
Data Analysis in Geophysics
ESCI 7205

Class 24

Bob Smalley

Short intro C.

C is a higher-level language that is designed to be
independent of computational platform

(as are Fortran, COBOL, ALGOL, PL/1, APL, Matlab, C++, …
- and all pretty much dismal failures at it.).

Higher-level languages must be translated into
the low-level machine language in order to run

(same as Fortran, COBOL, ALGOL, PL/1, APL, C++, …).

This is done via compiler and yields an executable

program specific to that platform.

Differences between C & C++

C++ grew out of C and is mostly a superset of the
latter, but it is considered a different language

They are not developed to be cross-compatible
and C++ does not supersede the use of C

Differences between C & C++

C++ introduces many features that are not
available in C and in practice almost all code

written in C++ is not valid C code

There are many C syntaxes which are invalid or
behave differently in C++

This is all we are going to say about C++

(see the master programmer example for why).

The standard reference for C is

The C Programming Language
By

Kernighan and Ritchie

Commonly known as "K&R"

Now in its 2nd edition covering ANSI C (1988)
(first edition 1978)

Basics of C

Simple C programs have the following structure

• Comments (can really be anywhere)

• Library inclusions (have to be defined before using)

• Defines
• Functions (have to be defined before using, so in source code file should

come before main program that uses them)

• Main Program

C program source file names MUST end in .c
(.cpp for C++)

(if you don't like that use the power of UNIX to
write your own OS and compiler.)

Comments

Done with a pair of delimiters "/*" to start, and
"*/" to end, comment is enclosed within them.

They match up across lines.
!
/*!
* File: hello.c!
* This program prints the message “Hello, world.”!
*/!
!

To make turning comment on/off easily use!
!

Commented out
!
/* i++; /* */!

and not commented out!
i++; /* */

Libraries

Libraries are collections of tools (subroutines –
known as functions in C) that perform specific

operations.

(they are also available for all high level languages, HLLs, not just C.)
(C is most often compared to BASIC, where it "wins" hands-down, rather than "real"

languages where the fight is more fair.)

Libraries are not part of the basic C language.

 (they may even be written in another language)

As part of the UNIX "lean and mean" philosophy
(remember the power of UNIX) C does not

include

• I/O (basic or otherwise)

• math (beyond what is in the CPU as an
instruction: +, -, *, /, and, or, ex-or, not,

shift).

(and they got away with it!)

Writing I/O routines, math (exponentiation for
example) are left to the user to write as they see

fit/need.

Lucky for us – somebody has developed some of
these things

(but we are now relinquishing the power of UNIX to them).

But before moving on to

• Library inclusions
• Defines

• Functions
• Main Program

We have to deal with the earlier remark

"(have to be defined before using)"

Declarations

Variables and functions must be declared in C and
C++ !!!

numeric variable types include:

integers

int: integers (usually 4 byte now)
short: short integers (2 byte)

long: long integers (8 byte, more memory)

int x;!

Declarations

Variables and functions must be declared in C and
C++ !!!

numeric variable types include:

Floating point

float: single-precision real floating point
number (4 byte)

double: double-precision real floating point (8
byte, more precision but also more memory)

Declarations

Variables and functions must be declared in C and
C++ !!!

string variable types

char: character variable (1 btye)

"nothing"

void: nothing but a name (not really a variable as
it does not refer to something stored in memory
referred to with that name, but something that

needs to be defined because all names have to be
defined – used for functions).

Declarations

Variables and functions must be declared in C and
C++ !!!

struct: structures

(Blocks of variables that don't all have to be the
same type.)

later

Back to the discussion of libraries.

Since C is so stripped down – libraries are much
more important to C than the previous languages

we have seen/used.

#include <stdlib.h> /*the standard general purpose library*/!
#include <stdio.h> /*the standard input/output library*/!
#include <math.h> /*the standard math library*/!
#include “hrdfavorites.h” /*a personal extended library*/!
!

You usually have to declare at least the
stdlib.h for a program to compile.

Since C is so stripped down – libraries are much
more important to C than the previous languages

we have seen/used.

#include <stdlib.h> /*the standard general purpose library*/!
#include <stdio.h> /*the standard input/output library*/!
#include <math.h> /*the standard math library*/!
#include “hrdfavorites.h” /*a personal extended library*/!

The next two libraries that you almost always
need are

the I/O library, stdio.h (how often do you write programs with

absolutely no input or output?), and

the math library, math.h.

#include <stdlib.h> the standard general purpose library!
#include <stdio.h> the standard input/output library!
#include <math.h> the standard math library!
#include “hrdfavorites.h” a personal extended library!
!

The final library, hrdfavorites.h, is something
you (actually somebody whose initials are "hrd")

wrote.

Notice the filenames all end in .h!

Also notice the ones that come with C are within
angle brackets <>, while ones you write (or are

"local") are in quotes “”.

#include <stdlib.h> the standard general purpose library!
#include <stdio.h> the standard input/output library!
#include <math.h> the standard math library!
#include “hrdfavorites.h” a personal extended library!
!
!

Actually, these statements in your C program do
not include the library routines/code in your

program, that happens in the compile/link
command where you have to specify them (and where

they live - i.e. their path) again (the linker gets pre-compiled versions of these
routines from the library/archive file).

#include <stdlib.h> the standard general purpose library!
#include <stdio.h> the standard input/output library!
#include <math.h> the standard math library!
#include “hrdfavorites.h” a personal extended library!
!

All these "h files" (as they are called) actually do
is define all the names and types of the functions

and variables associated with the libraries.

