
Data Analysis in Geophysics
ESCI 7205

Class 2

Bob Smalley

Basics of the Computer Environment

User ID and passwords

Basics of the Unix/Linux
Environment

User ID and Passwords

User ID: usually a derivative of your name
and the same as the beginning of your

email.

Your CERI and UoM user ids are the same.

(User ID’s on the UM system can only be a maximum of 8 characters due to the
limitations of early computes. Unix is full of such anachronisms.

 User ID’s are formed using an algorithm. Take first initial (and maybe middle initial) and
full last name, if that is more than 8 characters, start removing vowels from the back,

if still longer than 8 characters, start removing consonants from the back.)

User ID and Passwords

Password: a (hopefully complicated, hard to guess [and therefore to

remember]) combination of upper and lower case
characters, symbols, and numbers that allows

access to the account.

Your CERI Unix passwords for the Sun and Mac
systems only work on those systems (two separate

passwords, but you can use the same one).

Your UoM Outlook email, Spectrum, Tiger labs,
and CERI PC lab password is the same for all
these systems (because they all access your

primary UoM/Microsoft account).

User ID and Passwords

If you need/use the non-Sun systems (Unix
machines in the GPS lab, a faculty member’s

MAC, etc.) you will have to see the owner of the
machine to get an account and will have a unique

username/password for each of them.

Passwords

Do not tell anyone your password!!!!

Do not leave your password sitting around on a
post-it note.

Do not email your password.

If you forget your password, you have to visit the
system administrator and (humbly) ask for a new

one. There is no way for anyone (except hackers) to
figure it out.

Quotes for the day:

“Software stands between the user and the
machine” - Harlan D. Mills

Software can help the user in their daily
endeavors or stand in the way.

Back to basics

“UNIX Philosophy”

“UNIX Philosophy”

(ii) Expect the output of every program to

become the input to another, as yet unknown,
program.

- Don't clutter the output with extraneous

information useful to the user, but not needed by
the input for next program.

“UNIX Philosophy”

Unfortunately this may make things confusing for
the uninitiated user.

The output is for “next program” (in a “pipe”),

not the user.

“UNIX Philosophy”

What happens when you ask for a listing of files in
an empty directory?

Robert-Smalleys-MacBook-Pro:untitled folder robertsmalley$ ls<CR>!
Robert-Smalleys-MacBook-Pro:untitled folder robertsmalley$!

Returns to prompt without any other output.

(there are no files to list, so Unix just outputs a
<CR> [and a new prompt], is that reasonable?).

(Works differently in shell script, no <CR>)

“UNIX Philosophy”

What happens when you enter

Robert-Smalleys-MacBook-Pro:documents robertsmalley$ echo<CR>!

The command echo, “echoes” what you type.

Should do nothing! (what about a new prompt on
same line?)

(i.e. it should just sit there, with the “cursor”,

which was invisible on a teletype after the <CR>,
after the <CR> waiting for input)

“UNIX Philosophy”

What happens when you enter

Robert-Smalleys-MacBook-Pro:documents robertsmalley$ echo<CR>!

Usually goes to next line and prints the prompt
on the screen as in the previous example(break

with philosophy because philosophy too
confusing

But does what expected, nothing (it follows

philosophy), in a shell script.

“UNIX Philosophy”

This brings up another issue – commands
sometimes behave differently in shell scripts than

they do “interactively”

Typically more “chatty” when interactive.

This kind of stuff can make for confusion when
debugging. Works from screen, does not work in

shell script.

“UNIX Philosophy”

Idea of “filter” –

Every program takes its input from Standard IN
(originally a teletype, now a keyboard),

does something to it (“filters” it) and

sends it to Standard OUT (originally a teletype,

now a screen)

(notice that the “user” is not part of this model).

“UNIX Philosophy”

It is pretty easy to see these are not a good
assumptions (Stnd IN, Stnd OUT) for many tasks
and many Unix commands break this convention.

