declared after the

#include calls

AmﬁhmeﬁcCDPemﬁ0ﬁ5

plus

minus

multiply

divide

modulo divide
increment
decrement

bitwise left shift
bitwise right shift
bitwise and
bitwise or

bitwise xor

Arithmetic Operators

Notice the useful operations — bitwise shifts and
bitwise |ogical oPerations.

(no exponentiation! C s mean~ancl~|ean!)

(onlg has math oPerations that corresponcl to cpu arithmetic unit register instructions —
that's Wl‘ng you get the bitwise shifts and logicals)

"Assignment by" OPerators

+= sum

—= difference
* = product

/= quotient
%= remainder

<<= bitwise left shift
>>= bitwise right shift
&= bitwise and
|= bitwise or
"= bitwise xor

Examplcs of C "shortcut” o berators

X++;
++X;
X+=5;
X+=y;
X*=Y;
X/=y;
X3=Y;
X=y<<2

X<<=23
X&ZY;

use X, then increment }33 1

iNncrement bﬂ 1, then use x

add 5 to x

add y to x

multiplg X bg y, store in x

divide x by y, store in x

divide x b y, store remainder in x

shitty le?‘tjbg 2, store in x (y
unchang@&}

shitt x left bg 2, store in x

Iogical bitwise AND of x with y, store in

X

Conditional OPerators

Conditionals are logical operations involving
comParison of quantities (o the same type) using
the conditional oPerators:

—— Cqual tO
| = not eclual to
< |ess than
<= Iess thaﬂ or equal to
> greater than

>= greater than or equal to

Boolean oPerators

"Regular" (use In comParison tests)

& & and
or

! |ogica| not (coml:)ares
variable)

Bitwise (operate on each bit — can't use in
comParison tests)
& an
| or
. nor
= not

TUPC combinations

floats and doubles divided bg floats and
doubles are rclativelg easy to use

but Problems ‘cencl to occur when Pemcorming
division of other types.

An int divided bg an int returns an int.
An int divided bﬂ a float returns a float.
A float divided bg an int returns a float.

A float divided bg a float returns a float.

As an example, 3 is considered as an int, but
3.0 is considered as a float.

1t you want to store the result of a division as a
Hoating~Point (decimal) number, make sure you
store it in a Hoat declared variable.

Explicit conversion
you can sPeci@ explicit conversion by usinga
tgpe cast

int num, den;
double quotient;

quotient = num / |(double) | den; /*this recasts den as a

double so the value of an int/double is a double.

Lool:)s

C is the original loopin% |aﬂguage (even tlﬁouglﬁ all

Previous HLL's have oops} love it or hate it

Statement blocks, Or sequences of statements,
are encased using

(this is genera

Statements in a bloc

{ }
) notjust for lool:)s).

¢ are executed in sequence

from first to last bg default

(statements in C are terminated bg “2+” Otherwise C wraps lines, unlike fortran.).

{

first statement;
last statement;

}

while

while: continues to looP as |ong as condition
tests successgul

count = 0;
while (count < 10) {
count += 2;
printf ("count is now %d\n”,count);

}

There is no print command.

To Print you use the commands printf (Print to
le) and prints (Print to string) from the stdio
librarg.

do-while

Similar towhile IOOP cxcept test occurs at encl

O‘F IOOP]Z)OCI}}

Guarantees tne Ioop IS executecﬂ at |east once
before continuing.

do
{

printf("Enter 1 for yes, 0 for no :");
scanf("%d", &input value);
} while (input value != 1 && input value != 0)

for

one of the most common IooP structures is the
for loo D, which iterates over an array of objects

for i values in array, do stuff in block (deﬁnecl
by {}).

for (i=0; i<=10; i++)

{

for (Jj=0; J<=10; j++)
{

H[1]1[J1=0;

}

if/else if/else

I cxpression is true, then run the first block
dﬂocksanadeﬁne&k¥yﬂkzpaﬁcwixaC€5{f)OF
commands. Else, if a second exPressiOH s true,

run the second block of commands. Else, if

neither is true, run last block of commands.

if (a > b)
{

statements;

}

else if (a == Db)

{

statements;

}

else

{

printf ”%d is less than %d.\n”, a, b;

}

switch

looks like

switch (expression)

{

declarations

this part can repeat

case constant-expression
statements executed if the expression equals the
value of this constant-expression

break;

default
statements executed if expression does not equal
any case constant-expression

switch

Control passes to the statement inside the switch
block WhNOoSse case constant—-exl:)ression matches
the value of switch (expression).