(C requires everything to be defined)

Functions come next since they have to be
defined before they are used in the main program

(or other functions – so the order of defining
functions is important

(although this rule seems to be commonly broken and you can put the functions in any
order in your source code – depends on how many "trips" the compiler makes through

the code when compiling – typically one or two. The one trip compilers need things in the
"proper" order, the two trip ones get to fix things up the second time through).

(This has implications for building libraries if you ever have to do that. And why random

libraries were developed.)

Simple programs don't have functions, which are
defined the same way the main program is, so we'll

just skip ahead to that.

The main Program comes next

Main Program is in a "block" defined by the braces
and contains the program itself

void main(int argc, char *argv[])!
{!
!printf(“Hello.\n”);!
}!

Officially, we are defining a function called main ,
that returns nothing (declared as void), has

some input arguments, and has a body contained
in the {}.

As Yogi Berra said - "it's déjà vu all over again"

Just as the shell is "just another program"!

The main C program is "just another function"!
(C was developed by same group of guys that developed UNIX, can't you tell!).

So you have to do all the definitions, etc., you

would have to do for any other function.

Under the declare everything rules - even things
that are never explicitly "called" such as the main
program - you have to say what each "thing" is in

terms of its "result" (in memory).

The function main does not produce a result that
is stored in memory.

We (have to) tell the compiler that using the void
type declaration.

Other possibilities for function types are int,
float, double, char, struct, …and pointers

to all of them.

Declaring variables and functions in a function

Here are some examples of variable and function
declarations

!
 void main(int argc, char *argv[])!

{!
!int a,b,c;!
!double dd,ee,ff;!
!…!

}!

Variables must be declared at the beginning of
your program/function block.

Lines of code within blocks have to be terminated
by ";"

Scope of variables

(where they are 'known')
!
 void main(int argc, char *argv[])!

{!
!int a,b,c;!
!double dd,ee,ff;!
!…!

}!

These variables are only 'known' in this block, i.e.
between the {}.

!
 void main(int argc, char *argv[])!

{!
!int a,b,c;!
!double dd,ee,ff;!

}!

You have to declare the variables in the argument
list of the function call.

These are inputs to (not outputs from) the
function.

These variables are also only 'known' in this block,
i.e. between the {}.

!
 void main(int argc, char *argv[])!

{!
!int a,b,c;!
!double dd,ee,ff;!
!double my_function(double);!

}!

Defining a function that

returns a double and

takes a double input argument.

Prototyping

Declaration on steroids.

Defining what each function returns and its list of
arguments is called prototyping.

!
void – returns nothing!
int – returns integer!
float – returns float!
char - returns character!
struct – returns structure!
*something – returns pointer to "something"!
!

If you forget to "type" a funciton, int is assumed
and the compiler will complain.

Declaring variables/functions
!
 void main(int argc, char *argv[])!

{!
!int a,b,c;!
!double dd,ee,ff;!

}!

declare the "type" of the function definition
(notice you don't need the word function).

Since the main function does not "return"
anything (put something in memory), its type is

void!
(you can get away with void main() if you are not processing/expecting any input

arguments and some compilers will even let you get away with just main().)

!

void main(int argc, char *argv[])!

The two arguments are an integer and a pointer
(coming up next) to a character array (which is

itself a pointer). These two things come from the
shell (the calling routine).

The integer has the number of command line
arguments, and the second argument is a pointer
to an array of character pointers, each pointing
to the address of the beginning of the character

string for each argument.

All this extra typing is supposed to help make
sure your code is consistent and protect you

from yourself (very un-UNIX like – trying to help
the user become a better typer).

You also have to initialize all variables before you
use them to avoid getting whatever happens to be

sitting in that location in memory.

(i.e. before using a variable on the RHS it should
show up being set to something on the LHS.)

This is important when doing things like x++;!

#include < stdio.h>!
#include < math.h>!
main()!
{!
 !int angle_degree;!
 !double angle_radian, pi, value;!
!
 !printf ("\nCompute a table of the sine function\n\n");!

!/* obtain pi once for all */!
!/* or just use pi = M_PI, where M_PI is defined in math.h !*/!
!pi = 4.0*atan(1.0);!

!
!printf (" Value of PI = %f \n\n", pi);!

 !printf (" angle Sine \n");!
!
 !angle_degree=0; !/* initial angle value */!!

! !!
 !while (angle_degree <= 360) { !/* loop until angle_degree > 360 */!
 ! ! angle_radian = pi * angle_degree/180.0 ;!
 ! ! value = sin(angle_radian);!
 ! ! printf (" %3d %f \n ", angle_degree, value);!
 ! ! angle_degree = angle_degree + 10; /* increment loop index! */!
 ! }!
}!
!

There is no special syntax for using a variable
once it has been declared.

Get function definitions.

Structures.

we can declare a block of data containing
different data types by means of a structure

declaration.

The type is struct!

struct tag {!
char lname[20]; /* last name */!
char fname[20]; /* first name */!
int age; /* age */!
float rate; /* e.g. 12.75/hour */!
};!

Structures.

This defines a new type of variable named tag.

This variable will be a block of memory with 20
bytes for a character array/string lname, 20

bytes for a character array/string fname, 4 bytes
for a integer and 4 bytes for a float. !

struct tag {!
char lname[20]; /* last name */!
char fname[20]; /* first name */!
int age; /* age */!
float rate; /* e.g. 12.75/hour */!
};!

Structures.

