State of stress in central and eastern North American seismic zones

Stephane Mazzotti¹ and John Townend²

GEOLOGICAL SURVEY OF CANADA, NATURAL RESOURCES CANADA, P.O. BOX 6000, SIDNEY, BC V8L 4B2, CANADA AND SCHOOL OF EARTH AND OCEAN SCIENCES, UNIVERSITY OF VICTORIA, PO BOX 3065 STN CSC, VICTORIA, BC V8W 3V6, CANADA

²SCHOOL OF GEOGRAPHY, ENVIRONMENT, AND EARTH SCIENCES, VICTORIA UNIVERSITY OF WELLINGTON, P.O. BOX 600, WELLINGTON 6140, NEW ZEALAND

ABSTRACT

We use a Bayesian analysis to determine the state of stress from focal mechanisms in ten seismic zones in central and eastern North America and compare it with regional stress inferred from borehole measurements. Comparisons of the seismologically determined azimuth of the maximum horizontal compressive stress (S_{HS}) with that determined from boreholes (S_{HB}) exhibit a bimodal pattern: In four zones, the S_{HS} and regional S_{HB} orientations are closely parallel, whereas in the Charlevoix, Lower St. Lawrence, and Central Virginia zones, the S_{HS} azimuth shows a statistically significant 30°–50° clockwise rotation relative to the regional S_{HB} azimuth. This pattern is exemplified by the northwest and southeast seismicity clusters in Charlevoix, which yield S_{HS} orientations strictly parallel and strongly oblique, respectively, to the regional S_{HB} trend. Similar ~30° clockwise rotations are found for the North Appalachian zone and for the 2003 Bardwell earthquake sequence north of the New Madrid zone. The S_{HB}/S_{HS} rotations occur over 20–100 km in each seismic zone, but they are observed in zones separated by distances of up to 1500 km. A possible mechanism for the stress rotations may be the interaction between a long-wavelength stress perturbation source, such as postglacial rebound, and local stress concentrators, such as low-friction faults. The latter would allow low-magnitude (<10 MPa) postglacial rebound stresses to locally perturb the preexisting stress field in some seismic zones, whereas postglacial rebound stresses have little effect on the intraplate state of stress in general.

LITHOSPHERE; v. 2; no. 2; p. 76-83, Data Repository 2010020.

doi: 10.1130/L65.1

INTRODUCTION

As in most continental intraplate regions, stress orientations in central and eastern North America are broadly homogeneous and consistent over 1000-5000 km spatial scales (e.g., Zoback and Zoback, 1980, 1991; Zoback, 1992a). East of the Cordillera deformation front, the main characteristic of the tectonic stress field is a NE-SW axis of maximum horizontal compressive stress (S_{μ}) , which is commonly attributed to far-field plate-boundary forces, and in particular to Mid-Atlantic Ridge push (Zoback, 1992a; Richardson, 1992). In a case study of 32 eastern North American earthquakes, Zoback (1992b) noted that most focal mechanisms were compatible with the regional stress field inferred from borehole data. However, five mechanisms suggested local stress perturbations, and two other events implied atypical frictional conditions (e.g., superlithostatic pore-fluid pressure).

The spatial distribution of earthquakes in central and eastern North America is largely associated with late Proterozoic Iapetus Rift structures (e.g., Adams and Basham, 1991; Johnston et al., 1994). As shown in Figure 1, the main concentrations of both small and large earthquakes lie along the rifted margin itself or failed rift arms. The Iapetus structures are typically reactivated under the present-day stress

Figure 1. Central and eastern North America seismicity and lapetus Rift structures. Dark- and lightgray dots show magnitude $M \ge 3$ and $M \ge 5$ earthquakes since 1973 (Geological Survey of Canada and U.S. Geological Survey catalogs). Focal mechanism (red) sources are given in the supplementary material (see text footnote 1). Thick gray barbed lines indicate the lapetus rifted margin and failed rifts. The ten seismic zones discussed in the text are shown by solid ellipses.

field as thrust or strike-slip faults. Aside from this first-order correlation, rather little is known about the geological and geophysical conditions generating intraplate earthquakes and the associated hazard (cf. Stein and Mazzotti, 2007, and references therein). Thus, characterization of the regional stress field and local state of stress is essential for improving our understanding of the source of intraplate seismicity and better quantifying seismic hazard.

In this study, we analyze a newly compiled data set of focal mechanisms to estimate stress parameters and characterize the prevailing state of stress within ten of the main seismic zones of central and eastern North America. We compare our results with regional borehole stress information from the World Stress Map and Canadian Crustal Stress databases to determine the consistency of seismological and borehole estimates of the state of stress near the seismic zones and to elucidate potential stress perturbations associated with regionally elevated earthquake activity.

DATA SETS AND STRESS ESTIMATION TECHNIQUE

Focal Mechanisms

The earthquake focal mechanism data set is shown in Figure 1. (See supplementary material for references and focal mechanism octant plots.1) It constitutes mostly first-motion solutions complemented by a small number of moment tensors (~15% of the total). In most cases, a quality factor was provided in the original study in the form of a qualitative level (A-D) or a quantitative angular uncertainty. In order to obtain a coherent set of inversion results, we standardized these quality rankings by assigning small $(\pm 15^\circ)$, medium $(\pm 25^\circ)$, or large $(\pm 35^\circ)$ uncertainties to each mechanism's strike, dip, and rake angles, which are assumed to be independent (cf. Walsh et al., 2009). In those cases in which the original study did not provide a quality level, we assigned an uncertainty level on the basis of the data-analysis description. In addition, focal mechanism uncertainties were adjusted on the basis of earthquake magnitudes to take into account the potentially higher uncertainty and lower quality of small-magnitude solutions: all M < 2.5 and $2.5 \le$ M < 3.5 mechanisms were assigned large and medium uncertainties ($\pm 35^{\circ}$ and $\pm 25^{\circ}$), respectively.

We focus on ten of the main eastern North American seismic zones, which we define as areas encompassing more than five focal mechanisms within a distinct geological and seismological area (Fig. 1). The Lower St. Lawrence, Charlevoix, Montreal, and Eastern Tennessee zones are associated with the Iapetus rifted margin, and the Ottawa and New Madrid zones are associated with Iapetus failed rift arms (Adams and Basham, 1991; Wheeler, 1995). The Gatineau seismic zone may be related to the trace of the New England Seamount Chain hotspot (Adams and Basham, 1991). The North Appalachian, Central Virginia, and Charleston seismic zones are not affiliated with clear lithospherescale structures: in the first two, the seismicity occurs within the Appalachian formations that overlie rifted Grenville crust (Munsey and Bollinger, 1985; Adams and Basham, 1991). Other seismicity clusters can be identified in central and eastern North America, but the paucity of focal mechanisms precludes any stress analysis.

Seismological Stress Estimation

We used a Bayesian estimation technique (Arnold and Townend, 2007) to determine the set of stress parameters most consistent with the focal mechanisms in a given group. We weighted each focal mechanism by converting the aforementioned angular errors to a scalar Matrix Fisher concentration parameter (Equation A12 of Arnold and Townend, 2007). This approach yields a joint probability density function of the three angles specifying the principal stress axes' orientations and a single stress magnitude ratio parameter. Its principal advantages, in comparison with other stress estimation algorithms, are the incorporations of focal mechanism uncertainties, nodal plane ambiguity, and the weak constraint imposed on the stress tensor by any single focal mechanism. This last point is particularly important because it allows us to derive confidence intervals for the stress tensor parameters that take into account the degree of similarity between focal mechanisms within individual seismic zones (Arnold and Townend, 2007). As shown in the octant plots (supplementary material [see footnote 1]), the diversity of mechanisms can vary significantly between zones.

We computed the trend of the axis of maximum horizontal compressive stress (S_{μ}) using the algorithm described by Lund and Townend (2007). Such a transformation is necessary when none of the three principal stresses is strictly vertical, and it enables all four determinable parameters to be amalgamated into a single, physically intuitive and readily illustrated parameter. This produces a probabilistic description of S_{μ} from

which we can compute the median trend and associated confidence intervals.

Borehole Stress Data

In order to perform a detailed comparison of our seismological stress estimates with borehole crustal stress measurements on a regional scale, we extracted stress magnitude and orientation data from the World Stress Map and the Canadian Crustal Stress databases (Zoback, 1992a; Adams, 1995; Heidbach et al., 2008). For each seismic zone, we calculated a weighted mean S₄ orientation for borehole breakout and hydrofracture measurements with qualities of A, B, or C made at depths greater than 0.5 km within 250 km of each seismic zone. The weighted mean and its associated standard deviation were estimated by assigning weights of 3, 2, and 1 to the A, B, and C quality $S_{\rm H}$ measurements, respectively. In most cases, the borehole S_{H} data are located outside of the seismic zones and are unevenly distributed. Because of the strong regional coherence of the borehole stress orientations over distances of hundreds of kilometers (Zoback, 1992a), we assume that these 250 km S_{u} averages provide appropriate estimates of the regional stress orientation outside of the seismic zones.

RESULTS

Eastern North America

The results are shown in Figures 2 and 3 and listed in Table 1 in terms of median S_{HS} trend and 90% confidence interval (90CI_s); the subscript "S" is used to denote a seismological estimate. The 90% confidence interval is ~20°-40° in most cases. The Ottawa seismic zone stands out with a very large 90CI_s of 132°, indicating that the directions of the principal horizontal stresses are not constrained by this small data set (eight mechanisms, two of which have large uncertainties). The results for this zone are not used for further discussion.

In all but one case, the estimated $S_{\rm HS}$ orientation lies in the NE-SW quadrant, roughly parallel to the general $S_{\rm HB}$ trend inferred from borehole measurements (Fig. 3); the subscript "B" is used to denote a borehole estimate. For the New Madrid, Eastern Tennessee, Montreal, and Gatineau seismic zones, the median seismological and average borehole $S_{\rm H}$ orientations ($S_{\rm HS}$ and $S_{\rm HB}$, respectively) are consistent to within 5°–15°, well within the respective 90% confidence intervals. The lack of borehole $S_{\rm HB}$ data within 250 km of the Charleston seismic zone precludes a direct comparison with the $S_{\rm HS}$ orientation. However, the nearest $S_{\rm HB}$ measurement (C quality at

¹GSA Data Repository Item 2010020, focal mechanism data set, octant plots, and Charlevoix stress analyses, is available at www.geosociety.org/pubs/ ft2010.htm, or on request from editing@geosociety .org, Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA.

Figure 2. State of stress in seismic zones. Lower-hemisphere stereonets show the posterior distributions of the principal stress axes (S_1 -red, S_2 -green, S_3 -blue). Dashed red lines indicate the median orientation of the seismologically determined maximum horizontal compressive stress S_{HS} . Dotted gray lines and gray angular sectors indicate the average and 90% confidence region of the maximum horizontal compressive stress from borehole data S_{HB} (Table 1). New Madrid: The black dotted line shows the S₁ orientation for the Bardwell earthquake sequence (Horton et al., 2005).

255 km) has an orientation that lies within the 90% confidence interval of $S_{\rm HS}$ (Fig. 2). For the North Appalachian seismic zone, the median $S_{\rm HS}$ and average $S_{\rm HB}$ values differ by 33°, but the 90% confidence intervals overlap by 13° (Fig. 2). The three remaining seismic zones (Central Virginia, Lower St. Lawrence, and Charlevoix) show statistically significant differences between $S_{\rm HS}$ and $S_{\rm HB}$ azimuths and are discussed in more detail in the following sections.