No blocks, {}, for the "cases" in the switch block.

The switch statement can include any number of
case instances, but no two case constants within
the same switch statement can have the same
value.

httl:): //msdn.microsoft.com/en-us/ librarg / 66|<§1h7a°/o23v=vs.80%29.aspx

switch

Execution of the statement bodg begins at the
selected statement and Proceeds until the end of
the bodg or until a break statement transfers
control out of the bodg.

This construct is Particularl useful in hanc”ing
inPut variables.

switch
So what does this do?

c='a';

switch(¢)

{

case 'A':
capat+;

case 'a':
letterat++;

default :

~ otherletters++;

} .

switch

So what does this do?
C=] al ;
?WltCh(¢) matches hcre so starts

executs ng here

case 'A': > }) ,
capa+/cremen s lettera by
case 'a':

letterat+; but what does it do next,

Casel'g‘c: . where does it o/sto

e exr - -

Hefault - executing (in t Hock)
otherletters++;

switch

So what does this do?
c='a';
switch(¢)
{

reread the clescril:)tion

case 'A': Vd
capa+z;/////////bM35' €5 ago.
case 'a’':

lettera++; [t continues executing till the
case 'b': end of the block, or it

letterb*+; ~cncounters a break statement.
default

erletters++;

switch

So what does this do?
C= 1 a 1 ;
switch(¢)
{ s jButHﬂskspnﬂxﬂﬂgrmﬁ
case A
capa+t; what we want to do here,
cmEyrs D0 as it will execute to the
lettera++; end and increment the
case 'b': numberoglettera,
letterb++; letterb and
felau t) otherletters.
otﬁfrletters++;

}

break commancl to tl’]C rescue

allows you to break-out of a for orwhile IoopJ
or a switch block

C=lal;
switch(c)

{ now it stoPs execut ng
case 'A': the block after
capa++; matching and doing the
break; statements between
casel | ’it : . the match and the
e era
broaks break.
case 'b':
letterb++;
break;
default
otherletters++;
} -

In loops, the default behavior is the break out of
the cnclosing looP block
(not the block associated with the i f)

for (a=0; a<20; at++)
{

if (a > 10)

{

break;

}
}

break or terminating loop here

But you may want to clo it wi’chout the breaks

switch(¢){
case 'A':
capat+;
case 'a':
lettera++;
default :
total++;}

This default behavior in Cis called "1Ca”~throug|ﬁ".

When Fa”»-through is the default action, switch/
case statements are a Frec]uent source of bugs
among even experienced programmers, gjiven
that) in Practice, the "break" is almost alwags the
desired Path, not the default Fa”~through

behavior-.

switch examlalc with in’tegcr that counts number
of times 1 is -1, 0 or 1.

switch(1)

n++; and test for equalitg

(hot <7 for examl:)le)

Take home message:

The switch statement is not the same thing as a
big if-if else-else statement.

Each case must be unique) evaluated sta’cica”g,

and it has 1Ca”~through.

Arra%f
Arrags of any tgpe can be formed in C. The
sgntax IS simple:
type name[dim];

double name[100];
/*you have to already know how big the array/
vector will be in this case!”/

In C, arrays starts at Position 0.
Tlfwe array above 15100 elements |ong.

The elcmcnts 01[thc array occupy acﬁacent
locations in memory.

One way to access array elements is

name[0]
name|[1]
namef[n’

where the index gjives the array element number,
this is also the offset into the array from the

b@ INNING (that's whg C indices start at zero, the first element is at the address of
the array plus zero - which is one of the secrets for for @C]Cicientlg using C arrags)

C does not do bounds checkingj fnis greater
than or equal to the array size (remember first
elsmentis 0) C will happilg g0 there.

Pointers
(The |<<:9 to using arrays in C)

The C lan uage allows the programmer to “Peek
and po e directlg into memory locations.

This gjives great Hexibi ity and power to C, butitis
also one of the great hurdles that the begirmer
must overcome in using C.

C does this with variables called Pointers that
store the acﬂdress 01C othcr Variablcs.

