
Data Analysis in Geophysics
ESCI 7205

Class 14

Bob Smalley

MATLAB

the Matrix

A matrix is a rectangular array of numbers

! ! ! ! !16 ! !3 ! !2 ! !13 !
! ! ! ! !5 ! !10 ! !11 ! !8 !
! ! ! ! !9 ! !6 ! ! 7 ! !12!
! ! ! ! !4 ! !15 ! !14 ! !1!

Vectors are matrices with only one row or column

! ! ! ! ! !16 ! !3 ! !2 ! !13 !

Scalars can be thought of as 1-by-1 matrices

16!

Matlab basically thinks of everything as a matrix.

Handles math operations on

Scalars

Vectors

2-D matricies

With ease

Gets ugly with higher dimension matrices – as
there are no mathematical rules to follow.

Entering Matrices

- Enter an explicit list of elements.

- Load from external data files.

- Generate using built-in functions

-  Create with your own functions in m-files

(matlab’s name for a file containing a matlab

program. Same as shell script, sac macro, batch file, commnad file, etc. but for

matlab.)

Entering a matrix from the command line

(method 1):

Separate the elements (columns) of a row with

blanks or commas.

Use a semicolon, “;” or <CR>, to indicate the end
of each row.

Surround the entire list of elements with square

brackets, [].

>> A44 = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]!
A44 =!
 16 3 2 13!
 5 10 11 8!
 9 6 7 12!
 4 15 14 1!
>> A44 = [!
16 3 2 13!
5 10 11 8!
9 6 7 12!
4 15 14 1!
]!
A44 =!
 16 3 2 13!
 5 10 11 8!
 9 6 7 12!
 4 15 14 1!
!

Matrices indexed the same as math (row, column)

Looks like
mathematical
matrix

>> A44 = [16 3 2 13!
5 10 11 8!
9 6 7 12!
4 15 14 1]!

>> A14 = [16 3 2 13]!
A14 =!
 16 3 2 13!
>> A41 = [16; 5; 9; 4]!
A41 =!
 16!
 5!
 9!
 4!
>> whos!
 Name Size Bytes Class Attributes!
 A14 1x4 32 double !
 A41 4x1 32 double !
 A44 4x4 128 double !
>>!

Matrices indexed the same as math (row, column)

Row vector/matrix

Column vector/matrix

whos – reports what
is in memory

Suppressing Output

If you simply type a statement and press Return
or Enter, MATLAB automatically displays the

results on screen.

If you end the line with a semicolon, MATLAB
performs the computation but does not display
any output. This is particularly useful when you

generate large matrices.

Matlab normally prints out results – to stop
printout, end line with semi-colon “;”

(this is general rule).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]!
A =!
!
 16 3 2 13!
 5 10 11 8!
 9 6 7 12!
 4 15 14 1!
>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1];!
>> !

The load function

reads binary files containing matrices (generated by earlier

MATLAB sessions), or text files containing numeric data.

The text file should be organized as a rectangular
table of numbers, separated by blanks, with one
row per line, and an equal number of elements in

each row.

>> cat magik.dat!
16.0 !3.0 !2.0 !13.0!
5.0 !10.0 !11.0 !8.0!
9.0 !6.0 !7.0 !12.0!
4.0 !15.0 !14.0 !1.0!
>> A=load(‘magik.dat’) #places matrix in variable A!
>> load magik.dat #places matrix in variable magik!

Matlab is particularly difficult to use if data files
do not fit this format (varying number columns for

example).

Matlab is also particularly difficult to use for
processing character data.

Generate matrices using built-in functions.

Complicated way of saying “run commands” and
send output to new matrices.

Matlab also does matrix operations (e.g. -

transpose).

>>magik’ !#transpose matrix magik!
ans =!

!16 !5 !9 !4!
!3 !10 !6 !15!
!2 !11 !7 !14!
!13 !8 !12 !1!

m-Files

Text files with MATLAB code (instructions). Use
MATLAB Editor (or any text editor) to create files

containing the same statements you would type at
the MATLAB command line.

Save the file with a name that ends in .m

% vim magik.m!
i!
A = [16.0 3.0 2.0 13.0!
5.0 10.0 11.0 8.0!
9.0 6.0 7.0 12.0!
4.0 15.0 14.0 1.0];!
(esc)wq!

in matlab, execute the m file magik.m

>> magik #places matrix in A!

Entering long statements

If a statement does not fit on one line, use an
ellipsis (three periods), “...”, followed by

“Carriage Return” or “Enter” to indicate that the
statement continues on the next line.

>>s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...!

! ! !- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;!

Subscripts

Matrices consists of rows and columns.

The element in row k and column l of A is

denoted by A(k,l) (same as math).

Example: A(4,2)=15.0!

!16.0 !3.0 ! !2.0 ! !13.0!
!5.0 ! !10.0 !11.0 !8.0!
!9.0 ! !6.0 ! !7.0 ! !12.0!
!4.0 ! !15.0 !14.0! !1.0!

4th row, 2nd column.

l!
k!

1
 4
3
2

1

2

3

4

If you store a value in an element outside of the
current size of a matrix, the size increases to

accommodate the newcomer:

>> A = [16.0 3.0 2.0 13.0!
5.0 10.0 11.0 8.0!
9.0 6.0 7.0 12.0!
4.0 15.0 14.0 1.0];!
>> X = A;!
>> X(4,5) = 17!
X =!
16!3 !2 !13 !0!
5 !10 11 !8 !0!
9 !6 !7 !12 !0!
4 15 14 !1 !17!
>>!

You can also access the element of a matrix by
referring to it as a single number.

This is because computer memory is addressed

linearly – a single line of bytes (or words).

There are therefore (at least) two ways to
organize a two dimensional array in memory – by

row or by column (and both are/have been used of course).

MATLAB (and Fortran) store the elements by
columns (called column major order).