Central Virginia Seismic Zone

The state of stress in the Central Virginia seismic zone was determined by the focal mechanisms of 11 small earthquakes (M < 3) recorded during 4 yr in the early 1980s (Munsey and Bollinger, 1985), complemented by two M ~4 earthquakes that occurred in 2003. These events all occurred at regionally typical depths shallower than ~15 km within the allochthonous, thrust-faulted, Appalachian formations that override the Precambrian Grenville basement (Bollinger et al., 1985; Munsey and Bollinger, 1985).

The S_{HS} orientation is rotated 48° clockwise with respect to the regional borehole S_{HB} trend, and the 90% confidence intervals of $\rm S_{\rm HS}$ and $\rm S_{\rm HB}$ are separated by 13° (Table 1; Fig. 2), indicating that the two estimates are significantly distinct. Using the same data set, excluding the 2003 events, Kim and Chapman (2005) inferred a slightly larger clockwise rotation of $\mathbf{S}_{_{\mathrm{HS}}}$ relative to S_{HB} (~68°), with an azimuth and plunge of N133° and 14°SE for the S, axis (cf. N086° and 7°W for our results; Fig. 2). The difference in orientation and plunge of S₁ between the two analyses may be in part due to the difference in the stress inversion technique (Bayesian versus grid-search). Alternatively, the difference in results may reflect the small difference in the data sets in relation to the complexity of the seismological state of stress in the Central Virginia seismic zone. The 13 focal mechanisms have P axis orientations in both NE-SW and NW-SE directions, suggesting that the stress regime may change from mainly thrust to mainly strike slip with depth (Munsey and Bollinger, 1985).

Lower St. Lawrence Seismic Zone

The Lower St. Lawrence seismic zone is delineated by pronounced microseismicity located mainly beneath the St. Lawrence River (Fig. 1) (Adams and Basham, 1991). The bestconstrained hypocenters place the earthquakes between 7 and 25 km depth, within the rifted Precambrian Grenville basement and well below the overthrust Appalachian formations (Adams and Basham, 1991; Lamontagne et al., 2003).

Figure 3. Eastern North America maximum horizontal compressive stress. Solid and gray arrows indicate S_{HB} orientation from borehole observations (A and B–C quality, respectively). Blue arrows indicate borehole observations used in calculating the regional average within 250 km of the seismic zones (solid ellipses). Red arrows and angular sectors indicate S_{HS} orientation from focal mechanism inversion (median and 90% range, Table 1).

TABLE 1.	STRESS INVERSION	I RESULTS VERSUS	LOCAL BOREHOLE	E STRESS ORIENTATION

Seismic zone		Seismolo	gical stress		Borehole stress			
	Ns	S _{HS} (°)	90CI _s (°)	R	N _B	S _{HB} (°)	90Cl _B (°)	
Lower St. Lawrence	12	104 (R)	081–124	0.4	2	060	46–73	
Charlevoix	60	086 (R)	069-101	0.3	12	054	43–65	
Charlevoix NW	25	055 (R)	035–074	0.2	12	054	43–65	
Charlevoix SE	35	101 (R)	086–114	0.4	12	054	43–65	
Gatineau	19	038 (R)	029–048	0.8	6	043	28–58	
Ottawa	8	078 (R)	001–133	0.3	1	086	_	
Montreal	21	058 (R)	043–073	0.4	7	044	30–59	
North Appalachian	12	070 (R)	059–083	0.6	5	038	5-71	
Central Virginia	13	090 (R)	071–111	0.7	6	042	26–58	
East Tennessee	26	054 (S)	046-063	0.2	3	058	43–73	
New Madrid	18	082 (S)	073-091	0.9	10	076	41-111	
Charleston	11	064 (S)	050-077	1.0	1	040*	_	

Note: N_s —number of focal mechanisms; S_{HS} and $90Cl_s$ —median and 90% confidence interval azimuth of the axis of maximum horizontal compressive stress (R—reverse, S—strike-slip); R—median stress ratio $(S_1 - S_2)/(S_1 - S_3)$; N_b —number of borehole data; S_{HB} and $90Cl_b$ —weighted average and 90% confidence interval azimuth of the borehole axis of maximum horizontal compression within 250 km of the seismic zone. *Based on nearest borehole at 255 km.

Although tentative correlations have been made between the earthquakes and the Iapetus Rift faults, most of the seismicity appears to occur within fractured volumes of the rift system rather than on the main rift faults themselves (Lamontagne et al., 2003).

The S_{HS} orientation is rotated 44° clockwise compared to the regional borehole stress orientation S_{HB} (Table 1; Fig. 2). The 90% confidence intervals for the two estimates are separated by 8°, indicating a statistically significant difference. There are two important caveats with regard to this observation: (1) the S_{HB} orientation and standard error are only based on two B quality data points (individual azimuths of 54° and 65°; Fig. 3); and (2) the S_{HS} orientation is only defined by 12 mechanisms, exhibiting a relatively low diversity and hence yielding a relatively large 90CIs value. Notwithstanding these points, the seismological versus borehole stress rotation appears to be robust, and the borehole $\mathbf{S}_{_{\mathrm{HB}}}$ orientation is similar to the general direction for eastern Canada (Fig. 3). The seismological S_{HS} value is stable for several tested combinations of eight or more (out of 12) mechanisms and yields a S_{HS} orientation between N100° and N120°, in all cases strongly oblique to the regional borehole data.

Charlevoix Seismic Zone

The Charlevoix seismic zone is one of the historically most active earthquake concentrations in eastern North America, with five $M \ge 6$ earthquakes since 1663 (Lamontagne, 1987; Adams and Basham, 1991). Most earthquakes occur between 5 and 25 km depth beneath the St. Lawrence River. The main geological structures are related to the ca. 1100 Ma Grenville orogeny, ca. 650 Ma Iapetus rifting, ca. 450 Ma Appalachian orogeny, and a large meteor impact ca. 350 Ma. Using remote-sensing, seismic, and potential field data, Lamontagne et al. (2000) identified the Saint-Laurent and Charlevoix faults (Fig. 4) as the main Iapetus Rift faults and the principal structures in the seismic zone.

No clear association can be found between the seismicity and the main fault structures (e.g., Lamontagne et al., 2000), but a first-order NW-SE clustering pattern is apparent in the earthquakes' epicenters. As shown in Figure 4, a largely aseismic, ~5-km-wide zone separates two distinct microseismicity clusters to the southeast (mostly beneath the river) and the northwest (mostly beneath the north shore; Anglin and Buchbinder, 1981). This gap coincides with an elongated high-seismic-velocity body (Vlahovic et al., 2003) and with the location of the Saint-Laurent fault (Fig. 4, cross section).

Figure 4. Charlevoix maximum horizontal compressive stress. Earthquakes and focal mechanisms are as in Figure 1. Solid and dashed lines show lapetus Rift faults and impact crater structure (Lamontagne et al., 2000). SLF—Saint-Laurent fault; CHF—Charlevoix fault. Lower-right insert shows a NW-SE depth cross section. The upper-left insert shows stereonets of the state of stress from inversion of focal mechanisms to the northwest (blue) and southeast (red) of the Saint-Laurent fault.

Analysis of the 60 focal mechanisms in the Charlevoix seismic zone yields a S_{HS} orientation of N086°, rotated 32° clockwise relative to the regional $\mathbf{S}_{_{\mathrm{HB}}}$ from nearby boreholes (Table 1; Fig. 2). The 90% confidence intervals for the two estimates are distinct by 4°. The large number of focal mechanisms allows us to test for spatial variations in stress orientations amongst subsets of events. The most significant difference in S_{HS} orientation exists between the focal mechanism clusters to the southeast and northwest of the Saint-Laurent fault (Fig. 4). For the northwest group, S_{HS} is oriented N055°, parallel to the regional borehole data, whereas ${\rm S}_{\rm HS}$ for the southeast group is oriented N101° and rotated clockwise by 47° compared to the borehole trend (Table 1; Fig. 4). This rotation is significant at the 90% confidence level, with a separation of 21° between the seismological and borehole confidence intervals. Various earthquake grouping and inversion tests (supplementary material [see footnote 1]) indicate that the NW-SE clustering is the grouping associated with the most significant rotation.

The 1925 Charlevoix M = 6.2 earthquake ruptured a steeply dipping thrust fault striking parallel to the regional $S_{\rm H}$ orientation (Bent, 1992; Fig. 4). The rotated $S_{\rm HS}$ observed for the southeast side of the Charlevoix seismic zone is more compatible than the regional $S_{\rm H}$ direction with the focal mechanism of the 1925 event, as well as with numerous smaller thrust events that have fault planes striking NE-SW.

DISCUSSION

Consistency and Extent of Stress Rotations

Out of the ten seismic zones addressed in this study, the Central Virginia, Lower St. Lawrence, and Charlevoix seismic zones each show a 30°–50° clockwise rotation of the seismic S_{HS} orientation relative to the regional borehole S_{HB} orientation that is significant at the 90% confidence level. A similar clockwise rotation of 32° is observed for the North Appalachian seismic zone, albeit with a 12° overlap of the seismological and borehole 90% confidence intervals (Fig. 2). Although not statistically significant, that result is worth noting in comparison with the 48° clockwise rotation observed in the Central Virginia seismic zone: both seismic zones exhibit clusters of earthquakes confined to the shallow (<15 km) Appalachian formations that override the deeper Grenville basement (Bollinger et al., 1985; Adams and Basham, 1991).

A similar, although slightly smaller, clockwise rotation can be deduced for the 2003 M =4.0 Bardwell earthquake sequence north of the New Madrid seismic zone. For the main shock and aftershock sequence, Horton et al. (2005) derived a S₁ orientation of N104° with an uncertainty of approximately ±20°. Assuming that $S_{HS} = S_1$, this result indicates a clockwise rotation of 20°-30° compared to our median estimates of S_{HS} for the New Madrid focal mechanisms (excluding the Bardwell sequence) and S_{HB} from nearby borehole data (Table 1; Fig. 2). Although not statistically significant, this apparent rotation suggests that large variations in stress orientation can occur over a distance of ~40 km in the New Madrid-Wabash Valley area (Horton et al., 2005), similar to the ~20 km distance that separates the two seismic clusters in the Charlevoix seismic zone.

It is important to consider whether the apparent stress rotations are artifacts stemming from the comparison between relatively shallow borehole data (0.5-2 km) and deeper seismicity (1-30 km). Vertical variations in stress orientations have been reported over depth intervals of 100-1000 m in individual boreholes (e.g., Hickman and Zoback, 2004), but in general, deep borehole- and earthquake-determined stress orientations are similar and can be jointly accounted for in terms of, for instance, dynamical modeling results (e.g., Townend and Zoback, 2004). Moreover, the eastern and western Charlevoix results are based on earthquakes at comparable depths. Hence, we consider it unlikely that the observed rotations are depthrelated artifacts.

