
wildcards

UNIX is a four letter word

''Unix is user friendly --
It's just picky about who it's friends are...''

-- Unknown, seen in .sigs around the world

Introduction to wildcards.

Wildcards are essential when
dealing with almost anything
in terms of text processing.
(Looking for/Managing files from
the command line is text processing.)

They are a subset of regular expressions, an
essential (i.e. esoteric and difficult) Unix

feature.

Introduction to wildcards.

Example

Say I want to find all the files in the working
directory that begin with the letter “a”.

(lower case only since Unix is case sensitive.)

Start out with the ls command

%ls a???

How do we specify we want all combinations
of all characters following the “a”?

We use a wildcard.

%ls a*

The asterisk “*” (called “splat”) wildcard
means match a string with any number of any

characters (including none, so will match a
file “a”).

Try it ---

alpaca.ceri.memphis.edu/rsmalley 143:> ls a*
a.out antex.sh
antarctic sun panorama 3x.ai atantest.f
antarctic sun panorama.125.jpg awk
antarctic sun panorama.25.jpg az_map
antarctic sun panorama.ai az_map.ps
antarctic sun panorama.jpg

adelitst:
aadeli.ini adelitst.sh jessai pessai
ADELI.MESSAGES eessai kcnusc.pal PLOT1
ADELI.MINMAX iessai oessai tempi

arc2gmtstuff:
arcgmt.README arcgmt.tar arcgmt_ai arcgmt_av
alpaca.ceri.memphis.edu/rsmalley 144:>

(As part of the regular expression feature
of Unix) wildcards can be used in

combination with almost all Unix commands.

Wildcards

“*” - matches zero or more characters or
numbers.

Find all files in local subdirectory SEIS with
the string “.BHZ.” in their file name.

%ls SEIS/*.BHZ.*
SEIS/HIA.BHZ.SAC SEIS/WMQ.BHZ.SAC
SEIS/filt.HIA.BHZ.SAC SEIS/filt.WMQ.BHZ.SAC

Wildcards

“*” – asterisk - matches zero or more
characters or numbers.

Combining/multiple use of wildcards.

Find all files in local subdirectory SEIS that
begin with the letter “f” and also have the

string “.BHZ.” in their file name.

%ls SEIS/f*.BHZ.*
SEIS/filt.HIA.BHZ.SAC SEIS/filt.WMQ.BHZ.SAC

“?” – question mark - matches a single
character or number.

Find all files in local subdirectory SEIS that
have the name “HIA.BH” plus some single

letter (the ?) plus a “.” and then plus
anything (the *).

% ls SEIS/HIA.BH?.*
SEIS/HIA.BHE.SAC SEIS/HIA.BHN.SAC
SEIS/HIA.BHZ.SAC

Wildcards

“[]” – brackets - used to specify a set or
range of characters or numbers rather than

all possible characters or numbers.

Find all files in local subdirectory SEIS that
have the name “HIA.BH” plus one of E, N or
Z (the stuff in brackets) plus a “.” and then

plus anything (the *).

%ls SEIS/HIA.BH[E,N,Z].*
SEIS/HIA.BHE.SAC SEIS/HIA.BHZ.SAC
SEIS/HIA.BHN.SAC

Wildcards

Find all files in all local subdirectories (the
first *) that have the name “HIA” plus

anything (the second *) plus the characters
“198” plus a single character in the range 0-9

then plus anything (the third and last *).

%ls */HIA*198[0-9]*
795/HIA.BHZ.D.1988.041:07.18.30
799/HIA.BHZ.D.1988:14:35:27.00
812/HIA.BHZ.D.1988:03:43:49.00
813/HIA.BHZ.D.1988.362:13.58.59
814/HIA.BHZ.D.1989.041:17.07.43

Some random stuff

A note on Control-C (CTRL-C)

Use CTRL-C (hold down Control [CTRL] key,
then type “C” and finally release Control key]

to quit a job (stop whatever is going on).