“UNIX Philosophy”

redirection when input and output are not coming
from or going to standard places (“<“, “<<“ and

“>”, “>>”)

- Take input from a file rather than Standard IN

-  Send output to a file rather than Standard
OUT

(Unix treats everything like a “file”, even
hardware)

“UNIX Philosophy”

Idea/use of – pipes (“|”)

Sends output to the next program (instead of
“standard out” or a file)

And

Takes input from the previous program (instead
of “standard in” or a file)

“UNIX Philosophy”

Example: we have two files with a name and
student ID on each line.

There are some duplicates (i.e. exact same line,

character for character, in both files).

We want one file, in alphabetical order, with
duplicates removed.

cat file1 file2 | sort –u > file3!

!
(cat does not require input file redirection, it will take a list, redirection does not even

work with more than one file)

Write programs to handle text streams, because
that is a universal interface.

(fine if you’re a system programmer, not always
so useful for scientific data crunching.

Good example of a real problem that does not follow this
model is earthquake location. You typically have one

static text file for station locations, another stationary
one for the velocity model, and a final text file with

station names and arrival times for an earthquake. This
does not fit the serial, filter model.

Another example, binary seismic, topo, etc. data.)

“UNIX Philosophy”

Continued

Avoid stringently columnar or binary input formats.

(Avoid, but sometimes necessary. Not closely followed by many programs.)

Don't insist on interactive input.

(Does not fit in with use of pipes.)

Instead, control is implemented by use of “command line

switches”

“UNIX Philosophy”

Put lots of (simple, easy to write) single minded
programs in a row (with pipes) to do what you

need.

(Don’t use temporary/intermediate files – use a
pipe).

“UNIX Philosophy”

New concept

use of – command substitution (`…`)

(uses “backwards” or French grave accent)

Use the output of a command as ‘some sort of
input’ to another command.

command substitution example.

Suppose I want to print something and would like
to control its orientation – landscape or portrait.

ORIENT=<CR>!
Or

ORIENT=-P<CR>!

Then

print `echo $ORIENT` < INFile<CR>!

Puts in nothing, in case of ORIENT=<CR>, or “-P”, in
case of ORIENT=-P<CR>, into the command as if that

is what you typed

(this is not how you would actaully do this – it is a ginned up example)

REVIEW

Write programs that do one thing and do it well.

(lean and mean)

Write programs to work together.

(pipes)

“the UNIX operating system, a unique computer
operating system in the category of help, rather

than hindrance.”

Introducing the UNIX System

McGilton and Morgan, 1983.

or

The trouble with UNIX: The user interface is
horrid

Norman, D. A. Datamation, 27, No. 12, 139-150.

"Two of the most
famous products
of Berkeley are
LSD and Unix. I
don't think that
this is a
coincidence.”

Anonymous

Before looking at more Unix commands, we will
first look at the FILE STRUCTURE (how files
[called documents on Mac and Windows] are

stored/organized).

Unix uses a hierarchical file system (as does Mac
and Windows/DOS).

Looks like an upside down tree.

Starts at top with “/”, called “root”.

Unix uses the “/” to separate directories (known
as folders on Mac or Windows)

Top Level
Directories

Levels of sub
Directories

File names – the “separator is “/”.

 root (first slash) then path and filename

/usr/lib/libc.a!

This is the full name from root (works from anywhere –
i.e. any directory), if you were in the directory usr, you

only need

!

lib/libc.a!

(no leading slash)

And if you were in the directory lib, you only need

libc.a!

(no leading slash)

The “/” (slash or forward slash) in Unix is roughly

equivalent to the “\” (backslash) in Windows/
DOS.

Some commands:

pwd – print working directory – tells us where we
are in the directory tree.

smalleys-imac-2:usr smalley$ pwd<CR>!
/usr!
smalleys-imac-2:usr smalley$

How to move between directories – going up and
down the directory tree–

To go down to the directory doc we use the

“change directory” = “cd” command

smalleys-imac-2:usr smalley$ cd doc<CR>!
smalleys-imac-2:doc smalley$!

Now

smalleys-imac-2:usr smalley$ pwd<CR>!
/usr/doc!
smalleys-imac-2:doc smalley$

Some details of the prompt

you can control all this - the prompt has been
programmed to tell us a bunch of stuff! (power of

unix.)

Machine

Directory name (in this case without full path)

User name

Text string

smalleys-imac-2:usr smalley$!