To use this structure we define a structure
variable of type tag!

struct tag my_struct; /* declare the
structure my_struct */!

and to assign/reference the elements of the
structure

strcpy(my_struct.lname,"Jensen");!
strcpy(my_struct.fname,"Ted");!
printf("\n%s ",my_struct.fname);!
printf("%s\n",my_struct.lname);!

Global Constants - define!

You can define constants of any type by using
the #define compiler directive. Its syntax is

simple--for instance

#define ANGLE_MIN 0
#define ANGLE_MAX 360

C distinguishes between lowercase and
uppercase letters in variable names.

It is customary to use capital letters in defining
global constants.

These are traditionally declared after the
#include calls

Arithmetic Operators

! ! ! ! ! ! !+! !plus!
! ! ! ! ! ! !-! !minus!

! ! ! ! ! ! !*! !multiply!
! ! ! ! ! ! !/! !divide!
! ! ! ! ! ! !%! !modulo divide!
! ! ! ! ! ! !++ !increment!
! ! ! ! ! ! !-- !decrement!
! ! ! ! ! ! !<< !bitwise left shift!
! ! ! ! ! ! !>> !bitwise right shift!
! ! ! ! ! ! !&! !bitwise and!
! ! ! ! ! ! !|! !bitwise or!
! ! ! ! ! ! !^! !bitwise xor

Arithmetic Operators

Notice the useful operations – bitwise shifts and
bitwise logical operations.

! !(no exponentiation! C is mean-and-lean!)

(only has math operations that correspond to cpu arithmetic unit register instructions –

that's why you get the bitwise shifts and logicals)!

"Assignment by" Operators

! ! ! ! ! ! !+= ! !sum!
! ! ! ! ! ! !-= ! !difference!

! ! ! ! ! ! !*= ! !product!
! ! ! ! ! ! !/= ! !quotient!
! ! ! ! ! ! !%= ! !remainder!
! ! ! ! ! !<<=!bitwise left shift!
! ! ! ! ! !>>=!bitwise right shift!
! ! ! ! ! !&= !bitwise and!
! ! ! ! ! !|= !bitwise or
! ! ! ! ! !^= !bitwise xor!

Examples of C "shortcut" operators

x++; ! !use x, then increment by 1!
++x; ! !increment by 1, then use x!
x+=5; add 5 to x!
x+=y; add y to x!
x*=y; multiply x by y, store in x!
x/=y; divide x by y, store in x!
x%=y; divide x by y, store remainder in x!
x=y<<2 !shift y left by 2, store in x (y
 unchanged)!

x<<=2; shift x left by 2, store in x!
x&=y; logical bitwise AND of x with y, store in
 x!

Conditional Operators

Conditionals are logical operations involving
comparison of quantities (of the same type) using

the conditional operators:

== equal to
!= not equal to

< less than
<= less than or equal to

> greater than
>= greater than or equal to

Boolean operators

"Regular" (use in comparison tests)

 && and
 || or
 ! logical not (compares
 variable)

Bitwise (operate on each bit – can't use in
comparison tests)

 & and
 | or!
 ^ nor
 ~ not

Type combinations
!

floats and doubles divided by floats and
doubles are relatively easy to use

but problems tend to occur when performing

division of other types.

An int divided by an int returns an int.

An int divided by a float returns a float.

A float divided by an int returns a float.

A float divided by a float returns a float.

As an example, 3 is considered as an int, but
3.0 is considered as a float.

If you want to store the result of a division as a
floating-point (decimal) number, make sure you

store it in a float declared variable.

Explicit conversion
you can specify explicit conversion by using a

type cast

int num, den;!
double quotient;!
!
quotient = num / (double) den; /*this recasts den as a
double so the value of an int/double is a double.!

Loops
C is the original looping language (even though all

previous HLL's have loops) …love it or hate it

Statement blocks, or sequences of statements,
are encased using

{ }
(this is general, not just for loops).

Statements in a block are executed in sequence
from first to last by default

(statements in C are terminated by “;”. Otherwise C wraps lines, unlike fortran.).

{!

!first_statement;!
!last_statement;!

}!

while!
while: continues to loop as long as condition

tests successful

 count = 0;!
 while (count < 10) {!
 count += 2;!
 printf ("count is now %d\n”,count); !
 }!

There is no print command.

To print you use the commands printf (print to
file) and prints (print to string) from the stdio

library.

do-while!

Similar to while loop except test occurs at end
of loop body.

Guarantees the loop is executed at least once

before continuing.

do!
{!
printf("Enter 1 for yes, 0 for no :");!
scanf("%d", &input_value);!
} while (input_value != 1 && input_value != 0)!

for!

one of the most common loop structures is the
for loop, which iterates over an array of objects

for i values in array, do stuff in block (defined
by {}).

for (i=0; i<=10; i++)!
{!

!for (j=0; j<=10; j++)!
 { !

H[i][j]=0;!
}!

}!

if/else if/else!
!

If expression is true, then run the first block
(blocks are defined by the pair or braces{}) of
commands. Else, if a second expression is true,

run the second block of commands. Else, if
neither is true, run last block of commands.

 if (a > b)!
{!
 statements;!
}!
else if (a == b)!
{!

! statements;!
}!
else!
{ !
 printf ”%d is less than %d.\n”, a, b;!
}!

switch!
!

looks like
!

switch (expression) !
{ !
 declarations !
 .!
 .!
 .!
 case constant-expression : !
 statements executed if the expression equals the !
 value of this constant-expression !
 . !
 . !
 . !
 break; !
 default :!
 statements executed if expression does not equal !
 any case constant-expression !
} !

this part can repeat

switch!

