
Data Analysis in Geophysics
ESCI 7205

Class 10

Bob Smalley

Basics of UNIX commands

Computers may save time but they sure waste a
lot of paper. About 98 percent of everything

printed out by a computer is garbage that no one
ever reads.

Andy Rooney

Review

awk Working Methodology

- awk reads the input files one line at a time.

- For each line, it matches with given pattern in the given
order, if matches performs the corresponding action.

- If no pattern matches, no action will be performed.

- In the above syntax, either search pattern or action are
optional, But not both.

- If the search pattern is not given, then awk performs
the given actions for each line of the input.

http://www.thegeekstuff.com/2010/01/awk-introduction-tutorial-7-awk-print-examples/

Review

awk Working Methodology Continued

- If the action is not given, print all that lines that matches
with the given patterns which is the default action.

- Empty braces with out any action does nothing. It won't
perform default printing operation.

- Each statement in Actions should be delimited by
semicolon.

http://www.thegeekstuff.com/2010/01/awk-introduction-tutorial-7-awk-print-examples/

Say we have this file and we want to put it into
numerical order in an awk array.

$ more data.txt!
4!
1!
3!
2!
a!
7!
B!
$!

Try this.
(grey box – look at raw and sorted file, blue box – fill array with sorted elements and

numerical index, yellow box print out array indices and values.)

$ more awkex1.nawk!
#!/bin/bash!
cat data.txt!
echo ------!
sort -n data.txt!
echo ------!
sort -n data.txt | \!
awk 'BEGIN {c=0} {!
if ($0 > 0) {!
print c, $0!
 myarray[c]=$0; c++;!
 }!
}!
END {!
 for (c in myarray) printf ":: %s %s ",c,myarray[c]; printf
"\n”;!
 }!
'!
$!

Input data file (look at it)
Sort first (not part of awk –
have a tool to do this – reuse
as per UNIX philosophy),
pipe to awk

Try this.
(grey box – look at raw and sorted file, blue box – fill array with sorted elements and

numerical index, yellow box print out array indices and values.)
!
$ more awkex1.nawk!
#!/bin/bash!
cat data.txt!
echo ------!
sort -n data.txt!
echo ------!
sort -n data.txt | \!
awk 'BEGIN {c=0}!
{if ($0 > 0) {!
print c, $0!
 myarray[c]=$0; c++;!
 }!
}!
END {!
 for (q in myarray) printf ":: %s %s ",q,myarray[q]; printf
"\n”;!
 }!
'!
$!

Initialize count

Put data (from
non empty lines)
in array

Print array

New structure
!

for (q in myarray) …!
!

In programs that use arrays, you often need a
loop that executes once for each element of an

array.

awk has a special kind of for statement for
scanning an array:

for (var in array) body!

This loop executes body once for each index in
array that your program has previously used,

with the variable var set to that index.

New structure
!

for (q in myarray) …!
!

The q here is a dummy variable. It is made up and
initialized on-the-fly.

Its value changes on each trip (loop) through the
following block of code.

Its value may or may not retain the last value after
the loop finishes (on Mac it seems to).

$ awkex1.nawk!
4!
1!
!
3!
2!
a!
7!
b!
------!
!
a!
b!
1!
2!
3!
4!
7!
------!
0 a!
1 b!
2 1!
3 2!
4 3!
5 4!
6 7!
:: 2 1 :: 3 2 :: 4 3 :: 5 4 :: 6 7 :: 0 a :: 1 b !
$!

Origninal file

After sort

Print index and value,
then store in array: array
index plus value (less
empty line)
When print out (random
order)

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
651 $ cat awk_arrays1.awk!
nawk '!
{Ip[$3]++;}!
END!
{for (var in Ip)!
print var, "access", Ip[var],"
times"}!
' Iplogs.txt!
652 $ awk_arrays1.awk!
202.178.23.4 access 3 times!
125.25.45.221 access 1 times!
202.188.3.2 access 2 times!
123.12.23.122 access 1 times!
164.78.22.64 access 1 times!

Want to count how many
times each unique IP
address accessed.

Data format: [date] [time] [ip-
address] [number-of-websites-

accessed]!

Do with awk array.