If you accidently start something that isn’t
working, CTRL-C will quit and return you to a

blank command line.

Some random stuff

A note on the book

As the book was not written for the CERI
system, some of the files it refers to are
not located where the book says they are.

What we have seen so far

Commands

cd
pwd
ls

mkdir
rmdir

rm
more
less
cat

paste
head
tail
cp
mv
ln

See this link for a list and description of
many Unix commands

http://pcsplace.com/tech-list/ultimate-list-of-linux-and-unix-commands/

What we have seen so far

Redirection

Pipes

Switches

Some special characters (~,\,.,..)

Wildcards (*,?)

man pages

Using man pages

Using man pages

Layout

All man pages follow a common layout that is
optimized for presentation on a simple

ASCII text display, possibly without any
form of highlighting or font control.

Using man pages
Typical man page has following “headings”:

SECTION
NAME

SYNOPSIS
DESCRIPTION

OPTIONS
OPERANDS

USAGE
(EXAMPLES)

ENVIRONMENT VARIABLES
EXIT STATUS

(FILES)
ATTRIBUTES

SEE ALSO
NOTES
(BUGS)

alpaca.ceri.memphis.edu/rsmalley 141:> man ls
Reformatting page. Please Wait... done

User Commands ls(1) SECTION

NAME NAME
 ls - list contents of directory

SYNOPSIS SYNOPSIS
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

DESCRIPTION DESCRIPTION
 For each file that is a directory, ls lists the contents of
 the directory. For each file that is an ordinary file, ls
 repeats its name and any other information requested. The
 output is sorted alphabetically by default. When no argument
 is given, the current directory is listed. When several
 arguments are given, the arguments are first sorted
 appropriately, but file arguments appear before directories
 and their contents.

 There are three major listing formats. The default format
 for output directed to a terminal is multi-column with
 entries sorted down the columns. The -1 option allows single
 column output and -m enables stream output format. In order
 to determine output formats for the -C, -x, and -m options,
 ls uses an environment variable, COLUMNS, to determine the
 number of character positions available on one output line.
 If this variable is not set, the terminfo(4) database is
 used to determine the number of columns, based on the
 environment variable, TERM. If this information cannot be
 obtained, 80 columns are assumed.

 The mode printed under the -l option consists of ten charac-
 ters. The first character may be one of the following:

Using man pages

SECTION: The section of the manual.
Includes command whose man page you

requested.

User Commands ls(1)

The ls commnad is in the “User Commands”
section of the documentation/manual, which
is section #1.

NAME: The name of the command or
function, followed by a one-line description

of what it does.

NAME
 ls - list contents of directory

Using man pages

SYNOPSIS

In the case of a command, you get a formal
description of how to run it and what

command line options it takes. For program
functions, a list of the parameters the
function takes and which header file

contains its definition. For experienced
users, this may be all the documentation

they need.

Using man pages

SYNOPSIS (not so obvious)

Shows where command lives - /usr/bin/ -
(there are 2 versions available, depends on your path – more

on paths later), plus …
SYNOPSIS
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

Using man pages

SYNOPSIS (not so obvious)

…list of options
{ [-aAbcCdfFghilLmnopqrRstux1@] }
the brackets { [] } signify that the stuff

inside the brackets is optional, and …
SYNOPSIS
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

Using man pages

SYNOPSIS (not so obvious)

… finally, optionally (the brackets) a file
name (file), that may be repeated an

arbitrary number of times – the ellipses
{ ... }.

SYNOPSIS
 /usr/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

 /usr/xpg4/bin/ls [-aAbcCdfFghilLmnopqrRstux1@] [file...]

Using man pages

Brackets – optional parameters.

File – filename.

Ellipses – repeat as necessary.

Using man pages

DESCRIPTION

A textual description of the functioning of
the command or function.

Using man pages

DESCRIPTION

The DESCRIPTION can go on for a number
of pages.