Overall, therefore, we find that the angular difference between S_{HS} and S_{HB} exhibits a bimodal pattern: four seismic zones exhibit good agreement between seismological and borehole estimates of the S_u orientation (Gatineau, Montreal, Eastern Tennessee, and New Madrid), and five imply 30°-50° clockwise rotations of the seismological $S_{\rm HS}$ relative to the regional borehole S_{HB} (Lower St. Lawrence, Charlevoix, Central Virginia, and, to a lesser extent, North Appalachian and Bardwell-northern New Madrid). In the case of the Lower St. Lawrence, Central Virginia, and North Appalachian, the rotation between $S_{\rm HS}$ inside the seismic zone and $S_{\rm HB}$ outside the seismic zone occurs over distances of 50-100 km (Fig. 3). For Charlevoix and Bardwell-northern New Madrid, the rotation occurs over 20-40 km (Fig. 4). In the following section, we consider the magnitude and potential causes of the stress perturbation required to account for the 30° - 50° clockwise rotation of the horizontal principal stresses over such short distances.

Magnitude of the Stress Perturbations

In order to obtain a first-order estimate of the stress perturbation causing the observed rotations, we consider the model of Sonder (1990) and Zoback (1992a). In this model, the orientation of the maximum horizontal compressive stress (represented here by S_{HS}) in the vicinity of a major structure can be calculated in terms of a regional stress orientation (represented here by $S_{_{\rm HB}}$) and a uniaxial stress perturbation (S_1) orthogonal to the strike of the structure. We assume that, for the Charlevoix, Lower St. Lawrence, and Central Virginia seismic zones, the stress responsible for the local rotation is perpendicular to the average local Iapetus Rift direction (Fig. 1). With this assumption, the magnitude of the uniaxial stress perturbation S₁ is found using Equation 8 of Zoback (1992a) to be 80%-110% that of the regional horizontal differential stress (i.e., $[S_H - S_h]/S_L \sim 0.8-1.1$; Table 2).

Deep intraplate borehole data from a number of locations worldwide reveal that at depths of as much as 8 km, the crust is in a state of stress consistent with incipient frictional failure given coefficients of friction $\mu \approx 0.6-1.0$ and the observed near-hydrostatic pore-fluid pressures ($\lambda \approx 0.4$; Townend and Zoback, 2000). Similarly, stress magnitude data from boreholes in central and eastern North America (Adams and Bell, 1991; Adams, 1995; Heidbach et al., 2008) show a relationship between differential stress $(S_1 - S_3)$ and effective mean stress that is consistent with incipient frictional failure for coefficients of friction $\mu > 0.5$ (Fig. 5). Also illustrated in Figure 5, a histogram of stress ratio measurements from the same boreholes exhibits a pronounced peak at $0.5 \le R_{_{\rm B}} \le 0.8$ and mean of $R_{\rm B} = 0.6$, with few values smaller than 0.4. The majority of these borehole stress measurements are located in the Canadian Shield, west and north of the main seismic zones. Thus, they may be considered as constituting a reference state of stress for the continental crust outside of seismically active regions.

If we assume that the stress magnitude parameters in each seismic zone are similar to those in intraplate continental crust as a whole ($\mu = 0.8$, $\lambda = 0.4$, R = 0.6, $\rho = 2700$ kg m⁻³; see Appendix A for details), the differential stress in the horizontal plane at a mid-seismogenic zone depth of 8 km is $S_H - S_h = S_1 - S_2 \approx 250$ MPa for a reverse stress state, and $S_H - S_h = S_1 - S_3 \approx 160$ MPa for a strike-slip stress state. This analysis suggests that a local stress perturba-

TABLE 2. STRESS PERTURBATION MAGNITUDE AND ORIENTATION

Seismic zone	Structure (°)	S _{HB} (°)	S _{HS} (°)	θ (°)	γ (°)	$(S_H^{} - S_h^{})/S_L^{}$	S _L (°)
Lower St. Lawrence	045	060	104	15	44	0.88	135
Charlevoix	035	054	086	19	32	1.09	125
Central Virginia	027	042	090	15	48	0.81	117

Note: Structure—average azimuth of primary regional structural direction; S_{HS} and S_{HB} —azimuth of axis of maximum horizontal compressive stress from seismic inversion and borehole data (cf. Table 1). $\theta = S_{HB}$ – structure; $\gamma = S_{HS} - S_{HB}$. ($S_{H} - S_{h}/S_{L}$ is ratio of local horizontal differential stress to stress perturbation (S_{L} , cf. text and Sonder, 1990). S_{L} —azimuth of stress perturbation.

Figure 5. Stress ratio and differential stress from borehole data. Left: Histogram of stress ratio R = $(S_1 - S_3)/(S_2 - S_3)$ from A, B, and C quality borehole stress measurements deeper than 0.5 km in eastern North America. Right: Differential stress $(S_1 - S_3)$ versus effective mean stress (mean stress minus pore fluid pressure) from borehole stress measurements deeper than 0.1 km of quality A (open circles) and B or C (solid circles) in eastern North America.

tion S_L of comparable magnitude is required to locally reorient S_{HB} by 30°–50°, as implied by the Lower St. Lawrence, Charlevoix, and Central Virginia stress orientation results.

Such high stress magnitudes clearly depend on the assumed friction coefficient and the fluid pressure regime. If we assume that either a low friction coefficient ($\mu = 0.1$) or a near-lithostatic pore-fluid pressure ($\lambda \approx 0.9$) prevails in the seismic zones, the horizontal differential stress and the corresponding stress perturbation S_L would be of the order of only ~20–40 MPa. However, the low ambient stress magnitudes implied by those parameters contrast markedly with the values thought to characterize aseismic or low-seismicity intraplate continental crust as a whole, as outlined herein (Fig. 5).

Potential Sources of the Stress Perturbations

The consistency of the 30°–50° clockwise stress rotations observed from the St. Lawrence valley to the central Appalachians (and possibly to the New Madrid–Wabash Valley) suggests a similar mechanism or source for seismic zones separated by large distances. The calculations discussed in the previous section imply a stress perturbation at mid-seismogenic depths of 160–250 MPa (in a representative high-friction, low-fluid-pressure case) or 20–40 MPa (low friction or high fluid pressure) and a maximum horizontal stress S_L trending approximately N115°–135° (Table 2).

Various mechanisms have been proposed as potential sources of local and regional stress perturbations, including topography, crustal density anomalies, fault intersections, flexure under local loads (e.g., sedimentary basins), and postglacial rebound (e.g., Stein et al., 1989; Talwani, 1988; Zoback, 1992a; Assameur and Mareschal, 1995). Most of these mechanisms account for stress perturbations of at most a few tens of megapascals and would only result in significant horizontal stress rotations if prevailing horizontal stresses were at the low end of stress levels calculated here. Flexural stresses may reach several hundred megapascals under sediment loads of 10 km thickness (Stein et al., 1989), but such conditions do not appear applicable to continental seismic zones. Similarly, large crustal density anomalies have been demonstrated to produce stress perturbations of as much as ~200 MPa and rotations of up to 90° (Zoback and Richardson, 1996). However, gravity and seismic velocity data do not indicate the presence of widespread high-density anomalies associated with the Iapetus Rift structures in the Charlevoix and Lower St. Lawrence seismic zones (Lamontagne et al., 2000, 2003).

One possible mechanism by which consistent local stress perturbations may be generated over large distances is the concentration of postglacial rebound stresses by local zones of weakness, perhaps including low-friction faults. Postglacial rebound stresses show a strong spatial coherence over distances of thousands of kilometers, but they are typically smaller than ~10 MPa (e.g., Wu and Hasegawa, 1996). However, the presence of a "weak zone" in the lithosphere, such as low upper-mantle viscosity or a low-friction fault in the crust, can result in stress amplifications by a factor of 5-10 with respect to homogeneous lithosphere models (e.g., Grollimund and Zoback, 2001; Wu and Mazzotti, 2007). In such cases, the modulation of largescale, small-amplitude postglacial rebound stresses by local zones of weakness could produce perturbations that are coherent over large distances but only affect those areas with locally reduced horizontal differential stress levels. In other words, postglacial rebound stresses may be high enough to reorient the local stress field surrounding faults with low friction or other properties that maintain ambient stress at levels lower than in the "typical low-seismicity" continental intraplate crust.

The St. Lawrence Valley may provide possible examples of this mechanism. In both the Lower St. Lawrence and Charlevoix seismic zones, the estimated $\mathbf{S}_{\rm HS}$ orientation is strongly oblique to the regional $S_{\rm HB}$ orientation derived from borehole data located 30-100 km outside the seismic zones (Fig. 3). In Charlevoix, the relationships between the seismicity distribution and geological structures jointly suggest that the main rift faults may have unusually low friction $(\mu \sim 0.1;$ Baird et al., 2009). Recent models of postglacial rebound stress and strain that incorporate a weak zone in the lithosphere beneath the St. Lawrence Valley show a significant amplification and clockwise rotation of the postglacial rebound stresses directly above the weak zone (Wu and Mazzotti, 2007). The resulting postglacial rebound horizontal stress and strain orientations are nearly parallel to our estimated $S_{_{HS}}$ orientation and to the maximum horizontal contraction rate measured by global positioning system in the Charlevoix and Lower St. Lawrence seismic zones (Mazzotti et al., 2005, 2006).

CONCLUSIONS

(1) Comparisons of the axis of maximum horizontal compressive stress determined from earthquake focal mechanisms in seismic zones (S_{HS}) and from borehole data near but outside the seismic zones (S_{HB}) reveal a bimodal pattern: S_{HS} and S_{HB} are closely parallel in four seismic zones (Gatineau, Montreal, Eastern Tennessee, and New Madrid); in three other zones (Lower St. Lawrence, Charlevoix, and Central Virginia), S_{HS} is rotated 30°–50° clockwise compared to S_{HB} ; two other zones (North Appalachian and Bardwell–northern New Madrid) show indications of similar clockwise rotations but at a low confidence level.

(2) The observed S_{HS} versus S_{HB} rotations are similar in both sense and magnitude in seismic zones separated by up to ~1500 km.

(3) The observed $S_{\rm HS}$ versus $S_{\rm HB}$ rotations occur over distances of no more than 50–100 km. In two cases (SE versus NW Charlevoix and Bardwell versus New Madrid), the rotation appears to occur over a distance of 20–50 km.

(4) With respect to a simple model of stress rotations near structural boundaries, the observed S_{HS} versus S_{HB} rotations imply a local stress perturbation of 160–250 MPa at a representative depth of 8 km. This assumes that the crust in the seismic zones is in a state of stress similar to that of "typical, low-seismicity" continental crust as a whole, namely, incipient frictional failure with coefficients of friction $\mu \approx 0.6$ –1.0 and near-hydrostatic pore-fluid pressures. If the seismic zones were characterized by either a very low coefficient of friction ($\mu = 0.1$) or a near-lithostatic pore-fluid pressure, the required stress perturbation according to the model used here would be only 20–40 MPa.

(5) Local stress perturbations associated with fault intersections or large density anomalies could be sufficiently large (hundreds of megapascals) to account for the observed rotations, but their short wavelength (~10–100 km) cannot explain similar $S_{\rm HS}$ rotations over 1500 km (point 2).

(6) Long-wavelength (hundreds of kilometers) stress perturbation mechanisms such as topography, basin flexure, and postglacial rebound are typically associated with stress magnitudes of the order of tens of megapascals and thus cannot straightforwardly account for the observed S_{HS} rotations if midcrustal stress magnitudes are of the order of hundreds of megapascals (point 4).