Aside:

Unix sub philosophy –

Minimize typing (on teletype) – so use short (2, in
extreme cases 3 character) command names

constructed from description of the command.

e.g. “cd” for “change directory”

(Unix fans claim this is a “feature” of Unix,
compared to other O/Ses)

We can also go up the directory structure.

To return to usr from doc.

doc$ cd ..<CR>!
usr$!

This is a little strange ---

The double dot (“..”) signifies the directory
directly above you (up) in the directory structure

(tree).

We can also go directly to anywhere in the
directory structure using the full path.

To go to usr (from doc or anywhere, such as pub)

doc$ cd /usr<CR>!
usr$!

Notice that you have to know where you are in the
tree and what subdirectories are contained there

to navigate down.

Unix does not provide a display of the picture
below. You need to have it in your head.

How do we go from doc to lib?

We could do this using the full path.

!
doc$ cd /usr/lib<CR>!
lib$!

How do we go from doc to lib?

But here’s an easier (?) way – we have to go up
one level; then down one level. This can be done

with the command.

doc$ cd ../lib<CR>!
lib$!

Say we want to go to “pub”

!
!
lib$ cd ../../home/ftp/pub<CR>!
!

We went up two, then down three. !

Say we want to go to “pub”

We could also have done (and is simpler) this with
the full path.

!
pub$ cd /home/ftp/pub<CR>!

Go directly to “root” directory (“/”)

!
lib$ cd /<CR>!
/$!

Go from anywhere directly to your “home”
directory (assume I’m “lisa”).

CS171$ cd ~<CR>!
lisa$!

uses tilde “~”

Go from anywhere directly to someone else's
home directory (assume I’m lisa)

lisa lisa$ cd ~joe<CR>!
/home/joe lisa$!

also uses tilde “~”

The tilde character “~”

- refers to your home directory when by itself,

-  or that of another user when used with their
home directory name (the same as their user

name).

(The shell expands the “~” into the appropriate
character string for the full path - “/home/joe”

or “/home/lisa”)

Review - specifying file names

full path

 /usr/lib/libc.a!

relative path

(if in directory lib) libc.a!
(if in another directory next to it, e.g. doc

 ../lib/libc.a!

Review - specifying file names

abbreviations

(if I am joe) ~/CS171/hello.cc !

(if I am not joe) ~joe/CS171/hello.cc!

You have to keep track of the file structure in
your head

or have a way to find out what files are in the

working directory.

What files are in working directory?

Use the “list” command, which is actually “ls”.

(Compare this to VAX-VMS, a professional O/S with 100 man-
years of development, which uses “directory” – much longer)

(but Unix supporters forget to tell you that it can be shortened,
using “smart abbreviating”, by dropping letters off the back, to

“director”, “directo”, “direct”, “direc”, “dire”, or “dir”

at which point continued shortening stops as “di” is non-unique as

another command (differences) also begins with the letters “di”.

This means you can write “com” files – same as shell scripts or

batch files – to be readable using “directory” or cryptically using
“dir”.)

Listing working directory (where we are) contents
with “ls” command.

smalleys-imac-2:~ smalley$ ls<CR>!
Adobe SVG 3.0 Installer vel.dat!
Desktop ! ! ! ! ! ! ! ! !heflen_web.dat!
Documents ! ! ! ! ! ! ! !isc0463.dat!
Downloads ! ! ! ! ! ! ! !nuvel-1a.dat!
gpsplot.dat!
smalleys-imac-2:~ smalley$!

Note the file

Adobe SVG 3.0 Installer

has spaces in the name.

On Unix this is somewhat of a problem.

Spaces are allowed in filenames in Unix (all
characters but the “/”, which we have seen means

something special in a filename, are allowed in
filenames!) , but spaces, and special characters

-!@#$%^&*()_+|?><`[]{}\’”:;!

 are not handled nicely as most of them also mean
something special (not related to file name) to the

shell.

The problem with spaces is that the command
interpreter of the shell parses (breaks) the

command line up into tokens (individual items)
based on the spaces.