Control passes to the statement inside the switch
block whose case constant-expression matches

the value of switch (expression).

No blocks, {}, for the "cases" in the switch block.

The switch statement can include any number of
case instances, but no two case constants within

the same switch statement can have the same
value.

http://msdn.microsoft.com/en-us/library/66k51h7a%28v=vs.80%29.aspx

switch!

Execution of the statement body begins at the
selected statement and proceeds until the end of

the body or until a break statement transfers
control out of the body.

This construct is particularly useful in handling
input variables.

switch!

So what does this do?

c='a';!
switch(c)!
{!
case 'A':!
 capa++;!
case 'a':!
 lettera++;!
default :!
 otherletters++; }!

switch!

So what does this do?

c='a';!
switch(c)!
{!
case 'A':!
 capa++;!
case 'a':!
 lettera++;!
case 'b':!
 letterb++;!
default :!
 otherletters++;!
}!

matches here, so starts
executing here,
increments lettera by 1!

but what does it do next,
where does it go/stop
executing (in the block)?

switch!

So what does this do?

c='a';!
switch(c)!
{!
case 'A':!
 capa++;!
case 'a':!
 lettera++;!
case 'b':!
 letterb++;!
default :!
 otherletters++;!
}!

reread the description
two slides ago.

It continues executing till the
end of the block, or it
encounters a break statement.

switch!

So what does this do?

c='a';!
switch(c)!
{!
case 'A':!
 capa++;!
case 'a':!
 lettera++;!
case 'b':!
 letterb++;!
default :!
 otherletters++;!
}!

But this is probably not
what we want to do here,
as it will execute to the
end and increment the
number of lettera,
letterb and
otherletters.

break command to the rescue!
!

allows you to break-out of a for or while loop,
or a switch block.

c='a';!
switch(c)!
{!
case 'A':!
 capa++;!
 break;!
case 'a':!
 lettera++;!
 break;!
case 'b':!
 letterb++;!
 break;!
default :!
 otherletters++;!
}!

now it stops executing
the block after
matching and doing the
statements between
the match and the
break.

In loops, the default behavior is the break out of
the enclosing loop block

(not the block associated with the if)

for (a=0; a<20; a++)!
{ !

! if (a > 10)!
 { !
 break; !
 }!
}!
 ## break or terminating loop here ##!

But you may want to do it without the breaks!

switch(c){!
 case 'A':!
 capa++;!
 case 'a':!
 lettera++;!
 default :!
 total++;}!

This default behavior in C is called "fall-through".

When fall-through is the default action, switch/
case statements are a frequent source of bugs

among even experienced programmers, given
that, in practice, the "break" is almost always the

desired path, not the default fall-through
behavior.

switch example with integer that counts number
of times i is -1, 0 or 1.

switch(i)!
{!
 case -1:!
 n++;!
 break;!
 case 0 :!
 z++;!
 break;!
 case 1 :!
 p++;!
 break;!
}!

the test cases have to
be constants/static
and test for equality

(not <j for example)

Take home message:

The switch statement is not the same thing as a
big if-if else-else statement.

Each case must be unique, evaluated statically,

and it has fall-through.

Arrays
Arrays of any type can be formed in C. The

syntax is simple:

type name[dim];!
!

double name[100]; !
/*you have to already know how big the array/
vector will be in this case!*/

In C, arrays starts at position 0.
The array above is 100 elements long.

The elements of the array occupy adjacent
locations in memory.

One way to access array elements is

name[0]!
name[1]!
name[n]!

where the index gives the array element number,
this is also the offset into the array from the

beginning (that's why C indices start at zero, the first element is at the address of
the array plus zero - which is one of the secrets for for efficiently using C arrays)

C does not do bounds checking, if n is greater
than or equal to the array size (remember first

elsment is 0) C will happily go there.

Pointers
(The key to using arrays in C)

The C language allows the programmer to ``peek
and poke'' directly into memory locations.

This gives great flexibility and power to C, but it is
also one of the great hurdles that the beginner

must overcome in using C.

C does this with variables called pointers that
store the address of other variables.

Pointers

If you are going to use C

you are going to use pointers!

Pointers

Pointers are a type of variable and you therefore
have to declare them.

The pointer itself is an integer, but it is a special

type of integer.

You need to associate a pointer with the type of
element to which it points.

Pointers

You define a pointer by putting the asterisk
modifier, *, before the name.

int *p; /*declared that p is a pointer
to an integer variable */!
double *q; /*declared that q is a
pointer to a doublevariable */!

!

C will interpret the contents of p and q as
addresses (which are integers).

We can do two things with addresses

- manipulate them
- get the contents of memory at that address

Pointers

Notice that there are two parts to the definition,

first that it is a pointer (the *) and

what type of variable it points to (int, float,
char, ...).

The variable type is important because this sets
up the "step size" when you increment/decrement

the pointer variable to get the "next/previous"
value of that type of variable from memory.

Next we need a way to get the address of
something to put it in the pointer variable.

We use the "address-of" operator (unary &).

&x returns the address of x, which can be stored
in a pointer variable.

p=&x; /* the value of p contains the
address of x */!

We can then use the pointer variable to access the
memory contents at that address.

But we need a way to indicate we want the data in
the memory address pointed to by p rather than

the value (address) sotred in p.

This is done using the asterisk modifier, *, before
the variable name (as in the definition).

x=17;!
p=&x;/* the value of p contains the
address of x */!
y=*p; /* put the contents of memory
found at address p in y *!