(7) A possible mechanism for similar stress perturbations over large distances is the concentration of postglacial rebound stresses by local zones of weakness, such as low-friction faults. This would result in long-wavelength perturbations affecting only the weak zones. The Lower St. Lawrence and Charlevoix seismic zones may be examples of such mechanism, where the S_{HS} orientation in the seismic zones is parallel to that predicted by postglacial rebound models that incorporate a local weak zone (Mazzotti et al., 2006).

APPENDIX A. STRESS MAGNITUDES

To estimate the regional stress magnitudes, we adopt the critically stressed crust model of Townend and Zoback (2000) in which the state of stress in the crust is controlled by optimally oriented Andersonian faults on the brink of frictional failure equilibrium. In this case, the maximum and minimum effective stresses, $S_1 - P_f$ and $S_3 - P_f$, are related by:

$$\frac{S_1 - P_f}{S_3 - P_f} = \left(\sqrt{\mu^2 + 1} + \mu\right)^2 \equiv F,$$
 (A1)

where $P_{\rm f}$ is the pore-fluid pressure, and μ the coefficient of friction (see Zoback and Townend, 2001, and references therein).

In normal, strike-slip, and reverse stress states, the effective vertical stress $S_{\rm v}$ is:

$$S_{\nu} = (1 - \lambda) pgz = \begin{cases} S_1 & \text{normal} \\ S_2 & \text{strike-slip}, \\ S_3 & \text{reverse} \end{cases}$$
(A2)

where ρ is the average crustal density, g is the gravitational acceleration, z is the depth, and $\lambda = P_i / S_v$ is the pore-fluid factor. In each case, we can express all three principal stresses in terms of the vertical stress S_v and the differential stress $\Delta S = S_1 - S_3$, and solve Equation A1 to obtain ΔS as a function of depth and the frictional parameter *F*. This yields:

$$\Delta S = pgz(\lambda - 1)(1 - F)$$

$$\times \begin{cases} 1/F & \text{normal} \\ 1/(R + (1 - R)F) & \text{strike-slip}, \\ 1 & 1 & \text{reverse} \end{cases}$$
(A3)

where the stress ratio

$$R = \frac{S_1 - S_2}{S_1 - S_3} = \frac{S_1 - S_2}{\Delta S}$$
(A4)

appearing in the strike-slip case is used to explicitly relate the intermediate principal stress to the differential stress. Expressions A2–A4 can be used to compute all three principal stress magnitudes and hence, given the orientation of the maximum horizontal stress, fully determine the stress tensor.

ACKNOWLEDGMENTS

We thank John Adams and Mark Zoback for ongoing discussions about eastern North America stress and seismicity, John Cassidy and Roy Hyndman for comments on a preliminary version of the manuscript, and Björn Lund for very detailed input during the review process. Allison Bent, Shutien Ma, Pradeed Talwani, and Maurice Lamontagne provided focal mechanisms and data assistance, and Ikuko Wada helped with an early analysis. This is Geological Survey of Canada contribution 20080471.

REFERENCES CITED

- Adams, J., 1995, The Canadian Crustal Stress Database— A compilation to 1994: Geological Survey of Canada Open-File 3122, 437 p.
- Adams, J., and Basham, P.W., 1991, The seismicity and seismotectonics of eastern Canada, *in* Slemmon, B., et al., eds., The Geology of North America, Decade Map Volume 1, Neotectonics of North America: Boulder, Colorado, Geological Society of America, p. 261–276.
- Adams, J., and Bell, J.S., 1991, Crustal stress in Canada, in Slemmon, B., et al., eds., The Geology of North America, Decade Map Volume 1, Neotectonics of North America: Boulder, Colorado, Geological Society of America, p. 367–386.
- Anglin, F. and Buchbinder, G., 1981, Microseismicity in the mid–St. Lawrence Valley Charlevoix zone, Quebec: Bulletin of the Seismological Society of America, v. 71, p. 1553–1560.
- Arnold, R., and Townend, J., 2007, A Bayesian approach to estimating tectonic stress from seismological data: Geophysical Journal International, v. 170, p. 1336–1356, doi: 10.1111/j.1365-246X.2007.03485.x.
- Assameur, D.M., and Mareschal, J.C., 1995, Stress induced by topography and crustal density heterogeneities: Implication for the seismicity of southeastern Canada: Tectonophysics, v. 241, p. 179–192, doi: 10.1016/0040-1951 (94)00202-K.
- Baird, A.F., McKinnon, S.D., and Godin, L., 2009, Stress channeling and partitioning of seismicity in the Charlevoix seismic zone, Quebec, Canada: Geophysical Journal International, v. 179, p. 559–568, doi: 10.1111/j.1365-246X .2009.04275.x.
- Bent, A.L., 1992, A re-examination of the 1925 Charlevoix, Quebec, earthquake: Bulletin of the Seismological Society of America, v. 82, p. 2097–2113.
- Bollinger, G.A., Chapman, M.C., Sibol, M.S., and Costain, J.K., 1985, Analysis of earthquake focal depths in the southeastern U.S.: Geophysical Research Letters, v. 12, p. 785–788, doi: 10.1029/GL012i011p00785.
- Grollimund, B., and Zoback, M.D., 2001, Did deglaciation trigger New Madrid seismicity?: Geology, v. 29, p. 175–178, doi: 10.1130/0091-7613(2001)029<0175:DDTISI>2.0.CO;2.
- Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B., 2008, The Release 2008 of the World Stress Map: http://www.world-stress-map.org (June 2009).
- Hickman, S., and Zoback, M.D., 2004, Stress orientations and magnitudes in the SAFOD pilot hole: Geophysical Research Letters, v. 31, L15S12, doi: 10.1029/ 2004GL020043.
- Horton, S.P., Kim, W.Y., and Withers, M., 2005, The 6 June 2003 Bardwell, Kentucky, earthquake sequence: Evidence for a locally perturbed stress field in the Mississippi embayment: Bulletin of the Seismological Society of America, v. 95, p. 431–445, doi: 10.1785/0120040052.

- Johnston, A.C., Coppersmith, K.J., Kanter, L.R., and Cornell, C.A., 1994, The earthquakes of stable continental regions: Assessment of large earthquake potential, *in* Schneider, J.F., ed., Electronic Power Research Institute Report TR-102261: Palo Alto, California, Electronic Power Research Institute, 309 p.
- Kim, W.-Y., and Chapman, M., 2005, The 9 December 2003 Central Virginia earthquake sequence: A compound earthquake in the Central Virginia seismic zone: Bulletin of the Seismological Society of America, v. 95, p. 2428– 2445, doi: 10.1785/0120040207.
- Lamontagne, M., 1987, Seismic activity and structural features in the Charlevoix region, Quebec: Canadian Journal of Earth Sciences, v. 24, p. 2118–2129, doi: 10.1139/e87-202.
- Lamontagne, M., Keating, P., and Toutin, T., 2000, Complex faulting confounds earthquake research in the Charlevoix seismic zone, Québec: Eos (Transactions, American Geophysical Union), v. 81, no. 26, p. 289, doi: 10.1029/ 00EO00213.
- Lamontagne, M., Keating, P., and Perreault, S., 2003, Seismotectonic characteristics of the Lower St. Lawrence seismic zone, Quebec: Insights from geology, magnetics, gravity, and seismics: Canadian Journal of Earth Sciences, v. 40, p. 317–336, doi: 10.1139/e02-104.
- Lund, B., and Townend, J., 2007, Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor: Geophysical Journal International, v. 170, p. 1328–1335, doi: 10.1111/j.1365-246X.2007.03468.x.
- Mazzotti, S., James, T.S., Henton, J., and Adams, J., 2005, GPS crustal strain, postglacial rebound, and seismicity in eastern North America: The Saint Lawrence Valley example: Journal of Geophysical Research, v. 110, B11301, doi: 10.1029/2004JB003590.
- Mazzotti, S., Wu, P., Wada, I., Adams, J., and Bent, A., 2006, Role of plate tectonic and postglacial rebound forces in the present-day state of stress and fault reactivation along the St. Lawrence and Ottawa Valleys: Geological Association of Canada Meeting Abstracts, v. 31, p. 99.
- Munsey, J.W., and Bollinger, G.A., 1985, Focal mechanism analyses for Virginia earthquakes: Bulletin of the Seismological Society of America, v. 75, p. 1613–1636.
- Richardson, R.M., 1992, Ridge forces, absolute plate motion, and the intraplate stress field: Journal of Geophysical Research, v. 97, no. B8, p. 11,739–11,748, doi: 10.1029/91JB00475.
- Sonder, L.J., 1990, Effects of density contrasts on the orientation of stresses in the lithosphere: Relation to principal stress directions in the Transverse Ranges, California: Tectonics, v. 9, p. 761–771, doi: 10.1029/TC009i004p00761.
- Stein, S., and Mazzotti, S., eds., 2007, Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues: Boulder, Colorado, Geological Society of America Special Paper 425, 402 p.
- Stein, S., Cloetingh, S., Sleep, N.H., and Wortel, R., 1989, Passive margin earthquakes, stresses and rheology, *in* Gregersen, S., and Basham, P., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound: NATO ASI Series C: Boston Massachusetts, Kluwer, p. 231–259.
- Talwani, P., 1988, The intersection model for intraplate earthquakes: Seismological Research Letters, v. 59, p. 305–310.
- Townend, J., and Zoback, M.D., 2000, How faulting keeps the crust strong: Geology, v. 28, p. 399–402, doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2.

- Townend, J., and Zoback, M.D., 2004, Regional tectonic stress near the San Andreas fault in central and southern California: Geophysical Research Letters, v. 31, L15S11, doi: 10.1029/2003GL018918.
- Vlahovic, G., Powell, C., and Lamontagne, M., 2003, A threedimensional P wave velocity model for the Charlevoix seismic zone, Quebec, Canada: Journal of Geophysical Research, v. 108, no. B9, p. 2439, doi: 10.1029/ 2002JB002188.
- Walsh, D., Arnold, R., and Townend, J., 2009, A Bayesian approach to determining and parameterizing earthquake focal mechanisms: Geophysical Journal International, v. 176, p. 235–255, doi: 10.1111/j.1365-246X.2008 .03379.x.
- Wheeler, R.L., 1995, Earthquakes and the cratonward limit of lapetan faulting in eastern North America: Geology, v. 23, p. 105–108, doi: 10.1130/0091-7613(1995)023<0105:EATC LO>2.3.CO;2.
- Wu, P., and Hasegawa, H., 1996, Induced stresses and fault potential in eastern Canada due to a realistic load: A preliminary analysis: Geophysical Journal International, v. 127, p. 215–229, doi: 10.1111/j.1365-246X.1996. tb01546.x.
- Wu, P., and Mazzotti, S., 2007, Effects of a lithospheric weak zone on postglacial seismotectonics in eastern Canada and northeastern USA, *in* Stein, S., and Mazzotti, S., eds., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues: Geological Society of America Special Paper 425, p. 113–128, doi:10.1130/2007.9425(09).
- Zoback, M.D., and Townend, J., 2001, Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere: Tectonophysics, v. 336, p. 19–30, doi: 10.1016/S0040-1951(01)00091-9.
- Zoback, M.D., and Zoback, M.L., 1991, Tectonic stress field of North America and relative plate motion, *in* Slemmon, B., et al., eds., The Geology of North America, Decade Map Volume 1, Neotectonics of North America: Boulder, Colorado, Geological Society of America, p. 339–366.
- Zoback, M.L., 1992a, First- and second-order patterns of stress in the lithosphere: The World Stress Map Project: Journal of Geophysical Research, v. 97, no. B8, p. 11,703–11,728, doi: 10.1029/92JB00132.
- Zoback, M.L., 1992b, Stress field constraints on intraplate seismicity in eastern North America: Journal of Geophysical Research, v. 97, no. B8, p. 11,761–11,782, doi: 10.1029/92JB00221.
- Zoback, M.L., and Richardson, R.M., 1996, Stress perturbation associated with the Amazonas and other ancient continental rifts: Journal of Geophysical Research, v. 101, no. B3, p. 5459–5475, doi: 10.1029/95JB03256.
- Zoback, M.L., and Zoback, M.D., 1980, State of stress of the conterminous United States: Journal of Geophysical Research, v. 85, no. 88, p. 6113–6156, doi: 10.1029/ JB085iB11p06113.