DESCRIPTION
 For each file that is a directory, ls lists the contents of
 the directory. For each file that is an ordinary file, ls
 repeats its name and any other information requested. The
 output is sorted alphabetically by default. When no argument
 is given, the current directory is listed. When several
 arguments are given, the arguments are first sorted
 appropriately, but file arguments appear before directories
 and their contents.

 There are three major listing formats. The default format

 This is where we find out what the first
letters of the long ls format mean

The mode printed under the -l option consists of ten charac-
 ters. The first character may be one of the following:

 d The entry is a directory.

 D The entry is a door.

 l The entry is a symbolic link.

 b The entry is a block special file.

 c The entry is a character special file.

 p The entry is a FIFO (or "named pipe") special file.

 s The entry is an AF_UNIX address family socket.

 - The entry is an ordinary file.

etc.

Using man pages

OPTIONS

Specification of the command’s options

OPTIONS
 The following options are supported:

 -a Lists all entries, including those that begin with a
 dot (.), which are normally not listed.

 -A Lists all entries, including those that begin with a
 dot (.), with the exception of the working directory
 (.) and the parent directory (..).

 -b Forces printing of non-printable characters to be in
 the octal \ddd notation.

This can go on for pages also.

Using man pages

OPERAND

Describes the valid operands.

OPERANDS
 The following operand is supported:

 file A path name of a file to be written. If the file
 specified is not found, a diagnostic message will be
 output on standard error.

Explains the operand is optional file name(s).

Using man pages

USAGE

Notes on usage (not examples).

USAGE
 See largefile(5) for the description of the behavior of ls
 when encountering files greater than or equal to 2 Gbyte (2
 **31 bytes).

Using man pages

EXAMPLES
Optionally gives some examples.

EXAMPLES
 Example 3: Providing file information
 Another example of a command line is:

 example% ls -aisn

 This command provides information on all files, including
 those that begin with a dot (a), the i-number-the memory
 address of the i-node associated with the file-printed in
 the left-hand column (i); the size (in blocks) of the files,
 printed in the column to the right of the i-numbers (s);
 finally, the report is displayed in the numeric version of
 the long list, printing the UID (instead of user name) and
 GID (instead of group name) numbers associated with the
 files.
 When the sizes of the files in a directory are listed, a
 total count of blocks, including indirect blocks, is
 printed.

Using man pages

Followed by a bunch of other (mostly)
esoteric stuff.

ENVIRONMENT VARIABLES (these can get you),
EXIT STATUS, FILES, ATTRIBUTES, (the

following may be useful) SEE ALSO, NOTES, BUGS.

Shells

What is a shell?

As far as Unix is concerned, the shell is just
another program.

As far as the user in concerned, it is the
traditional command line user interface with

the Unix operating system…it interprets
your typing.

What is a shell?

Just as there are many flavors of Unix and
Unix-like systems, there are many types of

shells.

If you don’t like any of the shells in
existence, this is Unix – write your own!

Common shells

Bourne Shell sh
Bourne Again Shell bash

(current default on MAC OS X)

C Shell csh
TENEX C Shell tcsh

(This is the default shell at CERI)

Korn Shell ksh
(mix between two families above)

sh

bash

ksh
csh

tcsh

Bourne
Shell

Bourne
Again
Shell

TENEX
C shell

C Shell
Korn
Shell

Common shells

 sh

Bourne shell

The original Unix shell.

Pro: Flexible and powerful scripting shell.

Con: Not interactive or particularly user
friendly.

 csh
C shell

designed for the BSD Unix system.

syntax closely follows C programming.

Pro: easy for C programmers to learn and
comes with many interactive features such

as file completion, aliases, history.

Con: not as flexible or powerful a scripting
language.

 ksh

Korn shell

derived from the Bourne shell so has a
shared syntax.

job control taken from the C shell.

 bash
Bourne-Again shell

Combines the “best” of sh, ksh, and csh.

Default shell on Linux and Mac OSX
operating systems.

Pro: Flexible and powerful scripting language
with all the interactive features of csh plus

command completion.
This shell is great for complicated GMT

scripts.

tcsh
TENEX C shell

Default shell of the CERI unix environment.