This is called "dereferencing" (* is the deferencing operator)
and puts 17 , the contents at the address pointed

to by p, into the variable y.

y=*p; produces the same result as

y=x;!

One can also set the value of x directly using the
pointer to x's address

p=&x; /* p has the address of x */!
p=17; / same result as x=17 */!
p=y; / same result as x=y */

You can see the power (and confusion) that
pointers offer.

I can now set p to some other address and store
something in this new address.

It is often difficult to figure out one is doing with
pointers when reading the code.!

A pointer is "like an integer".

You can do arithmetic with p, but this arithmetic
"knows about" the size of the object p points to,

so adding 1 to a pointer makes it point to the next
object (which is generally not one byte long – so
the value in the "integer" p will jump by the size of

the object it points to).

To refer to what is in the address pointed to by
the pointer you use *p, on either the right or left

sides of expressions.!

Back to arrays (or more on pointers)

The other secret to using arrays in C is that the
array variable is effectively a pointer (even
though the * was not used when the array

variable was defined, the []substitute for the *).

An array consists of multiple elements, accessed
by arrayname[n], so it "makes sense" that the

variable arrayname works like a pointer.

int my_array[] = {1,23,17,4,-5,100};!
int *ptr;!
!
void main(){!
...!
ptr = &my_array[0];!
ptr = my_array;

The two lines do the same thing. So my_array all
by itself acts like a pointer (if it was not a pointer,
and of the proper type, C would complain when

we tried to store it in the pointer variable ptr. C is
protecting us from ourselves here.)!

 !

!
 !

We cannot do this however

my_array=ptr;!

as my_array is a constant value that cannot be
changed once my_array is defined (either by

the compiler or dynamically).

It is the address of my_array which is fixed/
constant.

!
 ! arrays and pointers are interchangeable

the expression a[i] is semantically equivalent to
*(a+i)!

!
 !

int *i!
…!
i=0;!

the expression a[i++] returns the value at a[i]
and then adds n to the value of pointer i (the ++
follows the i), where n represents the size of one

instance for the type of variable the pointer
points to (4 for int, 4 for float, 8 for double,

1 for char,...)!

!
 !

We could also do

i=a;!
And then use

*i++;!
returns the value at the address pointed to by i

and then increments i by "one" to the next
element of the array.!

!
 !

Using pointers is the most common method of
accessing arrays

*(a+i)

rather than

a[i]

also, if p is a pointer and

p=a;!

I can step through the array in a loop using

b=p++;!

!
 !in addition to pointing to variables and arrays,

pointers can point to pointers (which can make
for very interesting debugging) and structures

(more on them later) and be elements of arrays.
!
int* arr[8]; // An array of 8 int pointers
(arr is effectively a pointer).
int *(arr[8]); // same as line above
!
int (*arr)[8]; // A pointer to an array of 8
integers

!
 ! This is how C handles character strings.

Character strings are arrays with one character
per element.

(In Fortran character strings are their own data

type, like integers or reals. In C character strings
are just arrays of bytes.)

!

Strings
You have to think of strings as character vectors

(much like matlab)

Strings are manipulated either via pointers or via
special routines available from the standard string

library string.h!
(basic C does almost nothing!).

C strings are null terminated (start at address of
string and continue until a a null [zero] byte is

encountered).

#include <string.h> to work efficiently with strings!
!

char string[20];!
char message[] = “Hello, world.”;!

!
 !

Example of how not to build string array
(although is legal), but shows how they work.

!

char my_string[40];!
my_string[0] = 'T';!
my_string[1] = 'e';!
my_string[2] = 'd':!
my_string[3] = '\0';!

In C strings are "zero terminated".
The string continues until the zero byte is

encountered.

This means the only way to get the length of a
string is to count it (slow).

!
 !

Another example of how not to build string array
(although is legal)

char my_string[40]=!
! ! ! ! ! ! ! !{'T','e','d','\0',};!

Usual way

char my_string[40] = "Ted";!

Sets aside 40 bytes, but does not remember this
information. If you write past my_string+40

you are clobbering something.

Subroutines (called functions in C) [Fortran has
both subroutines and functions – the difference
being that a function returns a value “y=sin(x)”

for example, versus
“call sin(angle,value)”]

A function has the following layout

return-type function-name(argument-list-if-necessary)!
{!
 ...local-declarations…!
 ...statements…!
 return return-value;!
}!

If return-type is omitted, C defaults to int.

Pointers are used to pass arrays to functions.

C always passes arguments to functions by value
[a copy], except when it does not [arrays].

We will see the implications of "pass by value"
next.

Fortran passes by address (pointer, but you
don't have to deal with things as pointers in

Fortran).

You can also pass pointers to functions (you just
have to define everything properly).

C passes arguments to subroutines by value (a
copy).

If you want results from the subroutine returned
to the calling program there are two ways to do it.

You can have the function return a single
"thing" (int, float, etc.) back using the

type function_name(argument list)

format and then use as
int p,q;!
int function_name(int);!
…!
p=function_name(q);

C passes arguments to subroutines by value (a
copy).

If you want to pass something back to the calling

program through the argument list you have to
pass something you can state by value.

If you try

void my_sqrt(float val_in, float val_out){!
val_out=sqrt(val_in);}!

It will not do what you want/think since val_in
and val_out in your function are copies of the
two variables that your calling program gave to

my_sqrt!

my_sqrt(in_val,out_val)!

so the calling program does not know what the
subroutine did.

The value in out_val has not changed.