>> A = [16.0 3.0 2.0 13.0!
5.0 10.0 11.0 8.0!
9.0 6.0 7.0 12.0!
4.0 15.0 14.0 1.0]!
A=!
16 3 !2 !13!
5 !10 !11 !8!
9 !6 !7 !12!
4  15 !14 !1!
!

The elements are stored in memory by column.

16, 5, 9, 4, 3, 10, 6, 15, 2, 11, 7, 14, 13, 8, 12, 1.!
(1)(2)(3)(4)(5) (6)(7) (8)(9)(10)(11)(12)(13)(14)(15)(16)!
!

So A(11)=7.

How stuff stored in memory – column major order

>> a=[11 12; 21 22]!
a =!
 11 12!
 21 22!
>> a(:)!
ans =!
 11!
 21!
 12!
 22!
>> b=[11 12 21 22]!
b =!
 11 12 21 22!
>> b(:)!
ans =!
 11!
 12!
 21!
 22!
>> whos!
 Name Size Bytes Class Attributes!
 a 2x2 32 double !
 ans 4x1 32 double !
 b 1x4 32 double!
>> !

>> a=[1,2,3]!
a =!
!
 1 2 3!
>> a(:)!
ans =!
 1!
 2!
 3!
>> b=[1;2;3]!
b =!
 1!
 2!
 3!
>> b(:)!
ans =!
 1!
 2!
 3!
>>!
!

Same in memory,
different
"vectors"

A(k,l)!

k varies most rapidly

 l varies least rapidly

 For 4x4 2-D matrix

(1,1), (2,1), (3,1), (4,1), (1,2), (2,2)…(3,4), (4,4,)!
 (1) (2) (3) (4) (5) (6) (15) (16)!

This may be important when reading and writing
very large matrices – one wants the data file to

have the same storage order as memory to
minimize time lost due to page faulting.

When you go to 3 dimensions, order of subscript
variation is maintained (1st to last)

A(k,l,m)!

k varies most rapidly

 l varies next most rapidly

 m varies least rapidly

 For 3x2x2 matrix

(1,1,1), (2,1,1), (3,1,1),!
(1,2,1), (2,2,1), (3,2,1),!
(1,1,2), (2,1,2), (3,1,2),!
(1,2,2), (2,2,2,), (3,2,2),!

…!

C uses row major order (stores by row).

If mixing Matlab and Fortran there is no problem
as both use column major order.

If mixing Matlab or Fortran and C – one has to
take the array storage order into account.

If mixing Matlab or Fortran and C – one has to
take the array storage order into account.

one also has to deal with how information is
passed

-  by reference [the address of the information in
memory – Fortran]

- or value [a copy of the information – C].)

Although all three pass arrays by reference (can't
always copy big arrays)

0-d scaler

1-d vector

2-d matrix

3-d think of as a stack of 2-d matrices

>3-d something hard to visualize – but fine
mathematically (4-d is 2-d matrix with each

element itself a 2-d matrix)

The Colon Operator

The colon, “:”, is one of the most important (and
sometimes seemingly bizarre) MATLAB operators

It can be used to

- Create a list of numbers

- Work with all entries in specified dimensions

- Collapse trailing dimensions (right- or left-hand side)

- Create a column vector (right-hand side behavior related to

reshape)

- Retain an array shape during assignment (left-hand

side behavior)

Creating a List of Numbers

You can use the “:” operator to create a 1-d
vector of evenly-spaced numbers.

Here are the integers from -3 to 3.

>> list1=-3:3!
list1 =!
 -3 -2 -1 0 1 2 3!
!

Don't need the braces (are optional)

Creating a List of Numbers

Here are the first few odd positive integers.

>>list2 = 1:2:10!
list2 =!
 1 3 5 7 9!

Can use negative increments

>>100:-7:51!
ans =!
 100 93 86 79 !72 !65 !58 !51!

syntax for this use of colon operator –

start:[increment if ≠1:]end!
!

(default increment = 1)

Creating a List of Numbers

Here's how to divide the interval between 0 and
pi (Matlab knows about π) into equally spaced

samples (increment does not have to be whole #).

>>nsamp = 5;!
>>sliceOfPi = (0:1/(nsamp-1):1)*pi)!
sliceOfPi =!
 0 0.7854 1.5708 2.3562 3.1416!

(Note – can also define single dimension row matrix with ()’s. Does not work when try to

use “;” for another row.)

a=(1:3)!
a =!
 1 2 3!

Things that don't work

>> a=(1:3;4:6)!
 a=(1:3;4:6)!
 |!
Error: Unbalanced or unexpected parenthesis or bracket.!
 !
>> a=1:3;4:6!
!
ans =!
!
 4 5 6!
!
>>!
!

Second one (no error reported) creates array
named a = 1 2 3 and then and array named
ans = 4 5 6. It uses the ; as a line separator,

not a row separator (when outside []).

Aside – for languages that, unlike Matlab, don’t
have π predefined, how can one get the “best”

representation of pi (most precise on that
computer)?

Aside to the aside – Matlab also knows about the

imaginary numbers i, and j

(so don't use them for loop indices [you should

not be using loops if you can help it in Matlab
anyway!]).

Working with all the Entries in Specified
Dimensions

To manipulate values in some specific dimensions,
use the “:” operator to specify the dimensions.

A “:” by itself indicates all elements of that index
position (usually rows or columns)

>>a(:,1)

Means “all rows, in column 1”

>>a(1,:)

Means “all columns, in row 1”

Suppose we have the 4-d matrix below

>> b=[1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d=reshape(b,2,2,2,2)!
b4d(:,:,1,1) =!
 1 9!
 5 13!
b4d(:,:,2,1) =!
 2 10!
 6 14!
b4d(:,:,1,2) =!
 3 11!
 7 15!
b4d(:,:,2,2) =!
 4 12!
 8 16!