Define array elements on
first reference, increment
on each reference (from

zero or empty to 1, the ++,
on first reference, then

keeps counting).
http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
651 $ cat awk_arrays1.awk!
nawk '!
{Ip[$3]++;}!
END!
{for (var in Ip)!
print var, "access", Ip[var],"
times"}!
' Iplogs.txt!
652 $ awk_arrays1.awk!
202.178.23.4 access 3 times!
125.25.45.221 access 1 times!
202.188.3.2 access 2 times!
123.12.23.122 access 1 times!
164.78.22.64 access 1 times!

Data format: [date] [time] [ip-address] [number-of-
websites-accessed]!

Third field ($3) is an ip
address. This is used as

an index of an array
called Ip.

For each line, it

increments the value of
the corresponding ip

index.

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
651 $ cat awk_arrays1.awk!
nawk '!
{Ip[$3]++;}!
END!
{for (var in Ip)!
print var, "access", Ip[var],"
times"}!
' Iplogs.txt!
652 $ awk_arrays1.awk!
202.178.23.4 access 3 times!
125.25.45.221 access 1 times!
202.188.3.2 access 2 times!
123.12.23.122 access 1 times!
164.78.22.64 access 1 times!

Finally in the END
section, the indices

(not the position in the
array as in Fortran, C,
C++, etc. arrays) are
the list of unique IP

address and the
corresponding values

are the occurrence
counts.

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

"Regular Index" awk index value!
 1 202.178.23.4 3!
 2 125.25.45.221 1!
 3 202.188.3.2 2!
 4 123.12.23.122 1!
 5 164.78.22.64 1!

In awk arrays the index is both the element
identifier and can be data/information.

The value is also data/information associated
with the index.

The "regular" index concept does not apply, there
is no method to identify (index) or access the

values in a counting (address offset) manner and
attempts to do so produce what looks like

random ordering.

"Regular Index" awk index value!
 1 202.178.23.4 3!
 2 125.25.45.221 1!
 3 202.188.3.2 2!
 4 123.12.23.122 1!
 5 164.78.22.64 1!
 6 character index character value!

The indices and values of each element of an
array don't even have to be of the same type

(character or numeric – but numeric data is really numeric in your mind, it is a character
string to awk, although awk can try to use it as a number if you refer to it in a

mathematical context) or length.

END{!
Ip["A"]="letterA"!
B="B"!
LB="letterB"!
Ip[B]!
Ip[B]=LB!
Ip["C"]=1.2!
Ip[D]="letterD"!
for (var in Ip)!
Print var,\!
 "is index, \!
element value", Ip[var]!
}!
!
!
$ awk_arrays1.awk!
 is index, element value letterD!
A is index, element value letterA!
202.178.23.4 is index, element value 3!
B is index, element value letterB!
C is index, element value 1.2!
$!

Setting array indices
and values.

Everything is a
character string to
awk, although it will

take numbers without
the quotes. If you try
to use an un-defined

variable (D) as an
index it sets the index
to null (notice missing

character, is not
putting out blank).

END{!
Ip["A"]="letterA"!
B="B"!
LB="letterB"!
Ip[B]!
Ip[B]=LB!
Ip["C"]=1.2!
Ip[D]="letterD"!
Ip[E]="letterE"!
for (var in Ip)!
Print var,\!
 "is index, \!
element value", Ip[var]!
}!
!
!
$ awk_arrays1.awk!
 is index, element value letterE!
A is index, element value letterA!
202.178.23.4 is index, element value 3!
B is index, element value letterB!
C is index, element value 1.2!
$!

Setting array indices
and values.

Now you have reset
the value associated

with index null to
something else.

END{!
Ip["A"]="letterA"!
B="B"!
LB="letterB"!
Ip[B]!
Ip[B]=LB!
Ip["C"]=1.2!
Ip[D]="letterD"!
Ip[E]=1.2a!
for (var in Ip)!
Print var,\!
 "is index, \!
element value", Ip[var]!
}!
!
!
$ awk_arrays1.awk!
 is index, element value letterD!
A is index, element value letterA!
202.178.23.4 is index, element value 3!
B is index, element value letterB!
C is index, element value 1.2!
$!

If you try to assign
something that is not a

character string (no
quotes) or an existing

variable to an
undefined index awk

seems to ignore it
completely - output is
one line shorter than

what you think it
should be – is two null
elements (we really don't know

what is in memory).

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
!
{ Ip[$3]++;!
count[$3]+=$NF; }!