The solution to this is to use pointers.

void my_sqrt(float val_in, float *val_out){!
*val_out=sqrt(val_in);}!

Now I pass a copy of the value of the pointer to
the address of val_out to the function.

The function uses the pointer to change what is
stored at the address in the pointer.

In the function I can use this pointer to store the
result in the memory location pointed to by the

pointer.

void my_sqrt(float val_in, float
*val_out){!
*val_out=sqrt(val_in);}!

Here's the call.

float out_val;!
my_sqrt(in_val, &out_val);!

Short example using both ways to pass variables
$ cat fnex.c!
#include <stdlib.h>!
#include <stdio.h>!
void my_sqrt_1(float val_in, float *val_out)!
{!
double sqrt(double);!
*val_out=sqrt(val_in);!
}!
float my_sqrt_2(float val_in)!
{!
double sqrt(double);!
double val_out;!
val_out=sqrt(val_in);!
return val_out;!
}!
int main()!
{!
float x;!
float y;!
x=2;!
my_sqrt_1(x,&y);!
printf("%f\n",y);!
y=my_sqrt_2(x);!
printf("%f\n",y);!
}!

Structures and pointers.

We can also use pointers with structures

struct tag *st_ptr; /* a pointer to !
! ! ! ! ! ! ! ! ! ! !a structure */!
!
st_ptr = &my_struct; /* point the !
! ! ! ! ! !pointer to my_struct */ !

Structures and pointers

(*st_ptr).age = 63;!

replace that within the parenthesis with that which
st_ptr points to, which is the structure

my_struct. Thus, this breaks down to the same
as my_struct.age.

However, this is a fairly often used expression
and the designers of C have created an

alternate syntax with the same meaning which is:

st_ptr->age = 63;!

#include <stdio.h>!
#include <conio.h>!
int main() {!
!
 struct st {!
 int id;!
 char *name;!
 char *address;!
 };!
!
 struct st employee, *stptr;!
!
 stptr = &employee;!
!
 stptr->id = 1;!
 stptr->name = "Angelina";!
 stptr->address ="Rohini,Delhi";!
 printf("Employee Info: id=%d\n%s\n%s\n", stptr->id, !
! ! ! ! ! ! ! !stptr->name, stptr->address);!

 return 0;!
}!

Define structure

Define instance and pointer to
st structure

Set pointer to address of structure

Use pointer->element to
access elements in structure.

!
 !Pointers can also be made to point to functions

(so now you don't know what function is being
called when you write the program – it gets

determined during execution of the program
based on the data being processed).

Pointers are also used for dynamic allocation of

memory.

!
 ! Pointers to functions

Their declaration is easy: write the declaration as

it would be for the function, say

int func(int a, float b);!

!
 !

Pointers to functions

simply put brackets around the name and a * in
front of it: that declares the pointer.

Because of precedence, if you don't parenthesize
the name, you declare a function returning a

pointer:

/* func returning pointer to int*/!
int *func(int a, float b);!
!

/* pointer to func returning int */
int (*func)(int a, float b);!

!
 !

Pointers to functions

Once you've got the pointer, you can assign the
address of the right sort of function just by using
its name: like an array, a function name is turned
into an address when it's used in an expression.

 You can call the function using one of two forms:

(*func)(1,2);!
/* or */ !
func(1,2);!

!
 !

Pointers to functions - example

#include <stdio.h>!
#include <stdlib.h> !
void func(int); !
main(){ !
void (*fp)(int); !
fp = func;!
(*fp)(1); !
fp(2); !
exit(EXIT_SUCCESS); } !
!
void func(int arg){ !
printf("%d\n", arg); }!

!
 !

Structure arrays

You can also make arrays of structures (pointers
to structures)

define

struct personal_data my_struct_array[100];!
!

Use
!
my_struct_array[3].year_of_birth = 1974;!

!
 !
C does not do multidimensional arrays - but they

can be simulated by arrays or arrays (another
case of pointers to pointers).

#define ROWS 5!
#define COLS 10!
int multi[ROWS][COLS];!
/* we can access individual elements of
the array multi using either of the
following */!
!

multi[row][col];!
!

((multi + row) + col);!
!

see http://pw1.netcom.com/~tjensen/ptr/ch7x.htm from "A tutorial on Pointers and
arrays in C" at http://pw1.netcom.com/~tjensen/ptr/pointers.htm

Higher-Level I/O
To read in from external files

main(int argc, char *argv) {!
 const char *progname = argv[0];!

if (argc==5) { !/*argc = number command line files
listed*/!
 sscanf(argv[1], "%s", cfile); /*argv stores the
files/values*/!
 sscanf(argv[2], "%s", sfile);!
 sscanf(argv[3], "%d", &winlen);!
 sscanf(argv[4], "%f", &thresh);!
}!
!
fl=fopen("outdesc","w");!
fc=fopen(cfile,"r");!

Here, fl and fc are file handles. If you include
stdio.h, you would declare them as

FILE *fl, *fc; !

Example of reading the command line input
parameters (not a file). Uses sscanf (read from
string) rather than fscanf (read from file) [fortran
also does this – by simply placing the character string you want to read into the read

statement in place of the unit number in the read statement. It is known as an “internal”
read.]

main(int argc, char *argv) {!
 const char *progname = argv[0];!

if (argc==5) { !/*argc = number command line files
listed*/!
 sscanf(argv[1], "%s", cfile); /*argv stores the
files/values*/!
 sscanf(argv[2], "%s", sfile);!
 sscanf(argv[3], "%d", &winlen);!
 sscanf(argv[4], "%f", &thresh);!
}!
!
fl=fopen("outdesc","w");!
fc=fopen(cfile,"r");!