Pointers

hcgou are going to use C

you are going to use Pointersl

Pointers

Pointers are a tﬂPC of variable and you therefore
ave to declare them.

The Pointer itself is an integer, but it is a sl:x-:cial

tgpe of integer.

You need to associate a Pointer with the tHPC of
element to which it Points.

Pointers

You define a Pointer bg Putting the asterisk
modifier, * before the name.

int *p; /*declared that p is a pointer

to an integer variable */
double *q; /*declared that g is a

pointer to a doublevariable */

C will interl:)ret the contents of p and q as
addresses (which are integers).

We can do two things with addresses
= manipulate them
~ get the contents o1C memory at that a&dress

Pointers
Notice that there are two parts to the definition,
first thatitis a Pointer (the *) and

what type of variable it points to (int, float,
char, ...).

——

"he variable tgpe IS important because this sets

up the "stel:) size" when you increment/ decrement

the Pointer variable to get the "next/ Previous"
value of that tﬂPC of variable from memory.

Next we need a way to get the address of
something to Put it in the Pointer variable.

We use the "address-of" oPerator (unany &) .

&x returns the address of x, which can be stored

Tale

bointer variable.

pP=6&X; /* the value of p contains the

address of x */

We can tl’léﬂ use tlnc Pointer variable to access thc
memory contents at tlﬁat aclclress.

But we need a way to indicate we want the data in
the memory address CFoin’ced to]39 P rather than
the value (address) sotred in p.

This is done using the asterisk moditier, *, before
thevaﬁabknmmﬂe(ashwﬂxz&eﬁn%kwﬁ.

x=17;

p=&x;/* the value of p contains the
address of x */

y=*p; /* put the contents of memory
found at address p 1in y *

Tl’TlS iS CB”@CI "CICT'C‘FCFCnCiﬂg" (* is the cleFerencingoPerator)
and Puts 17, the contents at the address Pointed
to bg p, into the variable Y.

V=*p; anﬂxrﬁthesamere&ﬂtas
Y=X;

One can also set the Value cnc X clirectlg using thc
Pointer to x's address

p=&x; /* p has the address of x */
p=17; / same result as x=17 */
p=y; / same result as x=y */

You can see the power (ancﬂ comcusion) that
Poi nters offer.

| can now set p to some other address and store
something in this new address.
It is often difficult to Figurc out one 1s cloing with
Pointers when reading the code.

A Pointer is "like an integer".

You can do arithmetic with p, but this arithmetic
"knows about" the size of the object P Points to,

SO adding 1ltoa Pointer makes it Point to the next
object (which is genera”g not one byte long — S0
the value in the "Integer” p Wi”jump Eg the size of

the object it Points to).

To refer to what is in the address pointed to]39
the Pointer you use *p, on either the right or lett
sides of exPressions.

58C‘< to arrags (or more on POiﬂth’S)

The other secret to using arrays in C is that the
array variable is egectivelg a pointer (even
though the * was not used when the array

variable was c:lemcinecl) the []5u]t>5titute for the *).

An array consists of multiple elements, accessed
bg arrayname[n], soit "makes sense" that the
variable arrayname works like a Pointer.

int my array[] = {1,23,17,4,-5,100};
int *ptr;

void main(){

ptr =
ptr =

&my array[O0];
my array;

The two lines do the same thing. Somy array all
bg itself acts like a Pointer (i it was not a Pointer,
and of the proper type, C would complain when

we tried

toﬁnmﬁhntCF@M&werbkptrCﬁs

DT’OtCCtiﬂg us 1Crom OUT’SCIVCS l’"le'C.)

We cannot do this however
my array=ptr;
asmy array is aconstant value that cannot be
changcd oncemy arrayls defined (either by
the compiler or cignamicang) .

It is the address of my array which is fixed/
constant.

arrays ancl Pointers are interchangeable

the expression a[i]is semantica”g ecluivalent to
*(at+1i)

Array subscripts vs. pointer arithmetic

Element First Second Third nth
Array subscript array[0] array[1l] array[2] array[n - 1]
Dereferenced pointer *array *(array + 1) *(array + 2) *(ar raiY) +n -

Array subscripts vs. pointer arithmetic

Element First Second Third nth
Array subscript array|[0] array[1l] array|[2] array[n - 1]
Dereferenced pointer *array *(array + 1) *(array + 2) AR e

1)

int *1

1=0;

the exl:)rcssion a[i++] returns the value at a [1]
and then adds n to the value of Pointer i (the ++
follows the i), where n represents the size of one
instance for the tﬂPC of variable the Pointer
Pokﬁsha(4£orint,4gbrfloat,8Fbrdouble,
1 for char,...)

