
Environment (esoteric and essential) continued

"people who have trouble with typing
commands should not be using a computer.”

Response of the Unix community to criticism
that Unix ignored the needs of the

unsophisticated user.

Environment variables are managed by your
shell.

The difference between environment
variables and regular shell variables is that

a shell variable is local to a particular
instance of the shell (such as your current
shell or a shell script), while environment

variables are "inherited" by any program you
start, including another shell.

That is, the new process gets its own copy of
these variables, which it can read, modify,

and pass on in turn to its own children.

In fact, every UNIX process (not just the
shell) passes its environment variables to its

child processes.

Example environment variable and what it is
used for.

PATH

To see the value of the environment variable
PATH, echo it to the screen.

PATH
This environment variable tells the shell

where to find executable files
%echo $PATH

.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/
home/rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/
home/rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/
smeagol/local/passcal.2006/bin:/gaia/smeagol/local/gmt/
GMT4.2.1/bin:/usr/sbin:/usr/local/teTeX/bin/sparc-sun-
solaris2.8:/gaia/home/rsmalley/bin:/opt/local/sbin:/opt/sfw/
bin:/usr/bin:/usr/ccs/bin:/usr/local/bin:/opt/SUNWspro/SC5.0/
bin:/opt/local/bin:/usr/bin:/usr/dt/bin:/usr/openwin/bin:/
bin:/usr/ucb:/gaia/smeagol/local/bin:/net/gps4/d1/Noah/rbh/
usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/bin:/gaia/home/
rsmalley/X/com:/gaia/home/rsmalley/record_reading/bin:/gaia/
home/rsmalley/record_reading/scripts

%echo $PATH

.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/
home/rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/
home/rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/
smeagol/local/passcal.2006/bin:/gaia/smeagol/local/gmt/
GMT4.2.1/bin:/usr/sbin:/usr/local/teTeX/bin/sparc-sun-
solaris2.8:/gaia/home/rsmalley/bin:/opt/local/sbin:/opt/sfw/
bin:/usr/bin:/usr/ccs/bin:/usr/local/bin:/opt/SUNWspro/SC5.0/
bin:/opt/local/bin:/usr/bin:/usr/dt/bin:/usr/openwin/bin:/
bin:/usr/ucb:/gaia/smeagol/local/bin:/net/gps4/d1/Noah/rbh/
usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/bin:/gaia/home/
rsmalley/X/com:/gaia/home/rsmalley/record_reading/bin:/gaia/
home/rsmalley/record_reading/scripts

The “:” is used to separate each full path
name in sh, bash (space for csh, tcsh).

When you run a command (from the terminal
or a shell script), your shell looks through
each directory in your PATH variable , in

order, until it finds the first instance of an
executable file with the name of the

command.

It then runs the command.

%echo $PATH

.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs: etc.

My path starts with dot (“.”). This is
convenient but is considered a security

weakness.

Next I have a number of my directories
where I’ve written Fortran or C programs

and shell scripts.

In the “standard” Unix organization that you
will see in most books, one is supposed to put
all your executable programs in your “~/bin”
directory and all your shell scripts in your

“~/scripts” directory.

You will probably not find many people (or
systems) that do this anymore.

So how does this work?

If you are working a program to do least
squares analysis and decide to call it “ls”

what will happen when you enter the
command “ls”?

It depends.

What happens depends on your path.

Remember that to Unix, everything outside
the kernel (including the shell) is just a file.

Some of these files are executable
(programs).

When the shell goes looking through your
path for an executable file named “ls”, it will

run the first one it finds.

If the directory containing your least
squares program (executable file), “ls”, is in

your path

Before

the directory containing the Unix list
command, “ls”, it will run your program and

you will not be able (at least simply) to get a
listing of your directory!

If the directory containing your least
squares program, “ls”, is in your path

after

the directory containing the Unix list
command, “ls”, it will run the Unix ls

command and you will not be able (at least
simply) to run your program!

Example of naming an executable with the
same name as a Unix command.

smalleys-imac-2:~ smalley$ hello.sh

hello

smalleys-imac-2:~ smalley$ cp hello.sh ls

smalleys-imac-2:~ smalley$ ls

hello

smalleys-imac-2:~ smalley$ rm ls

remove ls? yes

smalleys-imac-2:~ smalley$ ls

!