Pro: User friendly on the command line.

Con: It is not as suitable for long and
involved scripts.

It is perfectly OK for most daily geophysics
work on the command line & most faculty

here use it on a daily basis so there are many
experts around.

What is my shell?

This seems to be the best way to find out.

%echo $0

Works for tcsh, sh, and bash.

($0 does not refer to the shell in general,
this may be one of the Unix “standards” that

$0 is the program you are running!!).

What is my shell?
alpaca.ceri.memphis.edu/rsmalley 145:> echo $0
/usr/bin/tcsh

alpaca.ceri.memphis.edu/rsmalley 146:> /bin/sh
$ echo $0
/bin/sh

$ /bin/bash
bash-2.05$ echo $0
/bin/bash

bash-2.05$ exit
Exit

$ echo $0
/bin/sh

$ exit
alpaca.ceri.memphis.edu/rsmalley 147:> echo $0
/usr/bin/tcsh
alpaca.ceri.memphis.edu/rsmalley 148:>

Query for shell

Run sh
Query for shell

Run bash
Query for shell

Exit bash,
returns to sh

Query for shell

Exit sh, returns
to tcsh

What is my shell?
alpaca.ceri.memphis.edu/rsmalley 145:> echo $0
/usr/bin/tcsh

alpaca.ceri.memphis.edu/rsmalley 146:> /bin/sh
$ echo $0
/bin/sh

$ /bin/bash
bash-2.05$ echo $0
/bin/bash

bash-2.05$ exit
Exit

$ echo $0
/bin/sh

$ exit
alpaca.ceri.memphis.edu/rsmalley 147:> echo $0
/usr/bin/tcsh
alpaca.ceri.memphis.edu/rsmalley 148:>

Can also id the shell by the prompts
(once you know which is which).

These examples also show that shell is
just another program – the only thing
special about it is that one is started
automatically for you when you login.

What is my shell?
The commands

%env $SHELL
%echo $SHELL

will echo the value of the environment
variable $SHELL to the screen – but this

may not be your shell!

alpaca.ceri.memphis.edu/rsmalley 152:> echo $0
/usr/bin/tcsh
alpaca.ceri.memphis.edu/rsmalley 153:> echo $SHELL
/usr/bin/tcsh
alpaca.ceri.memphis.edu/rsmalley 154:> echo $shell
/usr/bin/tcsh
alpaca.ceri.memphis.edu/rsmalley 155:> /bin/sh
$ echo $SHELL
/usr/bin/tcsh
$ echo $shell

$

Useful features of tcsh & bash

-file completion-

you can key the tab key, or the escape key
twice, to complete the name of a long file.

Useful features of tcsh & bash

history command
list the previous commands entered during

the active session.
alpaca.ceri.memphis.edu/rsmalley 149:> history

. . .

 145 21:30 pwd

 146 21:30 DEM

 147 21:30 cd srtm

 148 21:30 history

Useful features of tcsh & bash

-history “feature”-

up and down arrow keys: allow you to move
up and down through previous commands.

right and left arrow keys: allow you to edit
command lines (backspace to remove, type
at cursor to insert) without starting from

scratch.

Useful features of tcsh & bash

bang (“!”) command/shortcut

Bang is used to search backward through
your Bash history until it finds a command
that matches the string that follows it and

returns/executes it.

bang (“!”) command/shortcut

!XXX<CR> returns the command numbered
XXX in the history list, and in this ex. It

runs it after you enter the <CR>.)

alpaca.ceri.memphis.edu/rsmalley 149:> history

. . .

 145 21:30 pwd

 146 21:30 DEM

 147 21:30 cd srtm

 148 21:30 history

alpaca.ceri.memphis.edu/rsmalley 149:> !146

DEM

/gaia/home/rsmalley/dem

alpaca.ceri.memphis.edu/rsmalley 150:>

bang (“!”) command

!-X: returns the command X back in the
history list and runs it at the <CR>.

alpaca.ceri.memphis.edu/rsmalley 151:> history

. . .