Array subscripts vs. pointer arithmetic

Element First Second Third nth
Array subscript array|[0] array|[1l] array|[2] array[n - 1]
Dereferenced pointer *array *(array + 1) *(array + 2) AR e

1)

We could also do
1=a;
And then use
*i++;
returns the value at the address Pointed to bg 1
and then increments i }33 "one" to the next
element of the array.

Using Pointers is the most common method of
accessing arrays

*(at+1i)
rather than
afi]
also, fpisa Pointer and
p=a;

| can step througlq the array N a loop using

b=p++;

in addition to Pointing to variables and arrays,
Pointers can Point to Pointers (Whiclﬂ can make
for very interesting debu in?) and structures
(more on them |ater) and E% elements of arrays.

int* arr[8]; //Anarray of 8 int pointers
(arr is egectivelg a Pointcr).
int *(arr[8]); //same as line above

int (*arr)[8]1; //A pointer to an array of 8
integers

This is how C handles character strings.
Clﬁaractcr strings are arrays with one Charactcr
Per element.

(In Fortran character strings are their own data
type, like integers or reals. In C character strings
arejust arrays of bgtes.)

Strings
You have to ’think cnc strings as character vectors

(much

like matlab)

Strin%s are manipulatecl either via Pointers orvia

sPecia routines availal

ble from the standard string

ibrary string.h
(baéc(lagesamnostnoﬂﬂngD.

C strings are null terminated (start at address of
string, and continue until a a null [zero] byte IS
encountered).

#include <string.h> to work efficiently with strings

char string[20];

char message[] = “Hello, world.”;

Examl:)le of how not to build strin array
(although S legal), but shows how t ey work.

char my string[40];

my string[0] = 'T';
my string[l] = 'e';
my string[2] = 'd’:
my string[3] = '\0';

In C strings are "zero terminated".
The string continues until the zero bgte IS
encountereci.

This means the onlg way to get the lengtlﬂ of a
string is to count it (slow).

Another examplc of how not to build s’tring array
(although IS legal)

char my string[40]=
{lTl,lel,ldl,l\Ol,};

Usual way

char my string[40] = "Ted";

Sets aside 40 bgtes, but does not remember this
information. If you write past my string+40
you are clobbering something.

Subroutines (called functions in Q) [Fortran has
both subroutines and functions — the difference
being that a function returns a value “y=sin(x)”
for example, Versus
“call sin(angle,value)”]

A function has the Fo”owing lagout

return-type function-name(argument-list-if-necessary)

{

...local-declarations..
...Statements...
return return-value;

}
If return-type is omitted, C defaults to int.

Pointers are usecl to Pass arrays to Functions.

C alwags passes argumeﬂts to Func‘cions]33 Value
[a copg]) CXCCPt Wl’]@ﬂ lt Cloes ﬂOt [arrags].
We will see the implica‘cions of "Pass bg value'
next.

Fortran passes !:)3 address (Pointer, but you
don't have to deal with tlﬁings as Pointers In
Fortran).

You can also pass Pointers to functions (goujus’t

have to define everytlﬁing Prol:)erlg).

C passes argumcnts to subroutines bg value (a
COPH).

hC you want results From the subroutine returnecl
to the ca”ing program there are two ways to do it.

You can have the Func’cion return a single
"thing“ (int, Hloat, etc.) back using the

type function name (argument list)
icormat and then use as
int Prd;

int function name(int);

p=function name(q);

C passes arguments to 5ubroutines bg value (a

Copg) :

It you want to pass something back to the ca“ing
program through the argument list you have to
ass something you can state b Value.
P gY Y

i you trg

volid my sqrt(float val in, float val out){
val out=sqgrt(val in);}

1t will not do what you want/think since val in
and val out in your function are copies of the

two vari;blcs t]nat your ca”ing Program gave to
my sdgrt

my sqgrt(in val,out val)

so the Ca”ing Pro%s;am does not know what the
suproutine did.
The value in out val has not changecl.