MANUSCRIPT RECEIVED 11 JUNE 2009 REVISED MANUSCRIPT RECEIVED 7 OCTOBER 2009 MANUSCRIPT ACCEPTED 14 OCTOBER 2009

Printed in the USA

ena-stress-suppl-A.txt Mazzotti, S., and J. Townend, State of stress in central and eastern North America seismic zones

Supplementary Material A: Focal mechanisms for central and eastern Canada and U.S.A

zone LSL LSL LSL LSL LSL LSL LSL LSL LSL LS	l ong. -67. 810 -67. 210 -66. 450 -67. 510 -66. 350 -67. 600 -67. 390 -68. 250 -68. 710 -66. 980 -66. 980 -66. 880 -66. 320 -70. 090 -69. 800 -70. 240 -70. 239 -70. 180 -70. 220 -70. 214 -69. 841 -70. 227 -69. 901	lat. 48.710 48.990 49.610 49.310 49.610 49.260 49.250 48.740 48.870 49.610 49.340 49.610 47.340 47.340 47.340 47.343 47.404 47.510 47.513 47.513 47.564 47.564 47.672	depth 18 17 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	$ \begin{array}{c} M \\ 4.1 \\ 3.2 \\ 3.8 \\ 3.2 \\ 3.2 \\ 3.3.2 \\ 4.3.6 \\ 3.3.3 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.6 \\ 1.65 \\ 5.6 \\ 1.55 \\ 4.0 \\ 2.025 \\ 0.55 \\$	strike 317 189 231 187 201 319 304 312 181 334 219 221 110 42 137 138 278 40 223 119 134 14 177	di p 56 53 50 57 57 85 53 54 61 64 30 40 53 73 68 45 44 60 69 71 58	rake 53 65 83 66 66 -14 65 37 73 56 58 124 90 105 42 41 -68 90 84 19 -22 69 67	event 800403 830117 840329 840411 840528 850816 861109 870503 870617 870806 981022 990316 030613 250301 740609 740609 740620 740623 740623 740623 740630 740702 740714 790819	Q B A B A B A B B B C A A B A A C C A A C C C B	ref. 1 1 1 1 1 1 1 2 2 2 4 19 20 13 2 9 9 2 9 9 9 9 9 9 9 9 9 9
CHV CHV CHV	-69.680 -70.110 -70.320	47. 740 47. 700 47. 700	28 5 22	5.0 2.9 4.0 4.2	349 279 335	58 67 59 46	20 60 76	850325 860111 860919	B A B	9 2 1 1
CHV CHV CHV CHV	-70. 190 -69. 960 -70. 440	47. 720 47. 820 47. 410	4 20 12	3.3 3.0 3.6	102 130 133	55 65 44	60 79 60	870318 871206 880102	A A B	233
CHV CHV CHV CHV	-70.380 -70.671 -69.860 -69.857	47.440 47.443 47.720 47.717	7 20 11 11	3.1 3.1 4.3 4.3	183 153 168 194	25 42 31 18	35 80 71 84	880313 890131 890309 890309	A A A C	3 9 3 9
CHV CHV CHV CHV	-69.870 -69.870 -70.040 -70.133	47.720 47.718 47.570 47.393	10 10 15 23	4. 4 4. 4 2. 9 3. 2	184 15 42 195	38 72 57 44	80 86 40 68	890311 890311 890913 891013	A C C B	3 9 10
CHV CHV CHV	-70. 342 -70. 064 -69. 977	47. 456 47. 701 47. 856	7 10 21	3. 4 2. 6 3. 6	231 149 32	60 43 48	84 26 89	891122 891208 900303	A C A	9 9 9
CHV CHV CHV CHV	-70. 137 -70. 070 -70. 179 -70. 364	47. 553 47. 553 47. 414 47. 400	10 8 16	3. 2 3. 1 3. 0 3. 3	320 7 163	70 41 24	88 78 54	900421 900423 901021	C C A	9 9 9
CHV CHV CHV CHV	-69. 985 -70. 151 -70. 336 -70. 103	47. 569 47. 394 47. 269 47. 686	11 14 9 11	3. 1 3. 4 3. 3 1. 9	142 209 223 115	23 69 74 55	74 56 86 90	901026 901106 901218 910723	D C C	9 9 9
CHV CHV CHV CHV CHV	-69.864 -69.857 -70.407 -70.362	47.779 47.717 47.446 47.515	23 10 3 4	4.3 3.3 3.2 3.1	18 301 217 280	80 64 60	22 44 51 39	911208 920310 920501 930304	B C C A	9 9 9 9
CHV CHV CHV CHV	-70. 104 -69. 889 -70. 361 -69. 660	47.685 47.668 47.453 47.770	5 8 6 17	1.8 3.1 3.8 4.3	76 165 116 37	27 53 87 56	-62 72 24 90	930330 930807 931230 940925	B C C A	9 9 9 4
CHV	-69.961	47.752	12	4.3	37	56	90	940925	Α	9

Page 1

			ena-stre	ss-suppl	-A.txt				
MNT MNT MNT MNT MNT MNT MNT MNT PEM PEM PEM PEM PEM PEM PEM PEM PEM ECA ECA ECA	$\begin{array}{c} -74.770 \ 45.700 \\ -75.120 \ 45.560 \\ -75.050 \ 45.200 \\ -74.240 \ 45.530 \\ -74.250 \ 45.100 \\ -75.000 \ 45.010 \\ -75.000 \ 45.010 \\ -75.300 \ 45.210 \\ -74.960 \ 45.580 \\ -75.750 \ 45.200 \\ -75.750 \ 45.200 \\ -75.750 \ 45.200 \\ -75.750 \ 45.200 \\ -76.680 \ 45.610 \\ -77.340 \ 45.780 \\ -78.420 \ 46.310 \\ -75.630 \ 45.570 \\ -75.340 \ 45.770 \\ -75.620 \ 45.170 \\ -75.620 \ 45.170 \\ -78.930 \ 46.840 \\ -95.620 \ 71.180 \\ -79.460 \ 43.790 \\ -71.070 \ 47.560 \\ -113.200 \end{array}$	11 19 5 11 10 9 9 18 18 12 12 9 14 4 7 17 18 13 18 13 18 18 18 18 80. 570	2.8 3.0 3.3 2.8 3.3 3.4 2.1 2.9 4.1 4.1 1.2 3.1 3.4 3.0 1.8 3.5 3.3 4.7 4.1 3.1 4.2 18	33 87 299 107 190 310 314 226 313 224 52 272 317 178 348 343 291 320 148 16 289 4.6	42 51 41 55 46 40 38 42 57 22 77 57 48 25 80 56 46 33 47 25 47 64	67 -8 41 84 76 44 47 -50 53 63 59 66 19 -11 39 78 77 99 65 52 70 64	831210 840117 841126 860720 860813 880809 880811 900303 980418 831011 831013 850824 860110 860530 870619 871111 880515 000101 000405 000524 000712 16	B B A C A A A C A A B A A B C B B B A D C B B C B B C B B C B B C B B C B C A A A C A A A C A A A C A A A C A A A C A A A A C A A A A C A A A C A A A A C A	8 8 1 1 3 3 10 4 8 8 1 1 2 2 3 19 4 4 4 D
4 ECA	-116. 480	80. 940	18	5.2	68	55	30	001113	D
4 ECA ECA ECA ECA ECA ECA ECA ECA ECA ECA	$\begin{array}{c} -63.\ 350 \ 50.\ 030 \\ -73.\ 730 \ 44.\ 530 \\ -56.\ 000 \ 44.\ 690 \\ -56.\ 000 \ 44.\ 690 \\ -79.\ 070 \ 46.\ 780 \\ -74.\ 100 \ 45.\ 170 \\ -68.\ 620 \ 49.\ 840 \\ -74.\ 110 \ 46.\ 320 \\ -74.\ 110 \ 46.\ 320 \\ -74.\ 110 \ 46.\ 320 \\ -77.\ 330 \ 44.\ 900 \\ -70.\ 690 \ 45.\ 370 \\ -59.\ 610 \ 57.\ 220 \\ -75.\ 560 \ 44.\ 660 \\ -79.\ 460 \ 43.\ 470 \\ -78.\ 890 \ 46.\ 850 \\ -56.\ 330 \ 56.\ 720 \\ -70.\ 820 \ 47.\ 030 \\ -71.\ 200 \ 48.\ 130 \\ -71.\ 200 \ 48.\ 130 \\ -71.\ 200 \ 48.\ 130 \\ -71.\ 180 \ 48.\ 120 \\ -71.\ 300 \ 48.\ 140 \\ -70.\ 100 \ 60.\ 050 \\ -72.\ 640 \ 45.\ 920 \\ -71.\ 170 \ 82.\ 180 \\ -71.\ 100 \ 82.\ 220 \\ -59.\ 550 \ 61.\ 000 \\ -106.\ 180 \end{array}$	18 10 20 10 9 2 0 12 8 18 18 18 18 18 18 18 14 29 29 29 29 26 18 18 18 18 18 18 18 77. 100	$\begin{array}{c} 4.\ 2\\ 5.\ 0\\ 7.\ 1\\ 6.\ 8\\ 6.\ 1\\ 3.\ 0\\ 4.\ 1\\ 3.\ 5\\ 3.\ 5\\ 4.\ 9\\ 3.\ 2\\ 4.\ 6\\ 3.\ 1\\ 4.\ 7\\ 5.\ 8\\ 4.\ 7\\ 5.\ 8\\ 4.\ 7\\ 4.\ 0\\ 4.\ 2\\ 18\end{array}$	272 196 122 249 130 300 128 343 255 178 186 195 284 284 222 296 343 326 170 339 260 66 80 100 74 4.6	45 40 74 59 45 67 71 42 47 41 56 45 76 63 53 51 48 67 41 46 42 72 45 64 80 215	86 111 140 166 80 46 69 85 69 75 19 83 -74 72 56 77 82 55 139 103 58 64 -45 -44 -39 87	010324 020420 291118 351101 760713 761000 780218 840119 850412 860420 870705 870723 870723 870817 871214 880512 881125 881125 881125 881125 881125 881125 881125 881125 881126 890316 900424 950308 950310 950718 35	B A A A B A A B A A B A A B A C B A B A	20 19 14 16 8 16 2 1 3 2 2 2 3 3 3 19 3 3 10 4 4 4 B
ECA 4	-107.180	76. 670	18	4.7	71	61	29	960222	В
ECA ECA ECA ECA ECA ECA ECA ECA ECA	-87.750 56.670 -76.640 59.610 -71.420 46.800 -88.190 64.840 -54.740 59.090 -91.540 76.330 -56.380 43.750 -79.440 81.900 -60.940 57.830	18 18 22 18 18 18 18 18 18 18	4.0 4.2 4.5 5.7 4.9 4.1 4.4 4.3 4.0	28 238 244 216 140 185 215 12 90 Page 3	43 49 35 73 43 53 40 74 54	-35 80 106 15 1 40 11 -37 -20	960516 970714 971106 971206 980121 980311 980317 980414 980521	C B A D C D B C	4 19 4 4 4 4 4