File I/O example

Open file, write to it, close file.

!
#include < stdio.h>!
void main()!
{!
 FILE *fp;!
 int i;!
!
 fp = fopen("foo.dat", "w"); /* open foo.dat for writing */!
!
 fprintf(fp, "\nSample Code\n\n"); /* write some info */!
 for (i = 1; i <= 10 ; i++)!

!fprintf(fp, "i = %d\n", i);!
!
 fclose(fp);! ! ! /* close the file */!
}!

int n_char(char string[])!
{!

!int n; !/* local variable in this function */!
! ! !!
!/* strlen(a) returns the length of string a */!
!/* defined via the string.h header ! !*/!

 n = strlen(string);!
 if (n > 50) !

!printf("String is longer than 50 characters\n");!
!
 return n; !/* return the value of integer n */!
}

Compiling

Your C or Fortran program won’t work unless you
compile (and link) it

The compiler will convert your program to
machine code and the linker (called automatically) will build
your program (connects it to all those i/o, math, etc. library functions) as
an executable file (typically in the current directory), which you
can then invoke and run just like any other UNIX

command.

C and Fortran are compiled using different
compilers

“the compiler”
The preprocessor

accepts source code
as input and is
responsible for

removing comments
and interpreting

special preprocessor
directives

The compiler
translates source to

assembly code.

“the compiler”
The assembler creates
object code.

If a source file
references library
functions or functions
defined in other
source files the "link
editor" combines
these functions to
create an executable
file.

C compilers

One extremely popular Unix compiler, which
happens to be of extremely high quality, and also

happens to be free, is the Free Software
Foundations's gcc, or GNU C Compiler.

Both the Suns and mac's have gcc installed.

Another C compiler available at CERI is the SUN
distribution cc.

(cc on the mac is aliased to gcc)

There are differences, beyond the scope of this
class, but in general gcc is a good option.

C++ compilers

The GNU compiler for C++ is g++

The SUN compiler for C++ is CC (versus cc for
regular C)

At the level of this class, they will work the same
as gcc and cc, but they have a different set of

flags.

Simple example
!

%gcc -o hello hello.c!
!

hello.c : text file with C program
hello : executable file

The -o hello part says that the output, the
executable program which the compiler will build,

should be named “hello”

if you leave out the “-o hello” part, the default is
usually to leave your executable program in a file

named a.out (which will get overwritten the next time you do compile
something without the –o part)

Example with math, need math library.

If you're compiling a program which uses any of
the math functions declared in the header file

<math.h>, you have to request explicitly that the
compiler (actually linker) include the math library:

% gcc -o myprogram myprogram.c -lm!

Notice that the -lm option which requests the
math library must be placed after all the source

code elements.

% gcc myprogram.c -lm -o myprogram!
!

Also works.

Finding out library information requires a trip to
the local UNIX wizard.

It is poorly documented.

It is non standard (each power user does their

own – the power of unix).

It varies between machines.

Some Useful Compiler Options (switches)

-g : invoke debugging option. This instructs the
compiler to produce additional symbol table

information that is used by a variety of debugging
utilities.

-llibrary : Link with object libraries. This
option must follow the source file arguments. The
object libraries are archived and can be standard,

third party or user created libraries

-c : Suppress the linking process and produce
a .o (object) file for each source file listed.

Object files can be subsequently linked by the cc
command:

cc file1.o file2.o ... -o executable !

-Ipathname : Add pathname to the list of
directories in which to search for #include files

with relative filenames (not beginning with
slash /). By default, the preprocessor first

searches for #include files in the directory
containing source file, then in directories named

with -I options (if any), and finally, in
/usr/include.

-olevel : performs some optimization of the
executable and can lead to significant increases in

execution speed. Example
!

gcc -o hello hello.c –O2!
!

But oftentimes optimization only increases the
speed at which it is doing something incorrectly.

Fortran compilers

The GNU project also supplies Fortran compilers

known as g77.

On the Mac, g77 has some problems with some
codes.

Always check for platform dependence.

Another Fortran compiler available at CERI is the
SUN distribution

!
/opt/Studio/SUNWspro/bin/f77!
/opt/Studio/SUNWspro/bin/f90!
/opt/Studio/SUNWspro/bin/f95!

File names ending in .f90 and .f95 are
assumed to be free source form - suitable for

Fortran 90/95 compilation.

File names ending in .f and .for are assumed to
be assumed fixed form source - compatible with

old Fortran 77 compilation.

Simple example

%g77 hello.f -o hello !
!
hello.f : text file with Fortran 77 !
hello : executable file !

The -o hello part says that the output, the
executable program which the compiler will build,

should be named hello

if you leave out the -o hello part, the default is
usually to leave your executable program in a file

named a.out

Example with include files

The path of include files can be given with the -I
option, for example:

g77 myprog.f -o myprog -I/home/fred/fortran/inc!
!

or

g77 myprog.f -o myprog -I$MYINC!

where the environment variable MYINC is set with:
!

MYINC=/home/hdeshon/fortran/inc/ !

Some Useful Compiler Options

-olevel : performs some optimization of the
executable and can lead to significant increases in

execution speed. Example:!
 !

g77 myprog.f -o myprog -O2 !
!

-wlevel : enables most warning messages that
can be switched on by the programmer. Such

messages are generated at compile-time warning
the programmer of, for example, unused or unset

variables. Example:

g77 myprog.f -o myprog -O2 -Wall!