The solution to this is to use Pointers.

void my sqrt(float val in, float *val out){
*val out=sqrt(val in);}

Now | pass a copy of the value of the Pointer to
the address of Val_out to the function.

The function uses the Pointer to change what is
stored at the address in the Pointer.

In the function | can use this Pointer to store the
result in the memory location Pointed to 193 the
Pointcr.

void my sqrt(float val in, float
*val out){
*val out=sqrt(val in);}

Here's thc ca”.

float out val;
my sqgrt(in val, &out val);

5hor’t examl:)le using]Z)Oth ways to pass Variables

S cat fnex.c

#include <stdlib.h>
#include <stdio.h>
void my sqrt 1(float val in, float *val out)
{

double sqgrt(double);
*val out=sqrt(val in);
}

float my sqrt 2(float val in)
{

double sqgrt(double);
double val out;

val out=sqrt(val in);
return val out;

}

int main()

{

float x;

float y;

X=2;

my_sqrt_1(x,&y);
printf("%£f\n",y);
y=my_sqrt_2(x);
printf("%£f\n",y);

}

Structures and Poin‘:ers.

We can also use Pointcrs with structures

struct tag *st ptr; /* a pointer to
a structure */

st ptr = &my struct; /* point the
pointer to my struct */

Structures and Pointcrs

(*st ptr).age 63;

rcplacc that within the Parenthesis with that which
st ptr Points to, which is the structure
my struct. Thus, this breaks down to the same
asmy struct.age.

However, this is a Fairlg often used ex[:)ression
and the clesigners of C have created an
alternate sgntax with the same meaning which is:

st ptr->age 63;

#include <stdio.h>
#include <conio.h>
int main() {

struct st {
int id;

char *name;
char *address;

}i

Define structure

Define instance and Pointer to
st structure

struct st employee, *stptr;

stptr = &employee;| Setpointerto address of structure

stptr->id = 1;

stptr->name = "Angelina';

stptr->address ="Rohini,Delhi";

printf ("Employee Info: id=%d\n%s\n%s\n", stptr->id,
stptr->name, stptr->address);

return 0; Use pointer->element to
} access elements in structure.

Pointers can also be made to Point to functions
(s0 Now you don't know what function is being
called when you write the program — it gets
determined during execution of the program
based on the%ata being Processed).

Pointers are also used for ¢ gnamic allocation of
memory.

Pointers to functions

Their declaration is casy: write the declaration as
it would be for the function, say

int func(int a, float b);

||u —

Pointers to functions

simpl% Put brackets around the name and a * in
ront of it: that declares the Pointer.

Because of Precedence, if %ou don't Parentlﬁesize
the name, you declare a function retuminga
Pointer:

/* func returning pointer to int*/
int *func(int a, float b);

/* pointer to func returning int */
int (*func)(int a, float b);

Pointers to functions

Once 9ou'\/e got the Pointer) you can assign the
address of the right sort of Fumctionjust bg using
its name: like an array, a function name is turned
into an address when it's used in an exl:)ressiorl.

You can call the function using one of two forms:

(*func) (1,2);
/* or */
func(1l,2);

Pointers to functions - cxamplc

#include <stdio.h>
#include <stdlib.h>
void func(int);
main(){

void (*fp) (int);

fp = func;

(*£p) (1)

tp(2);

exit (EXIT SUCCESS); }

volid func(int arg){
printf("%d\n", arg); }

Structure arrays

You can also make arrays of structures (Pointers
to structures)

define

struct personal data my struct array[100];

Use

my struct array|[3].year of birth = 1974;

C does not do multidimensional arrays ~ but theg

can be simulated }39 arrays or arrays (another
case of pointers to Pointers).

#define ROWS 5

#define COLS 10

int multi[ROWS][COLS];

/* we can access individual elements of

the array multi using either of the
following */

multi[row][col];

((multi + row) + col);

see ht’cp: VL pwl.netcom.com /" tiensen/ Ptr/ ch7x.htm from "A tutorial on Pointers and
arrays in C" at http: / pwl.netcom.com / ~’cjensen/ Ptr/ Pointers.htm

Higher%.evel /O
To read in from external files

main(int argc, char *argv) {
const char *progname = argv[0];
if (argc==5) { /*argc = number command line files

listed*/
sscanf (argv[1l], "%s", cfile); /*argv stores the

files/values*/
sscanf (argv[2], "%s", sfile);
sscanf (argv[3], "%d", &winlen);
sscanf (argv[4], "%f", &thresh);