cpan cpan<				-	-					
	ECA ECA	-89.89080.970 -110.240	18 79. 790	ena-stre 5.3 18	ss-suppl 137 5.3	-A. txt 50 85	2 48	980609 19	C 990101	4 B
	ECA ECA ECA	-58.030 60.900 -78.990 43.710 -120.440	18 18 75. 380	5. 3 3. 8 18	117 120 5. 7	41 61 149	-12 -28 77	990729 991126 38	D B 991207	4 4 B
	4 ECA ECA ECA ECA ECA CVN CVN CVN CVN CVN CVN CVN CVN CVN CVN	$\begin{array}{c} -70.\ 010 \ 73.\ 070 \\ -70.\ 010 \ 73.\ 070 \\ -73.\ 600 \ 60.\ 120 \\ -73.\ 600 \ 60.\ 120 \\ -73.\ 600 \ 60.\ 120 \\ -73.\ 600 \ 60.\ 120 \\ -73.\ 600 \ 60.\ 120 \\ -73.\ 600 \ 60.\ 120 \\ -77.\ 700 \ 37.\ 700 \\ -77.\ 770 \ 38.\ 070 \\ -77.\ 770 \ 38.\ 070 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -77.\ 500 \ 37.\ 840 \\ -78.\ 420 \ 37.\ 750 \\ -78.\ 420 \ 37.\ 750 \\ -78.\ 440 \ 37.\ 720 \\ -78.\ 440 \ 37.\ 720 \\ -78.\ 440 \ 37.\ 720 \\ -78.\ 440 \ 37.\ 720 \\ -78.\ 440 \ 37.\ 720 \\ -78.\ 400 \ 37.\ 270 \\ -80.\ 540 \ 37.\ 430 \\ -80.\ 510 \ 37.\ 270 \\ -80.\ 790 \ 37.\ 200 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 720 \ 37.\ 290 \\ -80.\ 510 \ 35.\ 830 \\ -90.\ 480 \ 35.\ 570 \\ -90.\ 480 \ 35.\ 590 \\ -89.\ 510 \ 36.\ 540 \\ -89.\ 510 \ 36.\ 540 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 36.\ 540 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 580 \ 37.\ 160 \\ -89.\ 830 \ 36.\ 540 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 580 \ 37.\ 160 \\ -89.\ 830 \ 36.\ 540 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 590 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -89.\ 510 \ 35.\ 500 \\ -81.\ 500 \ 35.\ 500 \\ -84.\ 500 \ 35.\ 500 \\ -84.\ 500 \ 35.\ 570 \\ -84.\ 230 \ 35.\ 570 \\ -84.\ 230 \ 35.\ 570 \\ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.\ 570 \ -83.\ 820 \ 35.$	$\begin{array}{c} 10\\ 10\\ 3\\ 3\\ 3\\ 10\\ 5\\ 5\\ 3\\ 5\\ 10\\ 13\\ 10\\ 8\\ 15\\ 10\\ 8\\ 15\\ 10\\ 8\\ 15\\ 10\\ 8\\ 15\\ 10\\ 8\\ 15\\ 10\\ 8\\ 15\\ 10\\ 10\\ 15\\ 11\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 7.3\\ 7.5\\ 6.3\\ 2.3\\ 3.6\\ 9\\ 0.3\\ 1.9\\ 6.9\\ 0.1\\ 1.4\\ 2.4\\ 8.2\\ 0.1\\ 4.0\\ 5.1\\ 2.9\\ 6.2\\ 7.6\\ 1.7\\ 2.6\\ 3.1\\ 9.8\\ 5.4\\ 6.0\\ 0.2\\ 0.3\\ 1.5\\ 8.8\\ 2.7\\ 7\\ 3.2\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.3$	172 190 251 240 200 66 3 341 310 346 158 327 335 346 278 340 320 303 207 165 175 55 315 320 300 220 85 45 220 300 220 85 45 220 300 220 85 45 220 300 220 85 45 220 300 220 85 45 220 300 220 85 25 45 220 300 220 83 268 284 90 63 254 256 109 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 283 275 307 30 30 30 30 30 30 30 30 30 30 30 30 30	82 304 58 534 711 44 79 642 745 93 67 55 80 66 55 80 65 84 80 55 76 70 50 75 80 50 50 50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{c} 6\\ 62\\ 46\\ 90\\ 20\\ 141\\ 158\\ 139\\ 8\\ 136\\ -8\\ 129\\ 17\\ -5\\ 16\\ 14\\ 117\\ -178\\ 145\\ -60\\ -174\\ 27\\ -147\\ 15\\ 70\\ -165\\ 20\\ 70\\ 15\\ 145\\ -28\\ -20\\ 150\\ 150\\ 150\\ 150\\ 150\\ -150\\ 150\\ -150\\ 150\\ -20\\ -150\\ -20\\ -150\\ 150\\ -20\\ -150\\ 150\\ -20\\ -150\\ 150\\ -20\\ -150\\ 150\\ -20\\ -150\\ 150\\ -20\\ -150\\ 150\\ -20\\ -150\\ -20\\ -150\\ -20\\ -15\\ -20\\ -150\\ -20\\ -15\\ -20\\ -20\\ -15\\ -20\\ -20\\ -26\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20$	331120a 331120b 891225a 891225b 891225c 031209 030505 800804 800926 820118 820605 820625 820920 830810 840817 841017 810211a 810211b 801202 830125 830526 830710 830912 840207 030606 040615 050210 050501 050620 620202 630303 650814 701117 750613 760325 760325 900926 910504 940205 961129 040716a 830708 840214 840317 840419 840830 840214 840317 840419 840830 841009 851222 860107 860602 860711 870222 870327 870409 870711	AAAAAUCCCBBBBCABBCCABCBBCBABBAABBAAABAABCBCBCBABAAABCABC	$\begin{array}{c} 155\\ 122\\ 128\\ 357\\ 377\\ 377\\ 377\\ 377\\ 377\\ 377\\ 377$

			ena-stre	ss-suppl	-A. txt				
ETN ETN ETN ETN ETN ETN ETN ETN ETN ETN	$\begin{array}{c} -83.\ 820\ 36.\ 110\\ -84.\ 400\ 35.\ 520\\ -84.\ 320\ 35.\ 630\\ -84.\ 190\ 35.\ 280\\ -84.\ 670\ 35.\ 360\\ -83.\ 820\ 35.\ 330\\ -83.\ 990\ 35.\ 820\\ -84.\ 210\ 35.\ 780\\ -83.\ 740\ 36.\ 110\\ -84.\ 430\ 35.\ 500\\ -83.\ 930\ 36.\ 610\\ -85.\ 020\ 35.\ 050\\ -80.\ 178\ 32.\ 963\\ -80.\ 167\ 32.\ 935\\ -80.\ 167\ 32.\ 935\\ -80.\ 167\ 32.\ 935\\ -80.\ 146\ 32.\ 941\\ -80.\ 148\ 32.\ 934\\ -80.\ 218\ 32.\ 979\\ -80.\ 155\ 32.\ 930\\ -80.\ 155\ 32.\ 930\\ -80.\ 155\ 32.\ 930\\ -80.\ 155\ 32.\ 941\\ -80.\ 155\ 32.\ 941\\ -80.\ 155\ 32.\ 930\\ -80.\ 155\ 32.\ 941\\ -80.\ 155\ 32.\ 930\\ -80.\ 155\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 152\ 32.\ 945\\ -80.\ 830\ 41.\ 990\\ -92.\ 190\ 35.\ 190\\ -104.\ 640\\ \end{array}$	23 20 20 13 10 1 14 18 17 23 25 4 7 7 5 6 10 7 7 5 6 4 6 10 7 5 5 6 4 6 5 5 37.150	3. 2 3. 3 9 5. 5 4 3 3 9 4 1 3 3 9 3 0 0 6 8 7 4 5 6 6 9 3 2. 2. 3. 4 3 3 9 3 0 0 6 8 7 4 5 6 6 9 3 4. 3 3 9 3 0 0 6 8 7 4 5 6 6 9 3	302 268 96 300 59 332 290 261 111 266 113 227 300 321 357 276 7 325 350 13 347 10 15 116 150 5 20 4. 2	59 41 71 62 48 50 83 55 79 73 71 76 78 93 59 40 952 77 56 54 54 95 57 985 215	-16 -12 -30 -22 -19 23 -19 -30 -49 -58 -36 -27 19 52 121 36 119 90 175 161 113 110 115 69 120 159 -165 30	870711 870901 870922 880109 880213 880213 880218 880311 880423 880424 890907 891202 930115 810319 831106 871006 880123 880623 890602 890608 900618 900618 900618 900618 900818 900608 900618 900618 900608 90000000000	B B C B C B C B B B B B B B B B B B B B	36666666666666666666666666666666666666
35 EUS	-104. 470	37.140	2	4.4	190	25	-130	010905	U
EUS EUS EUS EUS EUS EUS EUS	-73.660 44.510 -87.780 37.970 -98.900 42.810 -80.070 32.360 -85.500 34.550 -85.500 34.550 -101.750	10 19 8 9 12 12 43. 100	5.0 4.5 4.1 4.0 4.6 4.6 15	360 120 90 350 275 275 3. 9	35 80 50 40 75 75 85	80 10 -110 90 5 5 60	020420 020618 021103 021111 030429 030429 -130	U U U U U 030525	35 35 35 35 35 U
35 EUS EUS 25	-91. 720 36. 800 -104. 990	5 36. 850	3.7 4	25 4. 1	80 170	-165 55	030816 -100	U 030913	35 U
EUS	-104.850	36.850	4	4.4	175	55	-95	040322	U
EUS	-104. 560	32. 530	3	3.9	345	50	-120	040523	U
EUS	-104.580	32. 530	2	3.6	5	70	-110	040622	U
EUS EUS	-88. 960 41. 440 -104. 920	7 36. 890	4.2 4	20 4. 3	90 155	-165 65	040628 -120	U 040801	35 U
EUS EUS EUS EUS EUS EUS EUS	-78.25043.690 -86.28064.760 -85.75039.610 -87.90032.970 -69.73047.750 -104.860	3 23 13 3 12 36. 950	3.2 4.2 3.8 4.3 4.6 4	125 155 320 35 350 4.9	65 60 75 40 30 160	35 80 15 -115 80 40	040804 040826 040912 041107 050306 -110	U U U U U 050810	35 35 35 35 35 U
SD EUS EUS 25	-82.800 35.880 -104.570	8 32. 520	3.7 5	90 4. 1	60 230	-60 40	050825 -85	U 051219	35 U
EUS EUS	-70. 460 47. 380 -68. 790 47. 000	25 17	3.8 3.5	15 170 Page 5	55 25	85 45	060407 060714	U U	35 35