In the print out of the array the
colon represents the full range of
the index/indices represented by
the colon and not shown explicitly

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> reshape(b,2,2,2,2)!
ans(:,:,1,1) =!
 1 9!
 5 13!
ans(:,:,2,1) =!
 2 10!
 6 14!
ans(:,:,1,2) =!
 3 11!
 7 15!
ans(:,:,2,2) =!
 4 12!
 8 16!
>> b4d(:,1,1,1)!
ans =!
 1!
 5!
>> b4d(1,:,1,1)!
ans =!
 1 9!
>> !

>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

Replacing single index with a colon– runs over
that index.

>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16

>> b4d(:)!
ans =!
 1! !b4d(1,1,1,1)!
 5! !b4d(2,1,1,1)!
 9! !b4d(1,2,1,1)!
 13! !b4d(2,2,1,1)!
 2! !b4d(1,1,2,1)!
 6! !b4d(2,1,2,1)!
 10! !b4d(1,2,2,1)!
 14! !b4d(2,2,2,1)!
 3! !b4d(1,1,1,2)!
 7! !b4d(2,1,1,2)!
 11! !b4d(1,2,1,2)!
 15! !b4d(2,2,1,2)!
 4! !b4d(1,1,2,2)!
 8! !b4d(2,1,2,2)!
 12! !b4d(1,2,2,2)!
 16! !b4d(2,2,2,2)!

How the indices vary in the 4-d array.

k:l - Refers to range of values for indices
(portions) of a matrix

>> k=2;!
>> l=3;!
>> a(k:l,1)!

‘rows 2 through 3, in column 1’

Same as

>> a(2:3,1)!

k:l:n - range of values, in steps of index.

Can also do over multiple indices

>> a=1:64;!
>> a=reshape(a,4,4,4)!
a(:,:,1) =!
 1 5 9 13!
 2 6 10 14!
 3 7 11 15!
 4 8 12 16!
a(:,:,2) =!
 17 21 25 29!
 18 22 26 30!
 19 23 27 31!
 20 24 28 32!
a(:,:,3) =!
 33 37 41 45!
 34 38 42 46!
 35 39 43 47!
 36 40 44 48!

a(:,:,4) =!
 49 53 57 61!
 50 54 58 62!
 51 55 59 63!
 52 56 60 64!
>> a(2:3,3:4,1,1)!
ans =!
 10 14!
 11 15!
>> a(2:3,4:-1:3,1,1)!
ans =!
 14 10!
 15 11!

Can be pretty tricky.

For example, suppose I want to perform a left
shift on the values in the second dimension of my

3-D array.

Let me first create an array for illustration.

>> a3 = zeros(2,3,2);!
>> a3(:) = 1:numel(a3)!
a3(:,:,1) =!
 1 3 5!
 2 4 6!
a3(:,:,2) =!
 7 9 11!
 8 10 12!

>> a3 = zeros(2,3,2);!
>> a3(:) = 1:numel(a3)!
a3(:,:,1) =!
 1 3 5!
 2 4 6!
a3(:,:,2) =!
 7 9 11!
 8 10 12!

Now shift all columns one to the left, and have the
left-most column “wrap” to become the right

most column. Columns are index 2. Here's a way
(there are others) to do it.

>> a3r1 = a3(:,[2:size(a3,2) 1],:)!
a3r1(:,:,1) =!
 3 5 1!
 4 6 2!
a3r1(:,:,2) =!
 9 11 7!
 10 12 8!

For all rows, put columns 2 to end (get from 2nd
element of size – the middle dimension), then
column 1, for all “planes” (2-d matrices in 3rd

dimension).

>> a3r1 = a3(:,[2:size(a3,2) 1],:)!
a3r1(:,:,1) =!
 3 5 1!
 4 6 2!
a3r1(:,:,2) =!
 9 11 7!
 10 12 8!

!

Notice new way to refer to values of an index –
using an array.

Collapsing Trailing Dimensions

Suppose we have the following 4-d array.

!
!
>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

>> b4d=reshape(b,2,2,2,2)!
b4d(:,:,1,1) =!
 1 9!
 5 13!
b4d(:,:,2,1) =!
 2 10!
 6 14!
b4d(:,:,1,2) =!
 3 11!
 7 15!
b4d(:,:,2,2) =!
 4 12!
 8 16!

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

The reshape does
not change the

order of things in
memory – just
renames them

(actually copies in
same order)

>> b=[1:4; 5:8; 9:12; 13:16]!
…!
>> b4d=reshape(b,2,2,2,2)!
b4d(:,:,1,1) =!
 1 9!
 5 13!
…!
>> b4d(1,1,1,1)!
ans =!
 1!
>> b4d(1,2,1,1)!
ans =!
 9!
>> b4d(2,1,1,1)!
ans =!
 5!
>> b4d(2,2,1,1)!
ans =!
 13!
>> !

>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

Match up
elements here
with those in
b4d(:,:,1,1)
above

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d(1,1,1,:)!
ans(:,:,1,1) =!
 1!
ans(:,:,1,2) =!
 3!
>> b4d(1,1,:)!
ans(:,:,1) =!
 1!
ans(:,:,2) =!
 2!
ans(:,:,3) =!
 3!
ans(:,:,4) =!
 4!
>> b4d(1,:)!
ans =!
 1 3 5 7 9 11 13 15!

Colon

- When used at the end of a list
it “compresses” all the
remaining indices into a single
index (indexed linearly as in
memory – by a single
subscript). This is called
“collapsing” trailing dimensions.

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d(1,1,1,:)!
ans(1,1,1,1) =!
 1!
ans(1,1,1,2) =!
 9!
>> b4d(1,1,:)!
ans(1,1,1) =!
 1!
ans(1,1,2) =!
 5!
ans(1,1,3) =!
 9!
ans(1,1,4) =!
 13!
>> b4d(1,:)!
ans =!
 1 3 5 7 9 11 13 15!