ESCI7205

Public

hello.sh

Desktop

Movies

bin

unixside

Documents

Music

f1

Downloads

Pictures

f2

Force execution of the real ls list command.
smalleys-imac-2:~ smalley$ which ls

/bin/ls

smalleys-imac-2:~ smalley$ hello.sh

hello

smalleys-imac-2:~ smalley$ cp hello.sh ls

smalleys-imac-2:~ smalley$ ls

hello

smalleys-imac-2:~ smalley$ /bin/ls

!

Public

Adobe SVG 3.0 Installer Log
Sites

Desktop

bin

Documents

f1

Downloads

f2

ESCI7205

hello.sh

Library

ls

Movies

sac-101.3-mac_osx.tar.gz

Music

unixside

Pictures

smalleys-imac-2:~ smalley$ rm ls

remove ls? y

smalleys-imac-2:~ smalley$

which

Command that shows what the shell finds for
the command name.

smalleys-imac-2:~ smalley$ which ls

/bin/ls

To run a specific executable file – give its
full path.

smalleys-imac-2:~ smalley$ /bin/ls

!

Public

Adobe SVG 3.0 Installer Log
Sites

Desktop

bin . . .

More examples.
Use all the tricks in specifying paths.

Run from one directory up.

smalleys-imac-2:bin smalley$ pwd

/Users/smalley/bin

smalleys-imac-2:bin smalley$../hello.sh

Hello

smalleys-imac-2:bin smalley$

If the file is in the working directory use
the dot.

smalleys-imac-2:smalley smalley$./hello.sh

hello

smalleys-imac-2:smalley smalley$

This behavior is not a “bug”, it is considered
to be desirable and an example of the

POWER of Unix.

(This is also where the security problem
comes in when dot is in your path.)

How you make your path is up to you.

Modifying your environment

Modifying your environment

If you mess up modifying the environment in
your current window – you may “break” your

current window (shell).

This is generally not a problem on the sun,
mac, etc.

The environment is local to that window/
shell.

Just close it and open another window.

How to change/set shell and environment
variables.

Use commands set for regular (local) shell
variables and setenv for environment (global)

variables.

set term = xterm

setenv TERM = xterm

We already mentioned the difference
between regular shell and environment

variables.

(you have to know that xterm is something
that the shell will understand.)

If you need to deal with this level of Unix,
go find a wizard

(Bob Debula, Mitch Withers).

This syntax is also specific to tcsh.

set term = xterm

setenv TERM = xterm

To do the same thing in bash.

term=xterm

TERM=xterm

Note that there are NO SPACES on either
side of the equals sign here.

How do we tell the difference between a
regular shell variable and an environment

variable in bash.
(there is really no difference within an instance of a shell).

(set with no parameters lists shell variables, setenv with not parameters lists
environment variables, env also lists environment variables.)

When we define it, it is a regular shell
variable.

To make it an environment variable (one that
is inherited) you export it.

term=xterm

TERM=xterm

EXPORT term

EXPORT TERM

setenv:

The csh/tchs command to change
environment settings.

Can be run on the command line,
from within a local configuration file

(.cshrc or .login),
or in a shell script.

When run without specifying an environment
variable, it will print all environment

variables to the screen

How to change/set your path.

% setenv PATH {$PATH}:/gaia/home/rsmalley/scripts

This adds the text string (directory)
‘/gaia/home/rsmalley/scripts’

to the environment variable PATH associated
with the active window

When Unix starts, you automatically get a
path environment variable (it may be, but

probably is not, empty) and this is the best
candidate for one you will have to change.

The environment variable is just a text
string.

The shell interprets it.

setenv:

% setenv PATH {$PATH}:/gaia/home/rsmalley/scripts

Operationally it adds the the directory

/gaia/home/rsmalley/scripts

to the path.

(The braces “{“ “}” here are needed, could
also use ${PATH}.)

setenv:

% setenv PATH {$PATH}:/gaia/home/rsmalley/scripts

Note PATH is used twice. On the right with
the $ it refers to the current value of the

environment variable.

On the left it refers to the name of the
environment variable that is being set to the

string on the right.

setenv:

% setenv PATH {$PATH}:/gaia/home/rsmalley/scripts

Note PATH is used twice. On the right with
the $ it refers to the current value of the

environment variable.