 147 21:30 cd srtm

 148 21:30 cd ~

 149 21:30 history

 150 21:46 DEM

 151 21:55 history

alpaca.ceri.memphis.edu/rsmalley 152:> !-4

cd ~

/gaia/home/rsmalley

alpaca.ceri.memphis.edu/rsmalley 153:>

bang (“!”) command/shortcut

!ca: retuns the last command in the history
file beginning with “ca”.

!!: retuns the last command in the history
list.

bang (“!”) command/shortcut is actually
more general – use it to return
commands from history and do

something with them.
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Getting stuff from the last command:

Full line: % !! becomes: % vi foo.c bar.c

Various shells have options that can affect
this.

Be careful with shells that let you share
history among instances. Some shells also
allow bang commands to be expanded with

tabs or expanded and reloaded on the
command line for further editing when you

press return.

bang (“!”) command/shortcut is actually
more general – use it to return
commands from history and do

something with them.
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Getting stuff from the last command:

Last arg : % svn ci !$ becomes: % svn ci bar.c

bang (“!”) command/shortcut is actually
more general – use it to return
commands from history and do

something with them.
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Getting stuff from the last command:

All args : % svn ci !* becomes: % svn ci foo.c bar.c

bang (“!”) command/shortcut is actually
more general – use it to return
commands from history and do

something with them.
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Getting stuff from the last command:

First arg: % svn ci !!:1 becomes: % svn ci foo.c

bang (“!”) command/shortcut is actually
more general – use it to return
commands from history and do

something with them.

The colon is a separator for specifying
further options/details of the desired

action.

First arg: % svn ci !!:1 becomes: % svn ci foo.c

bang (“!”) command/shortcut
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

We will see what each of these commands
(except make) does later.

bang (“!”) command/shortcut
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Accessing command lines by pattern:

Full line: % !./f becomes: % ./foo -f foo.conf

bang (“!”) command/shortcut
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Accessing command lines by pattern:

Full line: % vi `!whi` becomes: % vi `which firefox`

bang (“!”) command/shortcut
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Accessing command lines by pattern:

All args : % ./bar !./f:* becomes: % ./bar -f foo.conf

We are looking for “./f”, and then (the colon,
“:”) want all args (the splat, “*”)

bang (“!”) command/shortcut
For the purposes of these tips, every tip will assume these are the last three
commands you ran:

% which firefox
% make
% ./foo -f foo.conf
% vi foo.c bar.c

Accessing command lines by pattern:

First arg: % svn ci !vi:1 becomes: % svn ci foo.conf

bang (“!”) command/shortcut

Notice how this makes perfect sense under
the Unix philosophy.

Make a tool and (mis/ab)use it.

(the basic commands are really very simple,
but in tricky combination they become very

powerful.)

Most normal people are not going to use all
these shortcuts, they are just too

complicated.

I showed them, however, to present
additional application of the Unix philosophy.

bang (“!”) command/shortcut

you can also check the command bang finds
before executing it.

!cat:p<CR>

Now, instead of executing the command it
finds, bang prints the command to Standard

OUT for you to look at.

bang (“!”) command/shortcut

!cat:p<CR>

That's not all though, it also copies the
command to the end of your history (even

though it was not executed).

This is useful because if you do want to
execute that command, you can now use the
bang bang shortcut to run it (bang bang runs

the last thing in history).

bang (“!”) command/shortcut

!cat:p<CR>
!! | grep "hello”<CR>

Here, the most recent command containing
cat is printed, and copied to the end of your

history.

Then, that command is executed with its
results being piped into the grep command,

which has been specified to print those lines
containing the string "hello".

bang (“!”) command/shortcut

Ever run a command only to have it fail for
lack of superuser privileges?