}

fl=fopen("outdesc","w");
fc=fopen(cfile,"r");

Here, £1 and fc are file handles. 1 you include

stdio.h, you would declare them as
FILE *fl, *fc:

Example of reaciing the command line inl:)ut
parameters (not a file). Uses sscanf (read from
string) rather than fscanf (read from file) rfortran

also does this — bg simplg Placin the character stringgou want to read into the read
statement in Place of the Unit number in the read statement. It is known as an “internal”

read.]

main(int argc, char *argv) {
const char *progname = argv[0];

if (argc==5) { /*argc = number command line files
listed*/

n

sscanf (argv[1l], "%s", cfile); /*argv stores the
files/values*/

sscanf (argv[2], "
sscanf (argv[3], "
sscanf (argv[4], "

o©

o°
Hh QW
\-\-\-

sfile);
&winlen);
&thresh);

o©

}

fl=fopen("outdesc","w");
fc=fopen(cfile,"r");

File 1/O example

OPen file, write to it, close file.

#include < stdio.h>
void main()

{

FILE *fp;
int i;
fp = fopen("foo.dat", "w"); /* open foo.dat for writing */

fprintf (fp, "\nSample Code\n\n"); /* write some info */
for (1 = 1; i <= 10 ; i++)
fprintf(fp, "i = %d\n", 1i);

fclose(fp); /* close the file */

int n_char(char string[])

{
int n; /* local variable in this function * /
/* strlen(a) returns the length of string a * /
/* defined via the string.h header * /
n = strlen(string);
if (n > 50)

printf("String is longer than 50 characters\n");

return n; /* return the value of integer n */

ComPiling

Your C or Fortran program won’t work unless you

compile (and link) it

The compilcr will convert your program to
machine code and the linker «alled automaticaly will build
9OUF Drogram (connects it to all those i/o, math, etc. library functions) as
an executable file (typically in the current directory), which you

can then invoke aﬂjrunjus’t like any other UNIX
command.

C and Fortran are compiled using diHferent
coml:)i ers

“the compiler”

The preprocessor
accePts source code
as input and is
responsible for
removing comments
and interpreting

sPccial preprocessor
RN U i directives

Y wowrce Code

Prepmocessor

!

Compiler

* Assembly Code

¥ Object Code
Link Editor

The comPiler
translates source to
assemblg code.

i Executable Code

“the compiler”

The assembler creates
object cocle.

Y wowrce Code

Prepmocessor

!

Compiler

It a source file
references librarg
functions or functions
N defined in other

Libraries source files the “link

Y Dbjest Coce editor" combines

Link Editor)
these ?unctlons to
create an executable

file.

* Assembly Code

i Executable Code

C comPilers

One extremely Popular Unix Coml:)ilerj which
haPPens to be of extremely high qualit , and also
happens to be free, is the Free Software
Foundations's gce, or GNU C Compiler.

Both the Suns and mac's have gec installed.

Another C coml:)iler available at CERJ is the SUN
distribution cc.
(cc on the mac is aliased to gcc)

There are cligerences, begoncl the scope of this
class, but in genera| gccis a goocl oPtion.

C++ coml:)ilers
The GNU comPiler for C4++is gt

The SUN compiler for C++is CC (versus cc for
regular C)

At the level of this class, they will work the same
as gcc and CC, but tlfweg have a different set of
Hags.

Siml:)le examl:)le

%gcc -0 hello hello.c

hello.c: textfle with Cgprogram
hello : executable file

The -o hello Par’t sa%,s that the output, the

executable program which the compiler will build,
sﬁwoﬁcl be named “helll:;”

it you leave out the “-o hello” part, the default is
usua”g to leave your executable program in afile

ﬂamCCl a.out whichwil get overwritten the next time you do compile
somctlﬁing without the —o Part)

Examplc with math, need math librarg.

I you're compilinga program which uses any of
the math functions dccéred in the lﬁeader?ﬂe
<math.h>, you have to request explici’clthhat the
compiler (actua”g linker) include the mat librargz

% gcc -0 myprogram myprogram.c -1m

(o]

Notice that the -1m ollbtion which rec]uests the
math |ibrar9 must be P acecJ aﬁ:er a” ’che source
cocle elements.