So our file name gets broken into 4 small distinct

character strings (“Adobe”, “SVG”, “3.0”, and
“Installer”) which causes confusion since there

are no files by that name.

So we have to “protect” the spaces from the
interpreter.

This is done with quotes.

We refer to this file using

“ Adobe SVG 3.0 Installer ”!

or

‘ Adobe SVG 3.0 Installer ‘!

(We will see the difference between single, ‘, and

double, “, quotes later.)

ls: lists files and subdirectories of the specified
path.

%ls /gaia/home/rsmalley<CR>!
bin!src usr world.dat!
!
%ls<CR>!
lists everything in the current directory

!
%ls ~/bin<CR>!
lists everything in your bin directory (not the
system bin directory /bin).

ls: getting more information than just file name.

Use a “flag” to give the “ls” command control
inputs.

Use “-F” to obtain kind of file – list directories
with ‘/’ and executables with ‘*’

smalleys-imac-2:~ smalley$ ls -F<CR>!
Adobe SVG 3.0 Installer vel.dat!
Desktop/! ! ! ! ! ! ! heflen_web.dat!
Documents !/! ! ! ! ! ! !isc0463.dat!
mymap.sh* ! ! ! ! ! ! ! !a.out*!
Downloads/! ! ! ! ! ! !nnr-nuvel-1a.dat!
gpsplot.dat!
smalleys-imac-2:~ smalley$!

This example introduces the switch, or flag, “-F”,
which modifies the output.

The output now identifies if the file is a

“regular file” (nothing appended), a

“directory” (slash appended), or an

“executable file” (asterisk appended, = program,

application).

More switches

list entries beginning with the character dot, ‘.’,
which are normally hidden or invisible, using the

‘–a’ flag, and show the listing in long format using
the –l flag (plus the –F).

smalleys-imac-2:~ smalley$ls -alF<CR>!
drwxr-xr-x+ 92 rsmalley staff 3128 Aug 31 12:48 .!
drwxr-xr-x 5 root admin 170 May 25 14:14 ..!
-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 !bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 !world.dat!

In this case can combine flags as above (-alF) or
put individually (-a –l –F).

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

What is the extra information

First character, “d” for directory, “-” for regular
file, plus about 10 other things for other types of
files.

The next 9 characters show read/write/execute
privileges for owner, group, and all (or world or
other).

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

If have read, write or execute privileges has “r”,
“w”, or “x” respectively. If not, has a “-”.

So the owner has read and write privileges on all
the files or directories, and execute privileges on
the executable file (indicated by the “*”), .cshrc,
and the directory bin (although one cannot
execute a directory – if a directory is not
executable other users can’t cd or see into it).

Group and world or other have no privileges.

-rwx------ 1 rsmalley rsmalley 1201 Jul 10 15:03!.cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

Privileges can also be specified or displayed in
OCTAL (base 8) with each bit of the octal value
representing the permission/privilege.

rwx=111=7!
rw-=110=6!
r--=100=4!
--x=001=1!

etc. for owner, group, world.

-700 1 rsmalley rsmalley 1201 Jul 10 15:03 !.cshrc*!
d700 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-600 1 rsmalle yrsmalley 186668405 Jul 31 2007 world.dat!

This is “much better” (on a teletype) as it uses
fewer characters (and requires being “in the

know” to understand).

-rwx------ 1 rsmalle yrsmalley 1201 Jul 10 15:03 ! .cshrc*!
drwx------ 1 rsmalley rsmalley 16384 Aug 1 13:50 bin/!
-rw------- 1 rsmalley rsmalley 186668405 Jul 31 2007 world.dat!

Temporarily skipping the next 3 columns, we then
have the file size in bytes, the date the file was

last modified, and the file name.

Switches/flags and manual pages:

Most Unix commands have switches/flags that
can be specified to modify the default behavior

of the command.

How do we find what switches are available and
what they do?

The developers of Unix (being so smart) thought
of this and provided documentation through the
manual command – “man”. To read the man page

for the list command.

alpaca.ceri.memphis.edu/rsmalley 160:> man ls!
Reformatting page. Please Wait... done!
!
User Commands ls(1)!
!
NAME!
ls - list contents of directory!
!
SYNOPSIS!
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]!
!
DESCRIPTION!
 For each file that is a directory, ls lists the contents of!
 the directory. For each file that is an ordinary file, ls!
 repeats its name and any other information requested. The!