In this case it will read the current value,
append the new information and put
everything in a new version of PATH.

If you don’t write any of your own programs
(or always use the path to the program/file)
you will not have to change your path from

the default.

(The default path at CERI will give you the
path to the tcsh (and other) shell(s), and the

paths to the tools such as MATLAB, SAC
GMT, and some others.)

Aside ---
How to destroy your input data file.

First – look at file.
alpaca.ceri.memphis.edu262:> more flong.dat

1

2

3

4

5

6

7

8

9

10

6

7

8

9

10

alpaca.ceri.memphis.edu263:>

Sort it, using the sort command.

alpaca.ceri.memphis.edu263:> sort flong.dat

1

10

10

2

3

4

5

6

6

7

7

8

8

9

9

alpaca.ceri.memphis.edu264:>

So far OK.

Say we want to save the sorted output to a
file. Use redirection.

alpaca.ceri.memphis.edu264:> sort flong.dat > flong.dat

flong.dat: File exists.

alpaca.ceri.memphis.edu265:> sort flong.dat >! flong.dat

alpaca.ceri.memphis.edu266:> more flong.dat

alpaca.ceri.memphis.edu267:>

We just erased our file!

Unix says we will need an output file, and it
has permission to clobber a pre-existing

output file – so it does. It then goes looking
for the input file – but it just erased it!!

So it sorts nothing (the new empty) and puts
it into the output file.

It sees no reason to complain, warn you, etc.

Having no-clobber set prevents this from
happening inadvertently (as in our first

attempt) as you have to do the >! to get it to
clobber the file.

(turning off noclobber returns you to raw Unix.)

Modifying your default environment.

We already saw that you can always change
things in your current environment [and that
of any new child process] using the setenv

command.

But it will get old changing everything to the
way you want it each time you log in/open a

new window/start a new shell.

And this being Unix, there is a (easy) way to
set up your own personal environment.

Modifying your default environment.

The setup of your personal environment
(personal changes/preferences for how you

want the shell to work for you) in csh and
tcsh is stored in the file named

.chsrc

(there is also a file .login, but it is not likely
you will have to change it (it get’s used when
you log in, not each time you start a shell) –
so I’ll mention it for completeness, but let’s

ignore it.)

When to make your own environment
variables.

Anytime you want a global definition of
something.

alpaca.ceri.memphis.edu417:> grep rtvel .cshrc

setenv latestrtvel rtvel4_9305_5bv19

setenv LATESTRTVEL $latestrtvel

Modifying your default environment variable
PATH using the .cshrc file.

We are now doing brain surgery on ourselves.

In a mirror.

This is dangerous.

So--

Make a back up of the current,
working .cshrc file before you change it.

Have a second terminal window open in case
you mess your file up so completely and

break your active window. This way you have
another window open to delete the offending
file and restore things from the backup file.
(Unless you run the command to change it in a window, the environment is static

once a window is open.)

You want this window open BEFORE you make
the change, as any window opened after the

file is saved will use the modified,
bad, .cshrc file.

For your path, you will see something like
this in your .cshrc file.

set path = (. ~ ~/bin ~/shells ~/dem ~/defm ~/defm/src $path)

Which uses the set command rather than
the setenv command.

The man page for set says
var = value set assigns value to var, where

value is one of:
word - A single word (or quoted string.
(wordlist) - A space-separated list of

words enclosed in parentheses.

Ex. of changing your path in the current shell
using the set command.

First see what your path is (using a script I
wrote to put out each entry on a separate

line).

alpaca.ceri.memphis.edu266:> ExaminePath.sh

.

/gaia/home/rsmalley

/gaia/home/rsmalley/bin

. . .

/gaia/home/rsmalley/record_reading/scripts

alpaca.ceri.memphis.edu267:>

Ex. using the command set and the
environment variable path to set the
environment variable PATH (tcsh).

alpaca.ceri.memphis.edu265:> set path = ($path ~/ESCI7205)

Now look at the environment variable PATH

alpaca.ceri.memphis.edu266:> ExaminePath.sh

.

/gaia/home/rsmalley

/gaia/home/rsmalley/bin

. . .

/gaia/home/rsmalley/record_reading/scripts

/gaia/home/rsmalley/ESCI7205

alpaca.ceri.memphis.edu267:>
The ESCI7205 entry was not there before.