Various run-time options can be selected, these
options cause extra code to be added to the

executable and so can cause significant
decreases in execution speed.

However these options can be very useful during
program development and debugging.

Example

g77 myprog.f90 -o myprog -O2 -fbounds-check!

!
This causes the executable to check for "array
index out of bounds conditions” (and slows your code way

down).

Recommended options

g77 myprog.f -o myprog -Wuninitialized -Wimplicit-none -Wunused-
vars -Wunset-vars -fbounds-check !

 -ftrace=full -O2!

If speed of execution is important then the

following options will improve speed:

g77 myprog.f -o myprog -Wuninitialized -Wimplicit-none -Wunused-
vars -Wunset-vars -O2 !

Compiling subprogram source files.

It is sometimes useful to place sub-programs into
separate source files especially if the sub-

programs are large or shared with other programs
or programmers.

If a Fortran project contains more than one
program source file, then to compile all source
files to an executable program you can use the

following command:

g77 main.f sub1.f sub2.f sub3.f -o myprog !

You can also build your own libraries

(same idea as with subroutines on last
example, but compile and build library once,

and then link to to library with the –l
switch.)

Makefiles

Makefiles are special format files that together
with the make unix utility will help you to

automatically build and manage your projects.

make utility

If you run make, this program will look for a file
named makefile in your directory, and then

execute it.

If you have several makefiles, then you can
execute them with the command:

make -f MyMakefile!

Example of a simple makefile
The basic makefile is composed of:

target: dependencies!
[tab] system command!
!
All:!
g++ main.cpp hello.cpp factorial.cpp
-o hello!

Dependencies
Sometimes is useful to use different targets. This

is because if you modify a single file in your
project, you don't have to recompile everything,

only what modified.

all: hello!
!
hello: main.o hello.o!

!g++ main.o hello.o -o hello!
!
main.o: main.cpp!

!g++ -c main.cpp!
!
hello.o: hello.cpp!

!g++ -c hello.cpp!
!
clean:!

!rm -rf *o hello!

I am a comment, the variable CC will be the compiler to use.!
CC=g++!
Hey!, I’m comment number 2. CFLAGS are options for compiler.!
CFLAGS=-c -Wall!
all: hello!
hello: main.o hello.o!

!$(CC) main.o hello.o -o hello!
main.o: main.cpp!

!$(CC) $(CFLAGS) main.cpp!
hello.o: hello.cpp!

!$(CC) $(CFLAGS) hello.cpp!
clean:!

!rm -rf *o hello!

Typical example

Combining C and Fortran

CMD = hypoDD!
CC = gcc! !#Specified the C compiler!
FC = g77! !#Specified the Fortran compiler!
SRCS = $(CMD).f \ !#List the main program first…in this case
hypoDD.f!
 aprod.f cluster1.f covar.f datum.f \!
 delaz.f delaz2.f direct1.f dist.f dtres.f exist.f \!
 freeunit.f getdata.f getinp.f ifindi.f \!
 indexxi.f juliam.f lsfit_lsqr.f lsfit_svd.f \!
 lsqr.f matmult1.f matmult2.f matmult3.f mdian1.f \!
 normlz.f partials.f ran.f redist.f refract.f \!
 resstat.f scopy.f sdc2.f setorg.f skip.f \!
 snrm2.f sort.f sorti.f sscal.f \!
 svd.f tiddid.f trialsrc.f trimlen.f \!
 ttime.f vmodel.f weighting.f!
CSRCS = atoangle_.c atoangle.c datetime_.c hypot_.c rpad_.c
sscanf3_.c!

#The underscore is added prior to the .c to indicate that these are

C programs to the fortran assembler

INCLDIR = ../../include!
LDFLAGS = -O!
Flags for GNU g77 compiler!
FFLAGS = -O -I$(INCLDIR) -g -fno-silent -ffixed-line-length-none –Wall -implicit!
!
#Flags for the GNU gcc compiler!
CFLAGS = -O -g -I$(INCLDIR)!
OBJS = $(SRCS:%.f=%.o) $(CSRCS:%.c=%.o)!
all: $(CMD) ! !#make all makes hypoDD and all dependencies!
$(CMD): $(OBJS) ! !#To make hypoDD, link all OBJS with the fortran comp!
 $(FC) $(LDFLAGS) $(OBJS) -o $@!
#%.o: %.f ! !#long version of the shortcut under OBJS!
$(FC) $(FFLAGS) -c $(@F:.o=.f) -o $@!
CC = g++!
FC = gcc!
CFLAGS = -g -DDEBUG -Wall!
FFLAGS = -Wall!
OBJS1 = bcseis.o \!
 sacHeader.o sacSeisgram.o distaz.o readSacData.o \!
 mathFuncs.o fourier.o complex.o \!
 stas.o evData.o seisData.o tmDelay.o calcTravTm.o \!
 getMaxShiftLag.o calcTmDelays.o calcCCTmDelay.o calcSubTmDelay.o
calcBSTmDelay.o \!

!ttime.o direct1.o refract.o vmodel.o tiddid.o #These are fortran, the
others are c!
BIN = ../../bin!
PROG = bcseis!
!
.c.o:!
 ${CC} $(CFLAGS) -c $<!
.f.o:!
 ${FC} $(FFLAGS) -c $<!
!
all: ${PROG}!
!
bcseis: ${OBJS1}!
 ${CC} ${CFLAGS} -lm -o $@ ${OBJS1}!
 mv $@ ${BIN}!