% gcc myprogram.c -lm -0 myprogram

Also works.

Finc:ling out library information reiuires a tril:) to
the local UNIX wizard.

Itis Poorlg clocumentecl.

It is non standard (each power user does their
own — the power of unix).

It varies between machines.

Some Useful ComPilcr OPtions (switches)

~g : invoke debu Ing oPtion. This instructs the
compiler to Pro%%ce additional symbol table
information that is used by a varietg of debugging
utilities.

~1library : Link with object libraries. This
option must follow the sourcé file areuments. The
oEject ibraries are archived and carﬁ)e standard,
third Partg or user created libraries

-Cc: Su press the |in|<ing process and Produce
a.o ggbject) Hle for each source file listed.

Object Hles can be subsequentlg linked bg the cc
commanad:
cc filel.o file2.0 ... -0 executable

~Ipathname :Add Pa’thname to the list of
directories in which to search for #inc1lude files
with relative filenames (not l:)eginning with
slash /). 159 cléncault, the preprocessor first
searches for #include files in the directorg
containing source File, then in directories named
with —T oPtions (i ang), and Fina”g, In

/usr/include.

—olevel : Pemcorms some oPtimization of the
executable and can lead to signhcicant INcreases in
execution speecl. Example

gcc -0 hello hello.c —-02

But oftentimes oPtimization onlg increases the
spcecl at which it is cloing some’tlﬁing incorrectlg.

Fortran compilers

The GNU Project also supplies Fortran comPilers
known as g/7.

On the Mac, g7/ has some Problems with some
codes.

AIWBﬂS Cl’WCC‘(‘FOF Plahcorm ClCPGﬂClCﬂCC.

Another Fortran coml:)ilcr available at CERJ is the
SUN distribution

/opt/Studio/SUNWspro/bin/£f77
/opt/Studio/SUNWspro/bin/£f90
/opt/Studio/SUNWspro/bin/f95

File names encling in .£90 and .£95 are
assumecl to be Free source Form ~ 5uitab|e For
Fortran 90/95 ComPilation.

File names ending in .fand .for are assumed to
be assumed fixed form source - comPatible with
old Fortran v Compilatior].

Siml:)le examl:)le

%g77 hello.f -o hello

hello.f : text file with Fortran 77
hello : executable file

The -0 hello Par’t sa%‘s that the output) the
executable program which the compilcr will builcl,
should be named hello

i?gou leave out the -0 hello part, the default is
usua”g to leave your executab e Program N a File
named a.out

Example with include files

The Path of include files can be given with the -|
oPtionj for example:

g77 myprog.f -o myprog -I/home/fred/fortran/inc
o

g77 myprog.f -o myprog -ISMYINC

where the environment variable MYINC is set with:

MYINC=/home/hdeshon/fortran/inc/

Some Useful Coml:)iler Ol:)tions

—-olevel Pcmcorms some oPtimization of the
executable and can lead to signhcicant INcreases in
execution 5Peed. E‘xample:

g/77 myprog.f -o myprog -02

—wlevel :enables most waming messages that
can be switched on bg the programmer. Such
messages are generateci at compile—-time waming
the programmer omc, for example, unused or unset
variables. Example:

g/77 myprog.f -o myprog -02 -Wall

Various run-time oPtions can be selec’cecﬂ) these
oPtions cause extra code to be added to the
executable and so can cause signhcican’c

decreases in execution speed.

However these OPﬁOﬂS can]Z)C VCY’H USCFU' cluring

program development and clebugging.
Examl:)le

g77 myprog.f90 -o myprog -02 -fbounds-check

This causes the executable to check For "arrag

iﬂClCX out O‘F l:)OU ﬂClS COnClitiOﬂS” (and slows your code way
down).

Recommended ol:)tions

g77 myprog.f -o myprog -Wuninitialized -Wimplicit-none -Wunused-
vars -Wunset-vars -fbounds-check
—ftrace=full -02

It sPeecl of execution is imPortant then the
Lollowing options will improve speed:
0P P P

g77 myprog.f -o myprog -Wuninitialized -Wimplicit-none -Wunused-
vars -Wunset-vars -02

Compiling subl:)rogram source files.

It is sometimes useful to Place sub—-l:)rograms into
separate source files especia”g if the sub-
programs are iarge or shared with other programs
or programmers.