I’ve not been able to find documentation on
how this works. (I think one is for sh/bash and one for csh/tcsh)

But this is what you will see in both the
universal .cshrc (/etc/.cshrc), and if you

make changes, in your own .cshrc file.

It has been copied down through the ages.

When you set path, it also changes PATH.
When you setenv PATH, is also changes path.

They seem to track.

.cshrc (csh resource script)
configuration file (aka dot file)

setenv PATH .:/gaia/home/rsmalley/bin:$PATH

setenv PATH ${PATH}:/gaia/home/rsmalley/record_reading/bin

setenv PATH {$PATH}:/gaia/home/rsmalley/record_reading/scripts

setenv PRINTER 3892

alias cd 'cd \!*;echo $cwd’

alias home "cd ~"

alias del 'rm -i’

set history=500

set ignoreeof

set savehist=500

set filec

Once you have made changes to your .cshrc
(and saved them), which is just a file, how do you

have them activated in your current window/
shell?

(at this point they will be activated in any new shell/window/login)

You could log out and then log back in (not
very efficient, but works), or open a new

window and work there.

Use the source command with the .cshrc file
as input. (don’t need the input redirect “<“)

alpaca.ceri.memphis.edu151:> source .cshrc

alpaca.ceri.memphis.edu152:>

source: executes configuration files

If you change your configuration file, you
will need to execute source in all open

terminal windows for the changes to take
effect. The changes automatically will take

effect when new terminal windows/shells are
opened.

Say you have edited the .cshrc file.

%nedit ~/.cshrc

%source ~/.cshrc

The default .cshrc file that everyone at
CERI gets when they login, open a window,

start a shell is stored in the file

/etc/.cshrc

After that the shell looks in your home
directory for a .cshrc, which is used to
expand upon and/or override the CERI

values.

MANPATH

Tells the shell where to find the manual
pages read using the man command

%echo $MANPATH

/gaia/smeagol/local/passcal.2006/man:/gaia:smeagol/local/gmt/
GMT4.2.1/man:/opt/local/man:/ceri/local/man:/usr/dt/man:/usr/
man:/usr/openwin/share/man:/usr/local/man:/opt/SUNWspro/man:/
opt/sfw/man:/usr/local/teTeX/man:/gaia/smeagol/local/man:/opt/
csw/man

If you do a man on a command and the shell
can’t find a manual page (and you are sure

the man page exists), this environment
variable may not be set correctly.

HOST: environment variable with the name
of the machine you are currently logged into.

REMOTEHOST: environment variable with
the name of the machine you are sitting in
front of, if different (e.g. you are in the

class on a PC and have used the program ssh
to log into a sun at CERI.).

alpaca.ceri.memphis.edu161:> echo $HOST $REMOTEHOST

alpaca.ceri.memphis.edu c-75-66-47-230.hsd1.tn.comcast.net

alpaca.ceri.memphis.edu162:>

SSH_CLIENT: the IP (internet protocol)
address and port of the HOST machine.

SSH_CONNECTION: the IP addresses and
ports of the HOST machine and the

REMOTEHOST machine.

alpaca.ceri.memphis.edu162:> echo $SSH_CLIENT $SSH_CONNECTION

75.66.47.230 51704 22 75.66.47.230 51704 141.225.157.63 22

alpaca.ceri.memphis.edu163:>

If you want to get as much info as you can
about the IP addresses. (Can also put in the

name and get the address.)

alpaca.ceri.memphis.edu169:> nslookup 141.225.157.63

Server: dns1.memphis.edu

Address: 141.225.253.21

Name: alpaca.ceri.memphis.edu

Address: 141.225.157.63

alpaca.ceri.memphis.edu170:> nslookup 75.66.47.230

Server: dns1.memphis.edu

Address: 141.225.253.21

Name: c-75-66-47-230.hsd1.tn.comcast.net

Address: 75.66.47.230

alpaca.ceri.memphis.edu171:>

Aliases

Alias

The alias and unalias commands allow you to
rename, or define/undefine

“shortcuts” (including mental), for
commands.

Their use parallels their name – you are
using another name, that is easier to type/

remember, for something.