Data format: [date] [time] [ip-address]
[number-of-websites-accessed]!

Count how many times
each unique IP address

accessed (from
before), and calculate
how many sites each

accessed.
Two arrays, the index
used in both arrays is

same — which is the IP
address (third field).

Don't really need the semicolons

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
!
{ date[$1]++; }!
END!
{!
 for (count in date)!
 { if (max < date[count]!
 { max = date[count];!
 maxdate = count;!
 }!
 } print "Maximum access is on" maxdate;!
}!

Data format: [date] [time] [ip-address] [number-of-websites-
accessed]

Identify day with
maximum number

accesses.

array named “date” has
date as its index and
occurrence count as

the value of the array.
This one line does all

the "work" of
calculating accesses.

Don't really need
all the semicolons

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
!
{ date[$1]++; }!
END!
{!
 for (count in date)!
 { if (max < date[count]!
 { max = date[count];!
 maxdate = count;!
 }!
 } print "Maximum access ", date[count], " is on" maxdate;!
}!
!
651 $ awk -f ex3.awk Iplogs.txt!
Maximum access 3 is on 210607!

Data format: [date] [time] [ip-address] [number-of-websites-
accessed]

max is a variable which
has the count value
and is used to find

array element in date
with max count (evidently

starts out undefined, 0, or minimum).
maxdate is variable with
date index for which
the count is maximum.

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
!
{ date[$1]++; }!
END!
{!
 for (count in date)!
 { if (max < date[count]!
 { max = date[count];!
 maxdate = count;!
 }!
 } print "Maximum access is on" maxdate;!
}!
!
651 $ awk -f ex3.awk Iplogs.txt!
Maximum access is on 210607!

Data format: [date] [time] [ip-address] [number-of-websites-
accessed]

Original example output
did not put out maximum

number of accesses.

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
!
!
!
!

I think solve example 3 more effective is

awk ‘max < $1 { max = $1 } END { print "Maximum access is on"
max }' Iplogs.txt!
!
Maximum access is on 210607!

Data format: [date] [time] [ip-address] [number-of-websites-
accessed]

And whenever you put
something on the web and

allow comments,
somebody comes along

with an "improvement" (to
the code, not the English).

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
awk '!
{ a[i++] = $0 }!
END!
{ for (j=i-1; j>=0;)!
 print a[j--]!
}' Iplogs.txt!
!
651 $ awk -f ex3.awk Iplogs.txt!
Maximum access 3 is on 210607!

Data format: [date] [time] [ip-address] [number-of-websites-
accessed]

Reverse the order of
lines in a file

Starts by recording all
lines in the array ‘a’.

Index i also serves to
count number lines
read in (evidently starts out at 1).

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
awk '!($1 in array)!
{ array[$1]; print $1!
' Iplogs.txt!
!
651 $ ex5.awk!
180607!
190607!
200607!
210607!

Data format: [date] [time] [ip-address] [number-of-websites-
accessed]

Remove duplicate and
nonconsecutive dates
(first field $1, for lines
use whole line $0, but

whole line, not just
date, has to be

duplicate) using awk.

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

650 $ cat Iplogs.txt !
180607 093423 123.12.23.122 133!
180607 121234 125.25.45.221 153!
190607 084849 202.178.23.4 44!
190607 084859 164.78.22.64 12!
200607 012312 202.188.3.2 13!
210607 084849 202.178.23.4 34!
210607 121435 202.178.23.4 32!
210607 132423 202.188.3.2 167!
!
awk '!($1 in array)!
{ array[$1]; print $1!
' Iplogs.txt!
!
651 $ ex5.awk!
180607!
190607!
200607!
210607!

Data format: [date] [time] [ip-address] [number-
of-websites-accessed]!

Reads every line from file
Iplogs.txt, uses “in”
operator to check if
current test pattern
(CTP=$1) exists in the
array “a”.

If the CTP does not exist
in “a” (the !), it stores
the CTP as that array
index(the date) and
prints the current line.

http://www.thegeekstuff.com/2010/03/awk-arrays-explained-with-5-practical-examples/

you can also set arrays using the split command

split(“string”,destination array,separator)!

split also returns the number of indices

numelements=split("Jan,Feb,Mar,Apr,May",mymonths,",”)!

!
Splits the string into array elements using the “,”

to break the string into elements, and returns
numelements=5 and mymonths[1]=“Jan”!