Instead of retyping the whole command with
sudo or even pressing the up arrow and
scrolling back to the beginning of the

command to type sudo, you can just type
this:

sudo !!

bang (“!”) command/shortcut

To find a lot of this “neat” stuff I just
GOOGLEd

“unix bang command”

you will not find it in the man pages

alpaca.ceri.memphis.edu/rsmalley 147:> man !
No manual entry for !.
alpaca.ceri.memphis.edu/rsmalley 148:>

Modify last command in history list using
caret or circumflex accent, “^”, to fix typos

or make small changes.
Replaces text inside first two carets with

that between second and third.
(can sometimes skip closing caret as shown below in second example.)

smalleys-imac-2:documents smalley$ ls trk1.kml
trk1.kml
smalleys-imac-2:documents smalley$ ^1^2^
ls trk2.kml
trk2.kml
smalleys-imac-2:documents smalley$!!:p
ls trk2.kml
smalleys-imac-2:documents smalley$
smalleys-imac-2:documents smalley$ ^2^1
ls trk1.kml
trk1.kml
smalleys-imac-2:documents smalley$

Environment (esoteric and essential)

The Unix Environment
(general and CERI specific)

Mitch has set up the basic CERI environment
so that everyone can access the standard

Unix tools and geophysics packages available
on the Unix system at CERI.

The Unix Environment

But what does this mean?

Many UNIX utilities, including the shell,
need information about you and what you're

doing in order to do a reasonable job.

What kinds of information?

Well, to start with, a lot of programs
(particularly editors) need to know what kind

of terminal you're using.

Your environment is composed of a number
of environment variables which provide

this important information to the
operating system.

Rather than forcing you to type this
information with every command
such as (% mail -editor vi -term aardvark48)

UNIX uses environment variables to store
information that you'd rather not worry

about.
For example, the TERM environment variable
tells programs what kind of terminal you're
using. Any programs that care about your

terminal type know (or ought to know) that
they can read this variable, find out your

terminal type, and act accordingly.

UNIX commands receive information from
three potential sources.

-Arguments on the command line

-Data coming down their standard input
channel.

-The environment. When a command is
started, it is sent a list of environment

variables by the shell.

Since you generally want the computer to
behave the same way everyday, these
environment variables are setup and
stored in configuration files that are

accessed automatically at login.

What are your environment variables?

env: prints the current environment
variables to the screen.

alpaca.ceri.memphis.edu/rsmalley 141:> env
USER=rsmalley
LOGNAME=rsmalley
HOME=/gaia/home/rsmalley
PATH=.:/gaia/home/rsmalley:/gaia/home/rsmalley/bin:/gaia/home/
rsmalley/shells:/gaia/home/rsmalley/dem:/gaia/home/rsmalley/
defm:/gaia/home/rsmalley/defm/src:/gaia/home/rsmalley/
visco1d_pollitz/viscoprogs_rs:/gaia/home/rsmalley/gg:/gaia/
home/rsmalley/gg/com:/gaia/home/rsmalley/gg/gamit/bin:/gaia/
home/rsmalley/gg/kf/bin:/gaia/dunedain/d2/gps/bin:/gaia/
smeagol/local/passcal.2006/bin:/gaia/smeagol/local/gmt/
GMT4.2.1/bin:/usr/sbin:/usr/local/teTeX/bin/sparc-sun-
solaris2.8:/gaia/home/rsmalley/bin:/opt/local/sbin:/opt/sfw/
bin:/usr/bin:/usr/ccs/bin:/usr/local/bin:/opt/SUNWspro/SC5.0/
bin:/opt/local/bin:/usr/bin:/usr/dt/bin:/usr/openwin/bin:/
bin:/usr/ucb:/gaia/smeagol/local/bin:/net/gps4/d1/Noah/rbh/
usr/PROGRAMS.330/bin:/gaia/home/rsmalley/X/bin:/gaia/home/
rsmalley/X/com:/gaia/home/rsmalley/record_reading/bin:/gaia/
home/rsmalley/record_reading/scripts
MAIL=/var/mail//rsmalley
SHELL=/usr/bin/tcsh
TZ=US/Central
LC_CTYPE=en_US.ISO8859-1
LC_COLLATE=en_US.ISO8859-1