You can set an alias in your shell
interactively (you will only have it locally

and in child processes)

or set in your configuration files (.cshrc) so
it is available every time you login, start a
shell or open a new terminal window (which
starts a shell for that terminal window).

Typical Unix think.

When to make/use aliases.

Anytime you find yourself typing the same
command over and over, you could make an

alias.

Anytime you prefer to type a command “your
way”.

Typical Unix think.

When to make/use aliases.

Anytime you find yourself mis-typing the
same thing over and over, you could make an

alias

(“mroe” is usually aliased to the more
command for example {why learn to type?}.

The original, interactive spelling corrector!).

Example aliases taken from .cshrc on CERI
system (so you get these automatically).

alias settitlebar
'echo -n "^[]2;$CWD^G"’

alias cd 'chdir \!* && cwdcmd && settitlebar’

alias howmuch
'du -sk .’

alias a
alias

alias h
'history'

alias u
unalias

alias m
more

alias mroe more

alias l 'ls -F'

alias c
clear

alias src
source

Example aliases taken from my .cshrc file.

alias mjday '/gaia/dunedain/d2/gps/oldbin/mjday’

alias home "cd ~”

alias x 'chmod +x’

alias dir 'ls -lt | more'

alias hp "lpr -Php_3890 "

alias tek "lpr -P3904_tek"

alias nb "lpr -P3892_grad "

alias nbcolor "lpr -P3892_hpcolor ”

alias DEM
"cd $home/dem”

alias ssh_yang 'ssh -l gps yang.soest.hawaii.edu’

alias ftp_jpl 'ftp bodhi.jpl.nasa.gov'

alias matlab_term 'matlab -nodesktop –nosplash’

You can find all the aliases that are defined
by using the command alias without any

arguments.

Dealing with file names with special characters

Say I have a file named “!”. (this is probably
because I used >! at some time while in bash,

but this syntax is for tcsh not bash, so I
redirected my output to a file called !)

smalleys-imac-2:~ smalley$ rm !

remove !? Y

That was easy.

What about a file named “-”

Make a file named “-” with touch command
(use man to see what the touch command does)

alpaca.ceri.memphis.edu189:> touch -

alpaca.ceri.memphis.edu190:> ls

- f2.dat HW hw1a.txt SCRIPTS

f1.dat f_1_2_3.dat hw1.txt NOTES SRC

Try to remove it.
alpaca.ceri.memphis.edu191:> rm -

usage: rm [-fiRr] file ...

What is the problem? (you tell me.)

We have to let the shell know that the “-” is
NOT a switch.

Use the “-” switch all by itself.

alpaca.ceri.memphis.edu192:> rm - -

rm: remove - (yes/no)? y

alpaca.ceri.memphis.edu193:>

Remember that filenames can have any
character but the “/” (used to define the

path), so sooner or later you are going to get
a file name that will be hard or dangerous to

reference.

You will have to be especially careful/
creative if you get a file named “*” as

%rm *

is disastrous
(and the more privileges you have and the higher up you are in the directory

structure, the more disastrous it is.)

File Permissions

Every user on a Unix system has a unique
username, and is a member of at least one
group (the primary group for that user).

A user can also be a member of one or more
other groups.

Only the administrator can create new
groups or add/delete group members (one of

the shortcomings of the system).

Every file (directories are files) on the
system has an owner, and also an associated

group.

Every file also has a set of permission flags
which specify separate read, write and

execute permissions for the

'user' (owner),
'group',

and 'other’
(everyone else with an account on the

computer)

Permissions

Read
ability to read the file (r).

Write
ability to write or overwrite the file (w).

Execute
ability to execute or run the file and view

directories.
if a directory is not executable, you cannot

cd into it or see what is in it at all.

How to view the ownership &
permissions of files/direcories (review)

ls -l: lists long format

alpaca.ceri.memphis.edu424:> ls -l

total 2201712

-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*

-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt

-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out

Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst

Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

Permissions

How to view the ownership &
permissions of files/direcories (review)

ls -l: lists long format

alpaca.ceri.memphis.edu424:> ls -l

total 2201712

-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*

-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt

-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out

Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst

Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

 Owner

How to view the ownership &
permissions of files/direcories (review)

ls -l: lists long format

alpaca.ceri.memphis.edu424:> ls -l

total 2201712

-rw-rw-rw- 1 rsmalley user 54847 Mar 7 2009 *CHARGE-2002-107*

-rw-rw-rw- 1 rsmalley user 413 Oct 30 2006 022285A.cmt

-rwxrwxrwx 1 rsmalley user 13092 Aug 13 2007 a.out

Drwxrwxrwx 3 rsmalley user 512 Oct 10 2008 adelitst

Drwxrwxrwx 5 rsmalley user 512 Aug 29 2007 ANT_GMT

 Group

Changing owners and groups.