A multi-dimensional awk array is an array in which
an element is identified by a sequence of indices,

instead of a single index.

For example, a two-dimensional array requires
two indices.

The usual way to refer to an element of a two-

dimensional array named grid is with grid[x,y].

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

Multi-dimensional arrays are supported in awk
through concatenation of indices into one string.

What happens is that awk converts the indices

into strings and concatenates them together, with
a separator between them.

This creates a single string that describes the

values of the separate indices.

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

The combined string is used as a single index into
an ordinary, one-dimensional array.

The separator used is the value of the built-in

variable SUBSEP.

Once the element's value is stored, awk has no
record of whether it was stored with a single index

or a sequence of indices.

The two expressions foo[5,12] and foo[5
SUBSEP 12] always have the same value.

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

The default value of SUBSEP is the string "\034",
which contains a nonprinting character that is
unlikely to appear in an awk program or in the

input data.

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

Need to choose an unlikely character due to the
fact that index values containing a string matching

SUBSEP lead to combined strings that are
ambiguous.

Suppose SUBSEP were "@";
then foo["a@b", "c"]
and foo["a", "b@c"] !

would be indistinguishable because both would
actually be stored as

foo["a@b@c"].

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

Because SUBSEP is "\034", such confusion can
arise only when an index contains the character

with ASCII code 034, which is a rare event.

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

The following example treats its input as a two-
dimensional array of fields; it rotates this array 90

degrees clockwise and prints the result. It
assumes that all lines have the same number of

elements.
awk '{!
 if (max_nf < NF) !
 max_nf = NF !
 max_nr = NR !
 for (x = 1; x <= NF; x++) !
 vector[x, NR] = $x !
} !
END { !
 for (x = 1; x <= max_nf; x++) {!
 for (y = max_nr; y >= 1; --y) !
 printf("%s ", vector[x, y]) !
 printf("\n") !
 } !
}'!

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

When given the input:
!

1 2 3 4 5 6 !
2 3 4 5 6 1 !
3 4 5 6 1 2 !
4 5 6 1 2 3!
 !

it produces:
!

4 3 2 1 !
5 4 3 2 !
6 5 4 3 !
1 6 5 4 !
2 1 6 5 !
3 2 1 6 !

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

Summary

awk emulates multidimensional arrays with single-
dimensional arrays by combining two or more

indices into a single string.

From the point of view of awk, it looks like a single
index, but to it is composed of two or more

discrete parts.

http://people.cs.uu.nl/piet/docs/nawk/nawk_87.html

Back to our checkbook

Record information into "mybalance" as follows.

The first dimension of the array ranges from 0 to
12, and specifies the entire year (0) or month

(number of month).

Our second dimension is a four-letter category,
like "food" or "inco"; this is the actual category

we're dealing with.
(remember that the dimensions are not fixed – we can add categories at will)

So, to find the entire year's balance for the food
category, you'd look in

mybalance[0,"food"].

To find June's income, you'd look in

mybalance[6,"inco"].

Arrays are passed by reference.

We also refer to several global variables:
curmonth, (numeric value of month of current record),

$2 (expense category),
$3 (income category).

function doincome(mybalance) {!

!mybalance[curmonth,$3] += amount!
!mybalance[0,$3] += amount !!

}!
function doexpense(mybalance) {!

!mybalance[curmonth,$2] -= amount!
!mybalance[0,$2] -= amount !!

}!
function dotransfer(mybalance) {!

!mybalance[0,$2] -= amount!
!mybalance[curmonth,$2] -= amount!
!mybalance[0,$3] += amount!
!mybalance[curmonth,$3] += amount!

}!

Passing of information between calling routine
and subroutine.

Two basic ways.

By reference
Tell subroutine where the information is in the
memory and the subroutine uses it. Changes

made by the subroutine are global.

By value
Give the subroutine a copy of the information.

Any changes made by the subroutine are local to
its copy of the data.

The main code block contains the code that
parses each line of input data.

Remember, because we have set FS correctly, we
can refer to the first field as $1, the second field

as $2, etc.

When the functions are called, they can access
the current values of curmonth, $2, $3 and amount

from inside the function.

#main program!
{!

!curmonth=monthdigit(substr($1,4,3))!
!amount=$7!
!!
!#record all the categories encountered!
!if ($2 != "-")!
! !globcat[$2]="yes"!
!if ($3 != "-")!
! !globcat[$3]="yes"!