EUS EUS	-68. 170 44. 330 -104. 900	2 37.060	ena-stre 3.9 2	ess-suppl 340 4.4	-A. txt 35 205	85 50	061003 -60	U 070103	35 U
35 EUS EUS	-96. 270 22. 020 -104. 790	11 36. 930	5.6 4	190 3.4	75 195	-160 50	070523 -60	U 070609	35 U
35 EUS EUS EUS	-90.940 37.480 -78.200 42.800 -104.800	5 2 39. 900	4.6 4.3 4	260 110 4. 5	40 70 165	-70 20 52	651021 660101 -174	A A 670410	29 29 U
EUS EUS EUS	-78.200 42.900 -90.440 37.440 -104.700	3 15 39. 900	4.1 4.0 3	130 350 4.8	50 60 130	40 135 35	670613 670721 -90	A B 670809	29 28 U
EUS	-104. 700	40.000	5	4.5	158	52	-63	671127	U
EUS EUS EUS EUS EUS EUS EUS EUS EUS EUS	-88.37037.910 -86.50064.400 -80.58033.310 -82.53033.910 -89.40041.600 -70.90045.300 -84.00035.800 -88.07038.550 -96.00045.700 -100.700	22 12 2 13 6 13 15 8 33.000	5.3 4.6 4.4 4.0 4.1 4.5 4.1 4.3 4.3 3	0 162 260 350 170 300 190 310 330 4. 5	46 72 40 65 70 80 70 70 90 260	79 90 10 100 160 70 150 0 160 60	681109 711002 720203 720802 720915 730615 731130 740403 750709 -60	A A U U B A C B B 780616	29 24 24 29 29 29 29 29 29 U
EUS EUS EUS EUS EUS EUS	-83.910 38.170 -66.650 46.980 -71.600 43.500 -92.210 35.170 -74.260 43.940 -105.720	12 7 8 6 9 42. 370	5.0 5.1 4.2 5.0 4.9 25	30 200 200 330 170 5.3	60 60 35 60 70 350	180 125 120 55 115 60	800727 820111 820119 820121 831007 335	U U U U U 841018	23 21 21 21 21 U
EUS EUS EUS EUS EUS EUS	-81. 160 41. 650 -84. 390 40. 550 -87. 950 38. 710 -75. 590 46. 470 -73. 460 45. 200 -103. 300	6 4 10 11 12 30. 260	4.7 4.4 5.0 4.6 3.9 20	25 20 135 141 144 5. 6	80 80 70 42 45 114	165 -170 15 90 96 64	860131 860712 870610 901019 931116 -101	U U U U U 950414	21 30 31 25 U
26 EUS EUS EUS EUS EUS EUS EUS EUS EUS EUS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 7 22 5 5 12 19 9 3 5 12 4 9 6 2 3 2 3 2 3	$\begin{array}{c} 3. \ 7 \\ 3. \ 7 \\ 3. \ 4 \\ 3. \ 6 \\ 4. \ 3 \\ 4. \ 5 \\ 3. \ 7 \\ 4. \ 5 \\ 3. \ 7 \\ 4. \ 5 \\ 3. \ 5 \\ 5. \ 5 \\ 4. \ 0 \\ 4. \ 0 \\ 4. \ 6 \\ 4. \ 6 \end{array}$	95 136 144 96 94 27 39 120 150 110 30 290 30 200 215 156 121 159 135	50 36 60 33 62 66 63 70 27 70 63 55 30 45 60 45 60 48 49	40 98 93 60 -90 111 87 -60 75 20 93 -135 -100 120 130 108 66 102 68	950616 960314 970524 971024 971028 971106 980428 980730 980925 990316 040716b 040819b 820109a 820109b 940116a 940116b 940116b		25 25 25 25 25 25 25 25 25 25 25 25 25 2

zone: seismic zone - ECA: Eastern Canada; EUS: Eastern U.S.A.; LSL: Lower St. Page 6

ena-stress-suppl-A.txt

Lawrence; CHV: Charlevoix; GAT: Gatineau; MNT: Montreal; NAN: North Appalachian; OTT: Ottawa Valley; CVN: Central Virginia; ETN: Eastern Tennessee; NMA: New Madrid; CHL: Charleston. long., lat., depth: longitude (°E), latitude (°N) and depth (km) of epicenter. M: earthquake magnitude (magnitude scale vary between events, cf. individual references). strike, dip, rake: angle (°) of strike, dip, and rake of one of the two fault planes. event: earthquake number defined as year, month, day (YYMMDD). Q: quality factor of focal mechanism: A (highest) to C (lowest); U: undefined. ref.: reference:

1 - Adams, J., J. Sharp, and M.C. Stagg, 1988, New focal mechanisms for southeastern Canadian earthquakes, Geol. Surv. Canada Open File, OF1892, p. 112. 2 - Adams, J., A. Vonk, D. Pittman, and H. Vatcher, 1989, New focal mechanisms for southeastern Canadian earthquakes II, Geol. Surv. Canada Open File, OF1995, p. 97. Southeastern canadian earthquakes II, Geol. Surv. canada open FITE, 0F1995, p. 97.
3 - Adams, J., 1991, New focal mechanisms for eastern Canada, Geol. Surv. Canada
Open File, 0F2430, p. 118.
4 - Bent, A. L., J. Drysdale, and H. K. C. Perry, 2003, Focal mechanisms for eastern
Canadian earthquakes: 1994-2000, Seism. Res. Lett., 74, 452-468.
5 - Wetmiller, R. J., J. Adams, F. M. anglin, H. S. Hasegawa, and A. E. Stevens, 1
984, Aftershock sequences of the 1982 Miramichi, New Brunswick, earthquakes, Bull. Sei sm. Soc. Amer., 74, 621-653.
6 - Horner, R. B., Wetmiller, R. J., and H. S. Hasegawa, 1979, The St-Donat, Quebec, earthquake sequence of February 18-23, 1978, Can. J. Earth. Sci., 16, 1892-1898.
7 - Horner, R. B., Stevens, A. E., Hasegawa, H. S., and G. LeBlanc, 1978, Focal parameters of the July 12, 1975, Maniwaki, Quebec, Earthquake _ An example of intraplate seismicity in eastern Canada, Bull.. Seism. Soc. Amer., 68, 619-640.
8 - Wahlstrom, R., 1987, Focal mechanisms of earthquakes in southern Quebec, cauthquakes in cations for rogional. southeastern Ontario, and northeastern New York with implications for regional seismotectonics and stress field characteristics, Bull. Seism. Soc. Amer., 77, 891-924. 9 - Lamontagne, M., 1998, New and revised earthquake focal mechanisms for the Charlevoix seismic zone, Canada, Geol. Surv. Canada Open File, OF3556, p. 302. 10 - Seismological Service, Canadian Earthquakes National Summary, Natural Resources Canada, 1989-1990. Canada, 1989-1990.
11 - Lamontagne, M., H. S. Hasegawa, D. A. Forsyth, G. G. R. Buchbinder, and M.
Cajka , 1994, The Mont-Laurier, Quebec, earthquake of 19 October 1990 and its seismotectonic environment, Bull. Seism. Soc. Amer., 84, 1506-1522.
12 - Bent, A. L., 1994, The 1989 (Ms 6.3) Ungava, Quebec, Earthquake: a complex intraplate event, Bull. Seism. Soc. Amer., 84, 1075-1088.
13 - Bent, A. L., 1992, A re-examination of the 1925 Charlevoix, Quebec, earthquake, Bull. Seism. Soc. Amer., 82, 2097-2113.
14 - Bent, A. L., 1995, A complex double-couple source mechanism for the Ms 7.2 1929 Grand Banks earthquake, Bull. Seism. Soc. Amer., 85, 1003-1020.
15 - Bent, A. L., 2002, The 1933 Ms=7.3 Baffin Bay earthquake: strike-slip faulting along the northeastern Canadian passive margin, Geophys. J. Int., 150, 724-736.
16 - Bent, A. L., 1996, An improved source mechanism for the 1935 Timiskaming, Quebec, earthquake from regional waveforms, Pure Applied Geophys., 146, 1-20. Quebec, earthquake from regional waveforms, Pure Applied Geophys., 146, 1-20. 17 - Bent, A. L., 1996, Source parameters of the damaging Cornwall-Massena earthquake of 1944 from regional waveforms, Bull. Seism. Soc. Amer., 86, 489-497.
18 - Lamontagne, M., A. L. Bent, C. R. D. Woodgold, S. Ma, V. Peci, 2004, The 16 March 1999 mn 5.1 Cote-Nord earthquake: the largest earthquake ever recorded in the lower St. Lawrence seismic zone, Canada, Seism. Res. Lett., 75, 299-313. 19 - Ma, S., 2004, Personal communication.
20 - Bent, A. L., 2004, Personal communication.
21 - Nguyen, B. V., and R. B. Herrmann, 1992, Determination of source parameters for central and eastern North America earthquakes (1982-1986), Seism. Res. Lett., 63, Page 7

ena-stress-suppl-A.txt

567-577. bo7-577.
22 - Herrmann, R. B., C. Y. Wang, and S. -K. Park, 1981, The Denver earthquakes of 1967-1968, Bull. Seism. Soc. Am., 71, 731-746.
23 - Herrmann, R. B., C. A. Langston, and J. E. Zollweg, 1982, The Sharpsburg, Kentucky earthquake of July 27, 1980, Bull. Seism. Soc. Am., 72, 1219-1239.
24 - Herrmann, R. B., 1986, Surface-wave studies of some South Carolina earthquakes, Bull. Seism. Soc. Am., 76, 111-121.
25 - Du, W.X., W.Y. Kim, and L. R. Sykes, 2003, Earthquake Source Parameters and State of Stress for the Northeastern United States and Southeastern Canada from State of Stress for the Northeastern United States and Southeastern Canada from Analysis of Regional Seismograms, Bull. Seism. Soc. Am., 93, 1633-1648. Analysis of Regional Seismograms, Bull. Seism. Soc. Am., 93, 1633-1648.
26 - Chang, T.M., 1997, Evaluation of Surface-Wave Waveform Modeling for Lithosphere Velocity Structure, Ph.D. Dissertation, Saint Louis University.
27 - Voss, J. A., and R. B. Herrmann, 1980, A surface wave study of the June 16, 1978 Texas earthquake, Earthquake Notes, 51, 3-14.
28 - Herrmann, R. B., and C. J. Ammon, 1997, Faulting parameters of earthquakes in the New Madrid, Missouri region, Enginer. Geol., 46, 299-311.
29 - Herrmann, R. B., 1979, Surface wave focal mechanisms for eastern North American earthquakes with tectonic implications. J. Geophys. Pos., 84, 3542, 2552. earthquakes with tectonic implications, J. Geophys. Res., 84, 3543-3552. 30 - Schwartz, S. Y., and D. H. Christensen, 1988, The 12 July St. Marys, Ohio earthquake and recent seismicity in the Anna, Ohio seismogenic zone, Seism. Res. Lett., 59, 57-62. 31 - Taylor, K. B., R. B. Herrmann, M. W. Hamburger, G. L. Pavlis, A. Johnston, C. Langer and C. Lam, 1989, The southeastern Illinois earthquake of 10 June 1987, Seism. Res. Lett., 60, 101-110.
32 - Nguyen, B. V., and R. B. Herrmann, 1992, Determination of source parameters for central and eastern North American earthquakes (1982-1986), Seism. Res. Lett., 63, 567-586. 33 - Ammon, C. J., R. B. Herrmann, C. A. Langston, and H. Benz, 1998, Source parameters of the January 16, 1994 Wyomissing Hills, Pennsylvania earthquakes, Seism. Res. Lett., 69, 261-269. 34 - Maceira, M., C. J. Ammon and R. B. Herrmann, 2000, Faulting parameters of the September 25, 1998 Pymatuning, Pennsylvania earthquake, Seism. Res. Lett., 71, 742-752. 35 - Moment Tensor Solutions, Saint Louis Univ., Dep. Earth Atm. Sci., web site; http://www.eas.slu.edu/Earthquake_Center/MECH.NA/index.html 36 - Chapman, M. C., C. A. Powel, G. Vlahovic, and M. S. Sibol, 1997, A statistical analysis of earthquake focal mechanisms and epicenter locations in the Eastern Tennessee sei smic zone, Bull. Sei sm. Soc. Am., 87, 1522-1536. 37 - Munsey, J.W., and G.A. Bollinger, 1985, Focal mechanism analyses for Virginia earthquakes, Bull. Seism. Soc. Amer., 75, 1613-1636. 38 - Kim, W.Y., and M. Chapman, The 9 December 2003 central Virginia earthquake sequence: A compound earthquake in the Central Virginia seismic zone, Bull. Seism. Soc. Amer., 95, 2428-2445. 39 - Madabhushi, S., and P. Talwani, 1993, Fault plane solutions and relocations of recent earthquakes in Middleton Place Summerville seismic zone near Charleston, South Carolina, Bull. Seism. Soc. Amer., 83, 1442-1466.