If you create a file, you are the owner/user.

Mitch and Bob have the system set up to
automatically set the group to ‘user’, or all

users of the CERI unix system.

Default permissions for CERI files are
rw-r--r--

(numerically 644)

chmod

Command to change file or directory
permissions.

%chmod ugo+x hello.sh

%ls -lF hello.sh

-rwxr-xr-x 1 rsmalley user 21 Sep 16 08:36 hello.sh*

–R flag allows you to set all files to the same
permissions within a directory and all

subdirectories.

Changing Permissions

you can also use octal values (numbers) to
change ownership

644 represents u=rw; go=r
755 represents u=rwx; go=rx

(using this puts you is a special eunuch class)

Connecting remotely

On a mac running OS-X, from a terminal
window enter

ssh –X alpaca.ceri.memphis.edu –l rsmalley

The –X flag gives us X-windows graphics
capability.

Next is the name of the machine we want to
connect to.

The –l flag passes the username.
(Without this flag it will pass whatever your username is on the mac.)

Try running nedit.
On the mac – we get x graphics automatically

On the PC it is a few more clicks, but
first we need to install two programs
SSH Secure Shell Client and Exceed
(part of the Hummingbird package).

Double click on exceed (it will start up
and put an icon in the tray, it does not

have a window).
Double click on SSH Secure Shell Client

You will get this window (left). Now we have
to connect to a machine. Click on File and

then connect.

This brings up the connect dialog. Put in the
host name you want to connect to and your

username. Leave the other stuff alone (default).
Click connect.

It will now ask for your password.

And we are finally connected.

Start nedit in the background.

Text Editing

Text Editing Options

Mouse-driven options

nedit: this X-window GUI text editor allows
interactive mouse or keyboard driven text

manipulation; colored text and auto-
recognition of various standard scripting and

programming languages is helpful for
debugging scripts and code; appears to be a
student favorite at CERI and is available on

the Unix system.

Text Editing Options

Mouse-driven options

emacs: a less sleek looking GUI text editor
(available at CERI) that allows interactive

mouse or keyboard driven text manipulation;
it is very powerful and is an old favorite of

computer programmers.

Text Editing Options

Keyboard-driven options

vi or vim: this non-GUI text editor relies
primarily on keyboard driven text

manipulation; steep learning curve but very
powerful; vim - colored text and auto-

recognition of various standard scripting and
programming languages is helpful for

debugging scripts and code.

Found on ALL Unix systems.

Text Editing Options

Keyboard-driven options

pico: a pared down non-GUI text editor very
similar to the email program pine. If you
don’t know what pine is, use nedit instead.

nedit or vi/vim.

nedit is available on the CERI unix machines
because Bob and Mitch have installed it.

nedit has a shallow learning curve (execute it
and start using!).

nedit or vi/vim.

vi and vim are available standard on all Unix
and Unix-like systems.

vi and vim are harder to learn.

vi and vim are much more powerful than
nedit.

*note to OSX users, nedit can be downloaded and installed on OSX but you need
to be sys admin and know what you are doing….it is not a simple dmg unpack.

Xcode is a similar but more powerful editor for code development.

to start nedit

%nedit &

Which introduces another Unix feature – the
“&”.

When the “&” is placed at the end of a
command line it opens the program in the

background so that you can continue to use
the terminal window.

&

This is a general feature.

So if you have a program that will take 10
minutes to run and is putting its output into
a file (not the screen), you can run it with

the & at the end and it will go off and do its
thing in the “background” and you can

continue working in the window.

This was a much more important before the
days of window based GUIs.

This is what it looks like
(using a mac that is ssh’d into the suns)

Works similar to WORD. File/open – get
dialog box. Select file to open.

This is the file. It is a shell script (bourne
shell – sh). It makes a map using the GMT

package.

Here’s what you get when you run it.