This goes on for quite a while. Note the

--More-- (9%) at the bottom – says we are 9% done

(oh joy on a teletype!)

 output is sorted alphabetically by default. When no argument!
 is given, the current directory is listed. When several!
 arguments are given, the arguments are first sorted!
 appropriately, but file arguments appear before directories!
 and their contents.!
!
 There are three major listing formats. The default format!
 for output directed to a terminal is multi-column with!
 entries sorted down the columns. The -1 option allows single!
 column output and -m enables stream output format. In order!
 to determine output formats for the -C, -x, and -m options,!
 ls uses an environment variable, COLUMNS, to determine the!
 number of character positions available on one output line.!
 If this variable is not set, the terminfo(4) database is!
 used to determine the number of columns, based on the!
 environment variable, TERM. If this information cannot be!
 obtained, 80 columns are assumed.!
!
 The mode printed under the -l option consists of ten charac-!
 ters. The first character may be one of the following:!
!
--More--(9%)!

continuing

 d The entry is a directory.!
!
 D The entry is a door.!
!
 l The entry is a symbolic link.!
!
 b The entry is a block special file.!
!
 c The entry is a character special file.!
!
 p The entry is a FIFO (or "named pipe") special file.!
!
 s The entry is an AF_UNIX address family socket.!
!
 - The entry is an ordinary file.!
!
 The next 9 characters are interpreted as three sets of three!
 bits each. The first set refers to the owner's permissions;!
 the next to permissions of others in the user-group of the!
!
SunOS 5.9 Last change: 19 Nov 2001 1!
!
User Commands ls(1)!
!
 file; and the last to all others. Within each set, the three!
 characters indicate permission to read, to write, and to!
 execute the file as a program, respectively. For a direc-!
 tory, ``execute'' permission is interpreted to mean permis-!
 sion to search the directory for a specified file. The char-!
 acter after permissions is ACL indication. A plus sign is!
 displayed if there is an ACL associated with the file. Noth-!
 ing is displayed if there are just permissions.!
!
 ls -l (the long list) prints its output as follows for the!
 POSIX locale:!
!
--More--(16%)!

This goes on for several pages.

Try the manual command on a number of
commands

(including the man command with “man man”).

!

Man pages are pretty opaque.

They follow a fixed format giving you the name of
the command and the list of switches.

Most do not have examples

(like math books that don’t use figures since
figures can’t truly represent the math).

!

Removing files and directories

rm<CR> : remove files or directories

A very straightforward and potentially dangerous
command.

There is no trash can on a unix machine.

Once you hit the <CR> it is GONE.

Now for some more commands.

(from here on, will drop the <CR> at end).

!

Removing files

rm: remove files or directories

CERI accounts are set up so that rm is aliased to
rm –i (more on aliases later), which means the

computer will ask you if you really want to
remove the file(s) one at a time

% which rm!
rm: aliased to /bin/rm –i!

and another new command “which” that tells
you if an executable exists and where it “lives”.

Removing files

%rm f1!
remove f1? !

Valid answers.

Yes, yes, Y, y – to accept and erase.

No, no, N, n – to not erase.

<CR> - does not erase, default.

Removing files

rm: remove files or directories

%rm f1!
remove f1? yes<CR>!
%!

and bye-bye file.

Removing files

Remember that Unix is lean and mean.

It is a multi-user system and once the disk space
associated with your file is released, the system

can write somebody else’s file into it
immediately.

There is NO RECOVERING removed files.

(You have been told. Sufficient for Unix users.)

Removing files

Without the –i option set – this is what we would
get.

%rm f1!
%!

and bye-bye file.

So if you made a typo – tough.

Removing files

If the –i option was not set – you can get it by
typing –i yourself (you can find this out on

the man page)

(but sooner or later you will mess up on one if
you reset it back to normal operation!).

%rm –i f1!
remove f1? y!
%!

and bye-bye file.

So if you made a typo – tough.