>> b4(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

Colons in
print out here
represent the
1,1.!
Not sure why
Matlab does
not print out
values of
index.

>> b4d(1,1,1,:)!
ans(:,:,1,1) =!
 1!
ans(:,:,1,2) =!
 9!
>> b4d(1,1,:)!
ans(:,:,1) =!
 1!
ans(:,:,2) =!
 5!
ans(:,:,3) =!
 9!
ans(:,:,4) =!
 13!

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d(1,1,:)!
ans(:,:,1) =!
 1!
ans(:,:,2) =!
 2!
ans(:,:,3) =!
 3!
ans(:,:,4) =!
 4!
>> b4d(2,1,:)!
ans(:,:,1) =!
 5!
ans(:,:,2) =!
 6!
ans(:,:,3) =!
 7!
ans(:,:,4) =!
 8!
>>!

(these are the elements
1,1,1,1 1,1,2,1

1,1,1,2 1,1,2,2
a total of 4 elements)

>> b4(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d(1,1,:)!
ans(1,1,1) =!
 1!
ans(1,1,2) =!
 2!
ans(1,1,3) =!
 3!
ans(1,1,4) =!
 4!
>> b4d(2,1,:)!
ans(2,1,1) =!
 5!
ans(2,1,2) =!
 6!
ans(2,1,3) =!
 7!
ans(2,1,4) =!
 8!
>>!

>> b4(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

>> b4d(1,1,1,1)!
ans =!
 1!
>> b4d(1,1,2,1)!
ans !
 2!
>> b4d(1,1,1,2)!
ans =!
 3!
>> b4d(1,1,2,2)!
ans =!
 4!
>>!

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d(1,:)!
ans =!
 1 9 2 10 3 11 4 12!
>> b4d(2,:)!
ans =!
 5 13 6 14 7 15 8 16!
>> b4d(:,:)!
ans =!
 1 9 2 10 3 11 4 12!
 5 13 6 14 7 15 8 16!
!

>> b=[1:4; 5:8; 9:12; 13:16]!
b =!
 1 2 3 4!
 5 6 7 8!
 9 10 11 12!
 13 14 15 16!
>> b4d(:,:,:)!
ans(:,:,1) =!
 1 9!
 5 13!
ans(:,:,2) =!
 2 10!
 6 14!
ans(:,:,3) =!
 3 11!
 7 15!
ans(:,:,4) =!
 4 12!
 8 16!
>> !
!

Same output as b4d.

>> b=[1:4; 5:8; 9:12; 13:16]!
>> reshape(b,2,2,2,2)!
ans(:,:,1,1) =!
 1 9!
 5 13!
ans(:,:,2,1) =!
 2 10!
 6 14!
ans(:,:,1,2) =!
 3 11!
 7 15!
ans(:,:,2,2) =!
 4 12!
 8 16!
>> b4d(:,:,:,1)!
ans(:,:,1) =!
 1 9!
 5 13!
ans(:,:,2) =!
 2 10!
 6 14!
>> b4d(:,:,1)!
ans =!
 1 9!
 5 13!
>> b4d(:,1)!
ans =!
 1!
 5!
>> !

>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

When compress in
front – works
differently - but still
iterates over all values
of some index.

>> b=[1:4; 5:8; 9:12; 13:16]!
>> reshape(b,2,2,2,2)!
ans(:,:,1,1) =!
 1 9!
 5 13!
ans(:,:,2,1) =!
 2 10!
 6 14!
ans(:,:,1,2) =!
 3 11!
 7 15!
ans(:,:,2,2) =!
 4 12!
 8 16!
>> b4d(:,:,:,1)!
ans(:,:,1) =!
 1 9!
 5 13!
ans(:,:,2) =!
 2 10!
 6 14!
>> b4d(:,:,1)!
ans =!
 1 9!
 5 13!
>> b4d(:,1)!
ans =!
 1!
 5!
>> !

>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

Takes some head
scratching to figure
out. (the final index
with a number value
compresses missing
indices.

In first example final
index can be 1 or 2, in
second can be 1-4, in
third can be 1-8.

Probably dangerous.

>> b=[1:4; 5:8; 9:12; 13:16]!
>> reshape(b,2,2,2,2)!
ans(:,:,1,1) =!
 1 9!
 5 13!
ans(:,:,2,1) =!
 2 10!
 6 14!
ans(:,:,1,2) =!
 3 11!
 7 15!
ans(:,:,2,2) =!
 4 12!
 8 16!
>> b4d(1,:,1)!
ans =!
 1 9!
>> b4d(1,1,:,1)!
ans(:,:,1) =!
 1!
ans(:,:,2) =!
 2!
>> b4d(1,:,1,1)!
ans =!
 1 3!
>> !

>> b(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16

>> b4d(:)!
ans =!
 1!
 5!
 9!
 13!
 2!
 6!
 10!
 14!
 3!
 7!
 11!
 15!
 4!
 8!
 12!
 16!

When compress in
middle – works
differently - but still
iterates over all values
of some index.

Again, takes some head
scratching to figure
out. (last index takes 4
values in first ex, 2 in
third and fourth ex)

Probably dangerous.

>> b4d=reshape(b,2,2,2,2)!
b4d(:,:,1,1) =!
 1 9!
 5 13!
b4d(:,:,2,1) =!
 2 10!
 6 14!
b4d(:,:,1,2) =!
 3 11!
 7 15!
b4d(:,:,2,2) =!
 4 12!
 8 16!

>> b4d(1,1,:,:)!
ans(:,:,1,1) =!
 1!
ans(:,:,2,1) =!
 5!
ans(:,:,1,2) =!
 9!
ans(:,:,2,2) =!
 13!
>> b4d(1,1,:)!
ans(:,:,1) =!
 1!
ans(:,:,2) =!
 5!
ans(:,:,3) =!
 9!
ans(:,:,4) =!
 13!
>>!