LC_TIME=en_US.ISO8859-1
LC_NUMERIC=en_US.ISO8859-1
LC_MONETARY=en_US.ISO8859-1
LC_MESSAGES=C
SSH_CLIENT=75.66.47.230 50561 22
SSH_CONNECTION=75.66.47.230 50561 141.225.157.63 22
SSH_TTY=/dev/pts/12
TERM=xterm
HOSTTYPE=sun4
VENDOR=sun
OSTYPE=solaris
MACHTYPE=sparc
SHLVL=1
PWD=/gaia/home/rsmalley
GROUP=user
HOST=alpaca.ceri.memphis.edu
REMOTEHOST=c-75-66-47-230.hsd1.tn.comcast.net
MANPATH=/gaia/smeagol/local/passcal.2006/man:/gaia/smeagol/
local/gmt/GMT4.2.1/man:/ceri/local/man:/usr/dt/man:/usr/man:/
usr/openwin/share/man:/usr/local/man:/opt/SUNWspro/man:/opt/
sfw/man:/usr/local/teTeX/man:/gaia/smeagol/local/man
LD_LIBRARY_PATH=/gaia/smeagol/local/gmt/lib:/gaia/opt/
SUNWspro/lib:/gaia/opt/SUNWspro/SC5.0/lib:/usr/lib:/usr/
openwin/lib

LM_LICENSE_FILE=/gaia/opt/licenses/licenses_combined
GMTHOME=/gaia/smeagol/local/gmt/GMT4.2.1
NETCDFHOME=/gaia/smeagol/local/gmt
GMT_GRIDDIR=/gaia/smeagol/local/gmt/GMT4.2.1/share/dbase
GMT_IMGDIR=/gaia/smeagol/local/gmt/GMT4.2.1/DATA/img
GMT_DATADIR=/gaia/smeagol/local/gmt/GMT4.2.1/DATA/misc
CWD=/gaia/home/rsmalley
EDITOR=vi
AB2_DEFAULTSERVER=http://stilgar.ceri.memphis.edu:8888
PRINTER=3892

You get all the stuff shown so far
automatically.

HELP_DIR=/gaia/home/rsmalley/gg/help/
INSTITUTE=uom
RECORD_READING=/gaia/home/rsmalley/record_reading
RECORD_READING_BIN=/gaia/home/rsmalley/record_reading/bin
RECORD_READING_SCR=/gaia/home/rsmalley/record_reading/scripts
RECORD_READING_SRC=/gaia/home/rsmalley/record_reading/src
latestrtvel=rtvel4_9305_5bv19
LATESTRTVEL=rtvel4_9305_5bv19
ANONFTP=/gaia/midtown/mid4/smalley/public_ftp
ANONFTP_IN=/gaia/midtown/mid4/smalley/public_ftpinbox
SACDIR=/gaia/tesuji/d1/local/sac
SACXWINDOWS=x11
SACAUX=/gaia/tesuji/d1/local/sac/aux
SACSUNWINDOWS=0
GPSHOME=/gaia/dunedain/d2/gps

Plus you can add our own stuff (above).

Unless you are running Linux (in which case
you are the system manager), you can forget
about setting up most of this as the system

managers do it for you.

There are a few environment variables,
however, that you need to know about and/or

set up yourself.

HOME*

This environment variable controls what
other Unix commands consider your base or

home directory.

This is how “%cd“ and “~” know which
directory to refer to

% echo $HOME
/gaia/home/rsmalley

To refer to an environment variable put a $
in front of the name.

The $ therefore has a special meaning to the
shell.

(As do the characters “ ~, !, /, *,?,^ “
which we have already seen. By the time we
are done we will have used up most of the
non alpha-numeric characters with special

meanings.)

SHELL*

This variable stores your default shell

% echo $SHELL
/usr/bin/tcsh

(however this may give an incorrect result.)

*these environment variables should not be
changed by the user