If a Fortran Pro'ect contains more than one
rogram source le, then to compile all source
Eles to an executable program you can use the
Fo”owing command:

g77 main.f subl.f sub2.f sub3.f -o myprog

You can also build your own ibraries

(same idea as with subroutines on last
example, but compile and build Iibrarg once,
and then link to to librarg with the —1
switch.)

Makefiles

Maketiles are sPecial format files that together
with the make unix utilitg will help you to
automatica”g build and manage your Projects.

make utilitg

hcgou run make, this program will look for a file
named makefile in your cﬂirectory, and then
execute it.

It you have several make?iles, then you can
execute them with the command:

make -f MyMakefile

Eixamlole of a simple makefile
The basic makefile is composecl of-

target: dependencies
[tab] system command

All:

g++ main.cpp hello.cpp factorial.cpp
-0 hello

Del:)enclencies
Sometimes is usetul to use different targets. This
is because hcgou moclhcg a singlc fle in your
Project, you don't have to recomcloile evergthing
onlg what modified.

all: hello

hello: main.o hello.o
g++ main.o hello.o -o hello

main.o: main.cpp
g++ -Cc main.cpp

hello.o: hello.cpp
g++ -c hello.cpp

clean:
rm -rf *o hello

Tgpical cxamplc

I am a comment, the variable CC will be the compiler to use.
CC=g++
Hey!, I'm comment number 2. CFLAGS are options for compiler.
CFLAGS=-c -Wall
all: hello
hello: main.o hello.o
S(CC) main.o hello.o -o hello
main.o: main.cpp
S(CC) $S(CFLAGS) main.cpp
hello.o: hello.cpp
S(CC) S$(CFLAGS) hello.cpp
clean:
rm -rf *o hello

Combining C and Fortran

CMD = hypoDD

CC = gcc #Specified the C compiler

FC = g77 #Specified the Fortran compiler

SRCS = $(CMD).£f \ #List the main program first..in this case
hypoDD. f

aprod.f clusterl.f covar.f datum.f \
delaz.f delaz2.f directl.f dist.f dtres.f exist.f \
freeunit.f getdata.f getinp.f ifindi.f \
indexxi.f juliam.f 1lsfit 1sqgr.f 1lsfit svd.f \
lsgr.f matmultl.f matmult2.f matmult3.f mdianl.f \
normlz.f partials.f ran.f redist.f refract.f \
resstat.f scopy.f sdc2.f setorg.f skip.f \
snrm2.f sort.f sorti.f sscal.f \
svd.f tiddid.f trialsrc.f trimlen.f \
ttime.f vmodel.f weighting.f
CSRCS = atoangle .c atoangle.c datetime .c hypot .c rpad .c
sscanf3 .c

#The underscore is added Prior to the .c to indicate that these are
C Programs to the Fortran assembler

INCLDIR = ../../include

LDFLAGS = -0
Flags for GNU g77 compiler
FFLAGS = -0 -I$(INCLDIR) -g -fno-silent -ffixed-line-length-none —Wall -implicit

#Flags for the GNU gcc compiler

CFLAGS = -0 -g -I$(INCLDIR)

OBJS = $(SRCS:%.f=%.0) $(CSRCS:%.c=%.0)

all: $(CMD) #make all makes hypoDD and all dependencies

S(CMD): $(OBJS) #To make hypoDD, link all OBJS with the fortran comp
$(FC) $(LDFLAGS) $(OBJS) -o s@

#%.0: %.£f #long version of the shortcut under OBJS

$(FC) $(FFLAGS) -c $(@F:.o=.f) -o $@

CC = g++

FC = gcc

CFLAGS = -g -DDEBUG -Wall

FFLAGS = -Wall

OBJS1 = bcseis.o \

sacHeader.o sacSeisgram.o distaz.o readSacData.o \
mathFuncs.o fourier.o complex.o \
stas.o evData.o seisData.o tmDelay.o calcTravTm.o \
getMaxShiftlLag.o calcTmDelays.o calcCCTmDelay.o calcSubTmDelay.o
calcBSTmDelay.o \
ttime.o directl.o refract.o vmodel.o tiddid.o #These are fortran, the
others are c

BIN = ../../bin
PROG = bcseis
cC.O:

${CC} $(CFLAGS) -c $<

${FC} $(FFLAGS) -c $<