These
compressions
are equivalent

These colons
mean/do
different
things – one
set of them is
output by
matlab (blue)
and you
tuype the
other set
(black)

>> b4d=reshape(b,2,2,2,2)!
b4d(:,:,1,1) =!
 1 9!
 5 13!
b4d(:,:,2,1) =!
 2 10!
 6 14!
b4d(:,:,1,2) =!
 3 11!
 7 15!
b4d(:,:,2,2) =!
 4 12!
 8 16!

>> b4d(1,:,:,1)!
ans(:,:,1) =!
 1 9!
ans(:,:,2) =!
 2 10!
>> b4d(:,1,1,:)!
ans(:,:,1,1) =!
 1!
 5!
ans(:,:,1,2) =!
 3!
 7!
>> b4d(1,:,1,:)!
ans(:,:,1,1) =!
 1 9!
ans(:,:,1,2) =!
 3 11!
>> b4d(:,1,:,1)!
ans(:,:,1) =!
 1!
 5!
ans(:,:,2) =!
 2!
 6!
>>!

Get 4 elements
back on each
reference with
two colons.
Two, two
element, row
or column
vectors.

>> a=[1 2 3 4]!
a =!
 1 2 3 4!
>> at=a(:)!
at =!
 1!
 2!
 3!
 4!

Creating a column vector from another vector or
matrix. (note first example would usually be done
using transpose operator at=a', but not second

since start with matrix and end up with vector).

>> a22=[1 2; 3 4]!
a22 =!
 1 2!
 3 4!
>> a22c=a22(:)!
a22c =!
 1!
 3!
 2!
 4!
>> !

Retaining Array Shape During Assignment –
colon operator on left side of the equals sign

“pours” value on RHS into elements defined on
LHS.

>> b4d!
b4d(:,:,1,1) =!
 1 9!
 5 13!
b4d(:,:,2,1) =!
 2 10!
 6 14!
b4d(:,:,1,2) =!
 3 11!
 7 15!
b4d(:,:,2,2) =!
 4 12!
 8 16!
>> b4d(2,:,:,2)!
ans(:,:,1) =!
 7 15!
ans(:,:,2) =!
 8 16!

>> b4d(2,:,:,2)=21!
b4d(:,:,1,1) =!
 1 9!
 5 13!
b4d(:,:,2,1) =!
 2 10!
 6 14!
b4d(:,:,1,2) =!
 3 11!
 21 21!
b4d(:,:,2,2) =!
 4 12!
 21 21!
>> !

Concatenation

You can concatenate using the square
brackets, [] (same as making a matrix, but

using other matrices as the elements)

>>B = [A !A+32; ! A+48 ! A+16]!
B =!
16 !3 !2 !13 !48 !35 !34 !45!
5 !10 !11 !8 !37 !42 !43 !40!
9 !6 !7 !12 !41 !38 !39 !44!
4 !15 !14 !1 !36 !47 !46 !33!
64 !51 !50 !61 !32 !19 !18 !29!
53 !58 !59 !56 !21 !26 !27 !24!
57 !54 !55 !60 !25 !22 !23 !28!
52 !63 !62 !49 !20 !31 !30 !17!

Deleting rows and columns

You can also combine : with [] to remove rows,
columns, or elements (again – variation on theme
of assigning elements in a matrix – have a syntax

rule and read it like a lawyer for all possible
interpretations and implications.)

e.g. Remove the second column

>>X=A;!
>>X(:,2) = [];!
!

Create vector from X; removes every 2nd element
from 2 to 10!

>>X(2:2:10) = []!
X =!
16 !9 !2 !7 !13 !12 !1!

Done with the colon operator for now.

But will continue to show up in examples.

Variables

MATLAB does not require any type declarations

(actually all variables are double precision floating point – you can declare them
to be other things if needed – however many/most Matlab routines [such at

FFT, filtering, etc.] will not work with anything other than double precision
floating point data)

or dimension statements.

Variables

When MATLAB encounters a new variable name,
it automatically creates the variable and allocates

the appropriate amount of storage.

If the variable already exists, MATLAB changes
its contents and, if necessary, allocates new

storage.

MATLAB is case sensitive. (“A” is not the same as “a”)

Matlab

Arithmetic operations

Add/Subtract: Adds/subtracts vectors (element
by element) (=> the two vectors have to be the

same length).

>> x=[1 2];!
>> y=[1 3];!
>> z=x+y!
z =!
 2 5!
>> whos!
 Name Size Bytes Class Attributes!
 x 1x2 16 double !
 y 1x2 16 double !
 z 1x2 16 double !

Knows about complex numbers.

>> x=1+i;!
>> y=2+2i;!
>> z=x+y!
z =!
 3.0000 + 3.0000i!
>> whos!
 Name Size Bytes Class Attributes!
 x 1x1 16 double complex !
 y 1x1 16 double complex !
 z 1x1 16 double complex !
>> !

But - can add a scalar (1x1) array to every element
of matrix.

>> x=[1 2];!
>> y=1;!
>> x+y!
ans =!
 2 3!
>> whos!
 Name Size Bytes Class Attributes!
 ans 1x2 16 double !
 x 1x2 16 double !
 y 1x1 8 double !
>> !

Multiply

Now things get interesting

Scalar*vector

>> x=[1 2];!
>> y=3;!
>> z=y*x!
z =!
 3 6!
>> x=[1+i 2-i];!
>> y=1-i;!
>> z=y*x!
z =!
 2.0000 1.0000 - 3.0000i!
>>!
!

Matlab knows how to do it. You just write what
looks like math. (No looping to do element by

element multiplies, does complex math)!

Multiply

Vector * Vector

Now have some choices

Apostrophe is transpose if needed to get sizes
correct.