!
!#tally up the transaction properly!
!if ($2 == "-") {!
! !if ($3 == "-") {!
! ! !print "Error: inc and exp fields are both blank!"!
! ! !exit 1!
! !} else {!
! ! !#this is income!
! ! !doincome(balance)!
! ! !if ($5 == "Y")!
! ! ! !doincome(balance2)!
! !}!
!!

!} else if ($3 == "-") {!
! !#this is an expense !
! !doexpense(balance)!
! !if ($5 == "Y") !
! !doexpense(balance2)!
!} else {!
! !#this is a transfer!
! !dotransfer(balance)!
! !if ($5 == "Y") !
! ! !dotransfer(balance2)!
!} ! ! !!

}!
#end of main program!
END {!

!bal=0!
!bal2=0!!
!for (x in globcat) {!
! !bal=bal+balance[0,x]!
! !bal2=bal2+balance2[0,x] !

 !}!
 !printf("Your available funds: %10.2f\n", bal)!
 !printf("Your account balance: %10.2f\n", bal2)!!
}!

Input file:
!
23 Aug 2000 !food !- !- !Y !Jimmy's Buffet ! !30.25!
23 Aug 2000 !- ! !inco !- !Y !Boss Man ! ! 2001.00!
!
!
!

Output to the screen:

Your available funds: 1174.22!
Your account balance: 2399.33!
!

Shell arrays (now that we know what they are –
does the Shell have them?)

The shell also has arrays.

In the Shell, the index has to be a number (but the
numbers don't have to be consecutive and it does

not eat up memory for empty indices).
!

Shell arrays
!
#!/bin/sh!
#call with array_gamit.sh [yr][v]!
…!
YRS='2011 2008 2004'!
…!
DAYS[2004]='037049 055059 084112 114115 235238 243244 333349’!
DAYS[2008]='005031’!
DAYS[2011]='072116’!
…!
for YR in $YRS!
do!
…!
for day in ${DAYS[${YR}]}!
do!
…!
STRTDOY=`echo $day | nawk '{print substr($1,1,3)}'`!
STOPDOY=`echo $day | nawk '{print substr($1,4,3)}'`!
…!
done!
…!
done!

to test if an element exists, can use

for (1 in myarray) { !
print “It’s there”!
} else { !
print “It’s missing”!
}!

Generic mapping tools (GMT)

The Basics plus Plotting in X-Y Space

Goal – make scientific illustrations (“generic” of
GMT is generic to geo sciences)

Goal – make scientific illustrations

Maps

- Color/bw/shaded topography and bathymetry,
- Point data (earthquakes, seismic or gps

stations, etc.),
- Line data (faults, eq rupture zones, roads),

 - Vector fields w/ error ellipses,
 - Focal mechanisms

- 3D surface
-  Cross sections

- Profiles
- Other stuff

What is GMT

GMT is an open source collection of ~60 tools
(and and additional 35 support tools) for

manipulating geographic and Cartesian data sets

(including filtering, trend fitting, gridding,
projecting, etc.)

What is GMT

Produces PostScript File (PS).

Make illustrations ranging from simple x-y plots to
contour maps to artificially illuminated surfaces

and 3-D perspective views

GMT supports ~30 map projections and
transformations and comes with support data
such as GSHHS coastlines, rivers, and political

boundaries.

If it does not have a map projection you want: it is
open source and UNIX.

(i.e. you can do it yourself)

Design Philosophy

Follows the design philosophy of UNIX – filters
(linear, single data stream):

data → processing → final illustration.

Processing flow is broken down to a series of

elementary steps.

Each step is accomplished by a separate GMT or
UNIX tool (machine shop philosophy).

Design Philosophy

Benefits (UNIX only has benefits):

(1)  only a few programs are needed
(in the world where 60+35 is a “few”, maybe they are referring to the log of the number of

programs.)

(2) each program is small and easy to update and
maintain

(maybe – alternate is each task is subroutine that is small and easy to maintain)

Design Philosophy

Benefits (UNIX only has benefits):

(3) each step is independent of the previous step
and the data type and can therefore be used

in a variety of applications

(4) the programs can be chained together in shell
scripts or with pipes, thereby creating a

process tailored to do a user-specific task

Design Philosophy

 GMT was deliberately written for command line
usage, not a windows (or interactive)

environment, in order to maximize power and
flexibility (i.e. it is hard to use).