Removing files

Say you are 100% sure and don’t want to have to
answer the question and the pesky system

manager has set an alias to protect you from
yourself (very non Unix philisophy). You can

return to the original definition of rm using the
“\”.

%\rm f1!
%!

and bye-bye file without prompting.

So if you made a typo – tough.

General Unix behavior.

The “\” before a command undoes an alias and
gives you the default Unix version of the

command.

Removing files

We will see more potential rm disasters when we
get to wildcards.

(If you have sufficient privilages, it is possible to
accidently erase the whole operating system!!!)

Making & removing directories

mkdir: make directory

% mkdir bin src Projects Classes<CR>!

Makes 4 directories: bin, src, Projects, and

Classes in the working directory.

Making & removing directories

rmdir: remove directory - only works with empty
directories so is safe (very uncharacteristic of

Unix).

% rmdir bin src Projects Classes!

Removes the 4 directories bin, src, Projects, and
Classes in the working directory -- IF they are

EMPTY.

Making & removing files and directories

rm –d: to use rm to remove directories

rm –r: removes directories recursively (i.e. all
subdirectories and files in them); implies –d!

can be very dangerous… one typo could remove
months of work (will probably also need the \)

% \rm -r Classes!
!

So if you made a typo – tough.

!

Making & removing files and directories

% rm -r Classes!

With the CERI alias for rm to rm –i, this
command will prompt you for each file!

Gets tedious – and makes you want to do

% \rm -r Classes!

Which is VERY DANGEROUS (but I’ve told you,

so I’m off the hook).

Manipulating files

cat: concatenate files, sends files or Standard IN
to Standard OUT.

 If you want the concatenated files in another file
– you have to redirect the output from Standard

OUT to the file.

Manipulating files

cat: Since it dumps the entire file contents to the
screen

– we can use it to “print out” or ”type out” a file.

Manipulating files

Another Unix philosophy issue –

use of side effects.

We don’t need another command to print or type
the contents of a file to the screen as it is a side
effect of the cat command and the Standard

OUT operation of commands.

So feature it!

There is no “print” command, it is un-needed (lean
and mean, emphasis on mean. The sooner you begin to think like

this the sooner you will be able to use Unix.).

Manipulating files

cat: make one file out of file1, file2 and file3 and
call it alltogether.

%cat file1 file2 file3 > alltogether!

This command (does not need input redirection,
exception to regular rule that input only comes

from Standard IN – but it will also take input from
Standard IN) takes files file1, file2, and file3 and

puts them into file alltogether.

Manipulating files

OK, what does this do?

%cat > myfile!

Manipulating files

OK, what does this do?

%cat > myfile!

(Put on your Unix thinking cap)

It takes Standard IN (the keyboard) and puts it
into the file myfile.

Looking at files

OK, what does this do?

%cat > myfile!

How does one get it to stop?

i.e. how do you let it know you are done entering

stuff?

Enter “^D” or “^Z”, where “^” is the control (ctrl)
key and you hold it down and then press the D or

Z.

Notice the logic associated with the input, output,
and use of the command.

This type of thinking, or (il)logic, permeates Unix.

When you cat a long file it flies by on the screen
(and off the top).

On newer GUIs there are scroll bars and you can

scroll up and down.

On the older interactive terminals the text
disappeared off the top.

Not good.

This problem was fixed by another Unix program
that takes Standard IN and puts it to Standard
OUT a screenful at a time. (has to know about

screens).

(This way, following the Unix philosophy, the cat
program could be lean and mean. It did not have
to figure out if it was going to the screen, etc., it

just sends stuff to Standard OUT.)

So we pipe the output into another program that
handles the screen display.

This program is called more.

%cat myfile | more!

The program more puts up a screens worth of
text and then waits for you to tell it to continue

(using the space bar for a new page worth and
<CR> for a new lines worth of the file. ^Z to quit

more.)

Looking at files

more can also be used directly

% more myfile!

Or

% more < myfile!

(more was written outside the Unix club and
borrowed by Unix, so it does not strictly follow

Unix philosophy.)

Looking at files

less: same as more but allows forward and
backward paging.

(in OSX, more is aliased to less because less

is more with additional features.)

(We will discuss aliases later.)