>> x=[1 2];
>> y=[3 4];
>> z=x*y’
z =
 11
>> w=x.*y
w =
 3 8
>> z=x'*y
z =
 3 4
 6 8
>>

Regular matrix multiplication – in this case with
vectors 1x2 * 2x1 = 1x1 => dot product

Element by element multiplication (the ".")

Regular matrix multiplication – in this case with
vectors 2x1 * 1x2 = 2x2 matrix

A little more complicated for complex valued
matrices.

!
>> a=[1-i 2-i;3-i 4-i]!
a =!
 1.0000 - 1.0000i 2.0000 - 1.0000i!
 3.0000 - 1.0000i 4.0000 - 1.0000i!
>> a’!
ans =!
 1.0000 + 1.0000i 3.0000 + 1.0000i!
 2.0000 + 1.0000i 4.0000 + 1.0000i!
>> a.’!
ans =!
 1.0000 - 1.0000i 3.0000 - 1.0000i!
 2.0000 - 1.0000i 4.0000 - 1.0000i!
>> ctranspose(a)!
ans =!
 1.0000 + 1.0000i 3.0000 + 1.0000i!
 2.0000 + 1.0000i 4.0000 + 1.0000i!
>> !

Complex conjugate
transpose (Hermitian)

Non-complex
conjugate transpose

Dot and Cross products

(using this form – built in functions - don’t have to match dimensions of vectors in the
sense that you can mix column and row vectors – although they have to be the same

length)

!
>> a=[1 2 3];!
>> b=[4 5 6];!
>> c=dot(a,b)!
c =!
 32!
>> d=dot(a,b’)!
d =!
 32!
>> e=cross(a,b)!
e =!
 -3 6 -3!
>> f=cross(a,b’)!
f =!
 -3 6 -3!
>> g=cross(b,a)!
g =!
 3 -6 3!
>>!

Dot products

For matrices – does dot product of each column.

The matrices have to be the same size.

!
>> a=[1 2;3 4]!
a =!
 1 2!
 3 4!
>> b=[5 6;7 8]!
b =!
 5 6!
 7 8!
>> dot(a,b)!
ans =!
 26 44!
>>!
!

Should try to write functions so they behave like
this – if give it "vector" does it to every element.

Here the 2-d matrix is a vector of vectors.!

Cross products

For matrix – does cross product of columns. (one of

the dimensions has to be 3 and takes other dimension as additional vectors)

!
>> a=[1 2;3 4;5 6]!
a =!
 1 2!
 3 4!
 5 6!
>> b=[7 8;9 10;11 12]!
b =!
 7 8!
 9 10!
 11 12!
>> cross(a,b)!
ans =!
 -12 -12!
 24 24!
 -12 -12!

Cross products

!
>> a=[1 3 5]!
>> b=[7 9 11]!
>> cross(a,b)!
ans =!
 -12 24 -12!
>> a=[2 4 6]!
>> b=[8 10 12]!
>> cross(a,b)!
ans =!
 -12 24 -12!
>> cross(a',b')!
ans =!
 -12!
 24!
 -12!
>> cross(a',b)!
ans =!
 -12 24 -12!
>> cross(a,b’)!
ans =!
 -12 24 -12!
>> !

Output can be row or
column vector

Array and Matrix divide

Even more fun

Element by element divide (the ".").

Right array divide.

Left matrix divide

Matrix on top is dividend.

Matrix on bottom is divisor.

>> a=[1 2;3 4]
a =
 1 2
 3 4
>> b=[2 4;6 8]
b=
 2 4
 6 8
>> a./b
ans =
 0.5000 0.5000
 0.5000 0.5000
>> a.\b
ans =
 2 2
 2 2
>> b./a
ans =
 2 2
 2 2
>> b.\a
ans =
 0.5000 0.5000
 0.5000 0.5000
>>

Array and Matrix divide

>> a=[1 2;3 4]!
a =!
 1 2!
 3 4!
>> det(a)!
ans =!
!
 -2!
>> b=[5 6]!
b =!
 5 6!
>> c=a*b’!
c =!
 17!
 39!
>> d=a\c!
d =!
 5.0000!
 6.0000!
>> !

Left matrix division.

Dividing a into c.

This is equivalent to inv(a)*c=b.

Note this is the solution to a*b=c.

Sizes have to be appropriate.

With a matrix for b, get solutions for each column
b’.

(we needed the b’ when b was a vector to get
things to multiply correctly – to get the same

values we have to transpose b also)

>> b=[5 6;7 8]
b =
 5 6
 7 8
>> c=a*b’
c =
 17 23
 39 53
>> d=a\c
d =
 5.0000 7.0000
 6.0000 8.0000
>>

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

A and B must be matrices that have the same

number of rows, unless A is a scalar, in which case
A\B performs element-wise division — that is,

A\B = A.\B.

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

If A is a square matrix, A\B is roughly the same as
inv(A)*B, except it is computed in a different

way.

If A is an n-by-n matrix and B is a column vector
with n elements, or a matrix with several such

columns, then

X = A\B!

is the solution to the equation AX = B.

A warning message is displayed if A is badly
scaled or nearly singular.

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

If A is an m-by-n matrix with m ~= n and B is a
column vector with m components, or a matrix with

several such columns, then

X = A\B!

is the solution in the least squares sense to the
under- or overdetermined system of equations AX

= B.

mldivide(A,B) and the equivalent A\B perform
matrix left division (back slash).

In other words, X minimizes

norm(A*X - B),

the length of the vector AX – B.

The rank k of A is determined from the QR
decomposition with column pivoting.

The computed solution X has at most k nonzero
elements per column. If k < n, this is usually not

the same solution as

x = pinv(A)*B,

which returns a least squares solution.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

B and A must have the same number of columns.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

If A is a square matrix, B/A is roughly the same as

B*inv(A).