Written by Paul Wessel and Walter Smith while
graduate students at Lamont Doherty/Columbia

University in the mid 80’s when the SUN
workstations came out (and UNIX took over the

world).
.

(Now at the University of Hawaii and NOAA
respectively

The GMT homepage is: gmt.soest.hawaii.edu

GMT documentation

Tutorial

Technical Reference and Cookbook

(aka Manual)

both available on web

http://gmt.soest.hawaii.edu/

in HTML, PDF, and PostScript format.

As is standard with UNIX

GMT is well documented with (UNIX style) “man”
pages (also on web).

Entering GMT program/filter name all by itself, or

errors in the command specification (switches,
not data) that cause GMT to fall over – dumps

the man page to standard error.

What does/can GMT do?

- Filtering 1-D and 2-D data

(simple processing, GMT is NOT a general
Number Cruncher)

output is reprocessed data

Plotting 1-D and 2-D data

- points, lines (symbols, fill, geologic symbols on
faults, etc.)

- vector fields

2-D images – grayscale and color,
illumination

3-D perspective of 2-D images

histograms, rose diagrams

text

focal mechanism beachballs

Data preparation

gridding, resampling, conversion

Contouring

data base: extraction, merge

cross sections

projection/map transformation (map sphere to
plane)

output is reprocessed data

Bookkeeping and bunch of other stuff

GMT Processing Output

1-D ASCII Tables — For example, a (x, y) series
may be filtered and the filtered values output.

ASCII output is written to the standard output

stream.

GMT Processing Output

2-D binary (netCDF or user-defined) grid files

Programs that grid ASCII (x, y, z) data or operate
on existing grid files produce this type of output.

GMT Output

Reports – Several GMT programs read input files
and report statistics and other information.

Nearly all programs have an optional “verbose”

operation, which reports on the progress of
computation.

Such text is written to the standard error stream

GMT Output

The bulk of GMT output goes to

PostScript

The plotting programs all use the PostScript page
description language to describe the output.

These commands are stored as ASCII text (they
are a program in the POSTSCRIPT language).

output is “PostScript” program – generally ascii
text, but not too readable.

(GMT files can get amazingly BIG)
% Map boundaries!
%!
S 1050 1050 1050 0 360 arc S!
S 1050 1050 1074 0 360 arc S!
S 24 W!
S 1050 1050 1062 -135 -90 arc S!
S 1050 1050 1062 135 180 arc S!
S 1050 1050 1062 45 90 arc S!
S 1050 1050 1062 -45 0 arc S!
S 1050 1050 1062 -90 -90 arcn S!
S 2 W!
S [] 0 B!
%!
% End of basemap!
%!
S [] 0 B!
%%Trailer!
%%BoundingBox: 0 0 647 647!
% Reset translations and scale and call showpage!
S -295 -295 T 4.16667 4.16667 scale 0 A!
showpage!

GMT Output

If you are really ambitious, you can directly edit
this file using vi…but in general, don’t.

GMT Output

Postscript is translated by postscript capable
(usually laser) printers.

(it is an extra feature one has to buy).

GMT Output

Postscript is also the native language of

- Adobe Illustrator/Photoshop

- ghostscript,

- ghostview.

GMT Output

I frequently use Illustrator to edit GMT produces
Postscript prior to using the figures in papers,

presentations, or posters

Apart from the built-in support for coastlines,
GMT completely decouples data retrieval/
management from the main GMT programs.

(puts the onus on user! UNIX philosophy)

GMT uses architecture-independent file formats

(flat files – least common denominator).

Effective use of GMT is really effective
application of the UNIX philosophy.

Installation/Maintenance - done for us

(by Mitch/Deshone – THANKS.

Somewhat complicated, not for average user.)

Setup – basic setup done for us

(don’t have to define GMTHOME, path, etc. if
use standard CERI .login and .cshrc files)

Installation/Maintenance.

Some common data sets

(GTOPO-30, ETOPO-5, Predicted bathy, etc.)

are installed

“.gmtdefaults” (generic, is .gmtdefaults4 for version 4) file in your
home or working directory.

(if you’ve copied something from the tutorial or gotten a script from someone else and it

comes out “funny”, the “default” settings may be the culprit).