If A is an n-by-n matrix and B is a row vector with
n elements, or a matrix with several such rows,

then

X = B/A!

is the solution to the equation XA = B computed
by Gaussian elimination with partial pivoting.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

A warning message is displayed if A is badly
scaled or nearly singular.

mrdivide(B,A) and the equivalent B/A perform
matrix right division (forward slash).

If B is an m-by-n matrix with m ~= n and A is a
column vector with m components, or a matrix with

several such columns, then

X = B/A!

is the solution in the least squares sense to the
under- or overdetermined system of equation

 XA = B.

Note: matrix right division and matrix left division
are related by the equation

!
B/A = (A'\B')'.

Example 1- Suppose A and B are -

>> A = magic(3)!
A =!
 8 1 6!
 3 5 7!
 4 9 2!
>> b = [1;2;3]!
b =!
 1!
 2!
 3!

To solve the matrix equation Ax = b, enter

>> x=A\b!
x =!
 0.0500!
 0.3000!
 0.0500!

You can verify x is the solution to the equation as follows.

>> A*x!
ans =!
 1.0000!
 2.0000!
 3.0000!

Magic matrix – square matrix with property that
column, row and diagonal sums add to same value.

!
>> tst=magic(3)!
tst =!
 8 1 6!
 3 5 7!
 4 9 2!
>> sum(tst)!
ans =!
 15 15 15!
>> sum(tst’)!
ans =!
 15 15 15!
>> sum(sum(tst.*eye(3)))!
ans =!
 15!
>> sum(sum(tst'.*eye(3)))!
ans =!
 15!
>>!

Example 2 — A Singular

If A is singular, A\b returns the following warning.

!

Warning: Matrix is singular to working precision.

In this case, Ax = b might not have a solution.

Example 2 — A Singular

A = magic(5);!
A(:,1) = zeros(1,5); % Set column 1 of A to zeros!
b = [1;2;5;7;7];!
x = A\b!

Warning: Matrix is singular to working precision.!
ans =!

!NaN!
!NaN!
!NaN!
!NaN!
!NaN!

If you get this warning, you can still attempt to

solve Ax = b using the pseudoinverse function
pinv.

Example 2 — A Singular

If you get this warning, you can still attempt to
solve Ax = b using the pseudoinverse function

pinv.

x = pinv(A)*b!
x =!
0 0.0209!
0.2717!
0.0808!
-0.0321!

The result x is least squares solution to

Ax = b.!

Example 2 — A Singular!
!

To determine whether x is a exact solution!
!

 — i.e., a solution for which Ax - b = 0!
—!
!

 simply compute

A*x-b!
ans =!

!-0.0603!
!0.6246!
!-0.4320!
!0.0141!
!0.0415!

The answer is not the zero vector, so x is not an

exact solution.

Example

Suppose that

A = [1 0 0;1 0 0];!
b = [1; 2];!

Note Ax = b cannot have a solution, because
A*x has equal entries for any x. Entering

!
x = A\b !

returns the least squares solution

x =!
1.5000!
0!
0!

along with a warning that A is rank deficient.

Example

!
A = [1 0 0;1 0 0];!

b = [1; 2];

!
x = A\b !

x =!
1.5000!
0!
0!

Note that x is not an exact solution:

A*x-b!
ans =!
0.5000!
-0.500!

Raising array to power

>> a=[1 2;3 4]
a =
 1 2
 3 4
>> a^2
ans =
 7 10
 15 22
>> a*a
ans =
 7 10
 15 22
>> a.^2
ans =
 1 4
 9 16
>>

Array exponentiation

 and multiplication

Element by element
exponentiation.

Operators

Arithmetic operators.

 plus - Plus

+!
 uplus - Unary plus

+!
 minus - Minus

-!
 uminus - Unary minus

-!
 mtimes - Matrix multiply

*!
 times - Array (element by element) multiply)

.*!
 mpower - Matrix power

^!
 power - Array (element by element) power
.^!
 mldivide - Backslash or left matrix divide
 \!
 mrdivide - Slash or right matrix divide

/!
 ldivide - Left array (element by element) divide
.\!
 rdivide - Right array (element by element) divide
./!
 kron - Kronecker tensor product

kron!

>> help kron!
 KRON Kronecker tensor product.!
 KRON(X,Y) is the Kronecker tensor product of X and Y.!
 The result is a large matrix formed by taking all possible!
 products between the elements of X and those of Y. For!
 example, if X is 2 by 3, then KRON(X,Y) is!
 !
 [X(1,1)*Y X(1,2)*Y X(1,3)*Y!
 X(2,1)*Y X(2,2)*Y X(2,3)*Y]!
 !
 If either X or Y is sparse, only nonzero elements are
multiplied!
 in the computation, and the result is sparse.!
 !
 Class support for inputs X,Y:!
 float: double, single!
!
 Reference page in Help browser!
 doc kron!

>> x=[1 2 3;4 5 6]!
x =!
 1 2 3!
 4 5 6!
>> y=[7 8;9 10]!
>> y=[7 8]!
y =!
 7 8!
>> kron(x,y’)!
ans =!
 7 14 21!
 8 16 24!
 28 35 42!
 32 40 48!
>> !
>> kron(x,y)!
ans =!
 7 8 14 16 21 24!
 28 32 35 40 42 48!

 = (1 2 3)*7!
 = (1 2 3)*8!
 = (4 5 6)*7!
 = (4 5 6)*8!

(3 6)*8
(3 6)*7
(2 5)*8
(2 5)*7
(1 4)*8
(1 4)*7

Operators

 Relational operators.

 eq - Equal

 ==!
 ne - Not equal

 ~=!
 lt - Less than

 <!
 gt - Greater than

 >!
 le - Less than or equal

 <=!
 ge - Greater than or equal

 >=!

 Logical operators.

 and - Logical AND

 &!
 or - Logical OR

 |!
 not - Logical NOT

 ~!
 xor - Logical EXCLUSIVE OR

 any - True if any element of vector is nonzero

 all - True if all elements of vector are nonzero

Exclusive or

!

>> a=[0 0 1 1]!
>> b=[0 1 0 1]!
>> xor(a,b)!
ans =!
 0 1 1 0!
>> !

Matlab

Matrix Maniputlation

A few things to remember:

- Cannot use spaces in names of matrices
(variables, everything in matlab is a matrix)

cool x = [1 2 3 4 5]!

- Cannot use the dash sign (-) because it
represents a subtraction.

cool-x = [1 2 3 4 5]!

- Don’t use a period (.) unless you want to create
something call a structure.

cool.x = [1 2 3 4 5]!

A few things to remember:

- Your best option, is to use the underscore (_)
if you need to assign a long name to a matrix

 my_cool_x = [1 2 3 4 5]!

Changing and adding elements in existing matrix:

>> a=[1 2 3]!
a =!
 1 2 3!
>> a(1,2)=4!
a =!
 1 4 3!
>> a(2,4)=5!
a =!
 1 4 3 0!
 0 0 0 5!
>> !

Sizes of matrices:

 a =!
 1 4 3 0!
 0 0 0 5!
>> size(a)!
ans =!
 2 4!
>> sizea=size(a);!
>> whos!
 Name Size Bytes Class Attributes!
!
 a 2x4 64 double !
 ans 1x2 16 double !
 sizea 1x2 16 double !
>> sizea!
sizea =!
 2 4!
>> size(a,1)!
ans =!
 2!
>> size(a,2)!
ans =!
 4!

Dimension of matrix
(mathematically) – rows, columns

Can do by individual dimensions

Sizes of matrices:

!
>> length(a(:))!
ans =!
 8!
>> x=[1 2; 3 4; 5 6; 7 8]!
x =!
 1 2!
 3 4!
 5 6!
 7 8!
>> length(x)!
ans =!
 4!
>> x=[1 2 3 4;5 6 7 8];!
>> length(x)!
ans =!
 4!
>> !

Linear size (as vector – total
number elements)

Length of matrix gives the max
dimension)

Building matrices from other matrices:

(have to match dimensions)

>> a=[1 2; 3 4]!
a =!
 1 2!
 3 4!
>> b=[1 2]!
b =!
 1 2!
>> c=[a b’]!
c =!
 1 2 1!
 3 4 2!
>> d=[a;b]!
d =!
 1 2!
 3 4!
 1 2!
>> !

Some predefined matrix making tools:

>> rand(3)!
ans =!
 0.8147 0.9134 0.2785!
 0.9058 0.6324 0.5469!
 0.1270 0.0975 0.9575!
>> rand(1,3)!
ans =!
 0.9649 0.1576 0.9706!
>> rand(3,1)!
ans =!
 0.9572!
 0.4854!
 0.8003!
>> eye(3)!
ans =!
 1 0 0!
 0 1 0!
 0 0 1!
>>!

Also – ones, zeros, magic, hilb!

Aside:

Some predefined values:

pi!
!

i, j!
!

eps!

To see what variables are defined

who, who vari_name

To clear variables

clear vari_name, clear (does all of them)

Functions:

Many of them.

Here are a few -

In general these functions work on vectors (for
vectors does not matter if row or column), or

columns for matrix input (matrix treated as group
column vectors)

max!
min!
sum!
cumsum!
mean!
abs!

Functions:

Work element by element on vector/matrix (if
appropriate)

sin!
cos!
(Other trig and inverse fns)!
exp!
log!
abs
…

Functions:

Perform matrix operations

(output can be same size matrix, different size matrix or matrices, scalar, other.)

inv!
eig!
triu!
tril!
…!
!

(not "vectorized")!

Round/truncate

!
round(f)!
fix(f)!
ceil(f)!
floor(f)!
!
>> help round!
 ROUND Round towards nearest integer.!
 ROUND(X) rounds the elements of X to the nearest integers. !
>> help fix!
 FIX Round towards zero.!
 FIX(X) rounds the elements of X to the nearest integers!
 towards zero.!
>> help ceil!
 CEIL Round towards plus infinity.!
 CEIL(X) rounds the elements of X to the nearest integers!
 towards infinity.!
>> help floor!
 FLOOR Round towards minus infinity.!
 FLOOR(X) rounds the elements of X to the nearest integers!
 towards minus infinity. !
>>!

Logical operations on matrix:

(test is element by element)

Returns a logical matrix!
!
>> a=[1 2 3 4 5]!
a =!
 1 2 3 4 5!
>> b=[5 4 3 2 1]!
b =!
 5 4 3 2 1!
>> a==b!
ans =!
 0 0 1 0 0!
>>!
!

==, >, >=, <, <=, ~, &, |!
!

!

any(a) determines if matrix a has at least one
nonzero entry.

all(a) determines if all the entries of matrix a

are nonzero,.

"Vectorizing"

Putting what we have together and doing things
without loops.

Say I want to plot the function x2

The traditional way is to use a loop to generate a

sequence of values for x and x2.

But Matlab gives us an easier way to calculate the
whole shooting match in one statement.

>> x=1:.1:10;!
>> y=x.*x;!
>> plot(x,y)!

Matlab uses geometrical view of complex numbers
(x = real axis, y = imaginary axis) – z=x+iy.

>> x=0:.1:1;!
>> z=x+i*x.^2;!
>> plot(z)!

More examples.

>> y=sin(0:.01:2*pi);!
>> plot(y)!
!

Could also do in one line

!
>> plot(sin(0:.01:2*pi))!

More examples.

>> x=0:.01:2*pi;!
>> y=sin(x);!
>> whos!
 Name Size Bytes Class Attributes!
 x 1x629 5032 double !
 y 1x629 5032 double !
>> plot(x,y)!

If want actual
x argument

values
(radians)