ena-stress-suppl-B.txt Mazzotti, S., and J. Townend, State of stress in central and eastern North America seismic zones

Supplementary Material B: Octant plots of focal mechanisms

This supplement presents octant plots of the focal mechanisms used for the stress inversion in each seismic zone (Fig. B1). The octant plots (also called eigenvector representation) are based on the formulation developed in Kagan (2005). As shown in Figure B1, the diversity of mechanisms varies signicantly between seismic zones. Zones such as Lower St. Lawrence or Ottawa are characterized by mechanisms that are mostly similar (mainly reverse-fault mechanisms in those two cases). In contrast, zones such as Montreal or Charlevoix show higher diversity with mechanisms varying between reverse, strike-slip, and normal faulting.

Figure B1: Octant plots of focal mechanisms in central and eastern North America seismic zones. Grey triangles represent individual focal mechanisms. Plunge angles of 30° and 60° shown by thin solid lines. Boundaries between strike-slip, normal and reverse faulting shown by dashed lines. RF: reverse fault; NF: normal fault; SS: strike-slip.

References

Kagan, Y. Y., 2005, Double-couple earthquake focal mechanisms: random rotation and display, Geophys. J. Int., 163, 1065-1072.

ena-stress-suppl-C.txt Mazzotti, S., and J. Townend, State of stress in central and eastern North America seismic zones

Supplementary Material C: Stress inversions for groups of mechanisms in the Charlevoix seismic zone

This supplement presents the results of inversion tests for various groups of earthquake focal mechanisms in the Charlevoix seismic zone (Fig. C1): Inside and outside the inner perimeter of impact crater (1a, b), inside and outside the outer perimeter of impact crater (2a, b), northern cluster (3), southeast central cluster (4), northwest central cluster (5), southern cluster (6), northern half (7), southern half (8), entire dataset (9), southeast (10 and northwest (11) clusters (cf. Section 4.4).

Groups of mechanisms located entirely or mainly to the northwest of the Charlevoix Fault (1a, 5 and 6, Table C1) are associated with a SH azimuth about N050-060°, similar to the orientation obtained for the northwest group (11, Table C1). Groups of mechanisms located entirely or mainly to the southeast of the Charlevoix fault (4, Table C1) or at the northern end of the seismic zone (2b and 3, Table C1) are associated with a SH azimuth about N100-120°, similar to the orientation obtained for the southeast group (10, Table C1). Other groups, which include mechanisms located roughly evenly across the Charlevoix Fault (1b, 2a, 7 and 8, Table C1), are associated with an intermediate SH azimuth of about N070-090°.

There is no clear indication of significant variations in SH orientation inside versus outside the impact crater or as a function of depth. A previously postulated SH rotation with depth (Adams and Bell, 1991) is likely an artifact arising from the heterogeneous lateral distribution of earthquakes within depth slices. Observed rotations for these groups are related to the location of mechanisms primarily to the southeast or northwest of the Charlevoix seismic zone (e.g., 2b, Table C1).

Table C1. Maximum horizontal stress median orientation (SH) and 90% confidence interval (90CIH) for various groups.

Sub-group	Ν	SH (°)	90CIH (°)
1a - Small crater - inside	21	52	39 – 65
1b - Small crater - outside	44	81	92 – 103
2a - Large crater - inside	42	68	59 – 78
2b - Large crater - outside	21	107	90 – 119
3 - Northern cluster	16	124	58 - 144
4 - SE central cluster	15	112	86 – 136
5 - NW central cluster	15	55	36 – 73
6 - Southern cluster	8	59	41 – 76
7 – Northern half	27	88	70 – 102
8 – Southern half	38	71	60 - 82
9 - ALI	65	59	41 – 76
10 - South-east	35	98	85 – 111
11 - North-west	25	57	46 – 68

Figure C1: Locations of focal mechanism groups for the Charlevoix seismic zone. Large grey circles show epicenters of focal mechanism events. Numbers refer to groups (cf. text). Small and large dashed circles show extent of inner and outer perimeter of Charlevoix impact crater.

	long lat								
Zone LSL LSL LSL LSL LSL LSL LSL LSL LSL LS	-67. 81048. 710-67. 21048. 990-66. 45049. 610-67. 51049. 310-66. 35049. 610-67. 60049. 250-68. 25048. 740-68. 71048. 870-66. 98049. 610-66. 98049. 610-66. 98049. 610-66. 98049. 610-66. 98049. 610-70. 09047. 700-69. 80047. 800-70. 24047. 340-70. 23947. 343-70. 18047. 404-70. 22047. 513-69. 84147. 716-70. 22747. 564-69. 97247. 492-69. 90147. 672-69. 68047. 720-70. 10047. 200-70. 10047. 200-70. 10047. 200-70. 32047. 300-70. 10047. 200-69. 86047. 720-69. 87047. 720-69. 87047. 720-69. 87047. 720-69. 87047. 720-69. 87047. 711-70. 04047. 533-70. 13347. 393-70. 34247. 456-70. 05447. 701-69. 98547. 533-70. 17947. 414-70. 36447. 779-69. 85747. 717-70. 36447. 779-69. 85747. 717-70. 10347. 685-70. 10347. 685-70. 10447. 685-69. 857	depth 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	M 4 4 3 3 3 3 4 3 3 3 4 4 4 6 1 0 1 1 0 2 0 0 5 2 4 4 3 3 3 3 4 4 4 9 2 4 6 6 2 1 0 3 1 4 3 9 3 3 2 1 8 1 8 3 3 0 1 1 9	strike 317 189 231 187 201 304 312 181 334 219 221 127 138 279 335 102 130 133 153 168 184 177 349 279 335 102 130 133 153 168 184 185 223 183 168 184 223 183 168 184 279 325 168 183 183 183 183 183 183 183 183 183 18	di p 56 53 50 57 55 53 54 64 40 40 53 55 55 55 55 55 55 55 55 55 55 55 55	rake 53 65 83 66 66 -16 57 73 58 19 05 41 -69 73 67 20 57 77 58 80 80 74 1 57 75 80 80 74 80 80 72 41 57 72 40 57 72 40 57 77 57 77 58 24 57 24 50 50 71 80 80 72 41 57 72 40 57 77 77 57 77 77 77 77 77 77 77 77 77	event 800403 830117 840329 840411 840528 850816 861109 870503 870617 870806 981022 990316 030613 250301 740609 740609 740620 740623 740623 740623 740620 740623 740620 740623 740620 740623 740620 740623 740620 740620 740623 740620 740623 740630 740702 740714 790819 850325 860111 860919 870318 871206 880313 890131 890309 890309 890309 890301 890311 890313 890131 890313 890311 890313 890311 890313 890311 890313 890311 890313 890313 890311 890313 890311 890313 891013 890311 890313 891013 890311 890309 890301 890310 900421 900423 900421 900423 900303 900313 900421 900423 900303 900313 900421 900423 900303 900313 900421 900423 900303 900313 900421 900423 900303 900313 900421 900423 900303 900313 900421 900423 900303 900313 900421 900423 901026 901106 90128 91208 900304	ОВАВАВАВВВСААВААССААСССВВАВАААААСАССВАСААССАСОССВССАВССА	ref. 1 1 1 1 1 1 2 2 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
CHV CHV CHV CHV CHV CHV CHV CHV CHV CHV	-70. 137 47. 534 -70. 070 47. 553 -70. 179 47. 414 -70. 364 47. 400 -69. 985 47. 569 -70. 151 47. 394 -70. 336 47. 269 -70. 103 47. 686 -69. 864 47. 779 -69. 857 47. 717 -70. 407 47. 446 -70. 362 47. 515 -70. 104 47. 685 -69. 889 47. 668 -70. 361 47. 453 -69. 660 47. 770 -69. 961 47. 752 -70. 314 47. 437 -70. 028 47. 516 -69. 942 47. 530 -70. 146 47. 533 -70. 124 47. 486	15 10 8 16 11 14 9 11 23 10 3 4 5 8 6 17 12 11 5 3 4 5 8 6 17 12 11 15 13 14 14	$\begin{array}{c} 3.2\\ 3.1\\ 3.3\\ 3.3\\ 3.3\\ 3.4\\ 3.3\\ 3.2\\ 1.8\\ 3.2\\ 1.8\\ 3.3\\ 1.8\\ 3.3\\ 1.8\\ 3.3\\ 1.8\\ 3.3\\ 1.9\\ 1.9\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6$	34 320 7 163 142 209 223 115 18 301 217 280 76 165 116 37 70 163 353 73 46 Page 1	65 70 41 23 69 74 55 80 64 6 027 53 87 56 70 49 29 62 55	65 88 78 54 74 56 86 90 22 44 51 39 -62 72 24 90 -15 57 77 74 84	900313 900421 900423 901021 901026 901106 901218 910723 911208 920310 920501 930304 930330 930807 931230 940925 940925 940925 940925 940925 940925 941201 960512 960607 960617 960624	ACCACDCCBCCABCCAABBCAC	99999999999999999999999999

CHV -70.050 47.483 14 2.2 148 70 47 960714 A 9 CHV -69.993 47.610 10 2.3 310 29 -39 960726 B 9 CHV -70.213 47.501 12 2.2 33 75 71 960913 C 9 CHV -70.213 47.589 21 2.2 137 33 19 960923 B 9 CHV -70.142 47.589 21 2.2 137 33 19 960923 A 9 CHV -70.142 47.588 22 2.1 77 961025 A 9 CHV -70.389 47.428 4 2.2 11 35 40 970110 A 9 CHV -70.389 47.428 4 2.2 37 971028 A 4 NA CHV -70.941 47.567 15 3.1 256 51 8 970114 C 9 77 <				focal_me	echani sms	s_all.tx1	t			
CHV -69, 993 47, 604 7 3.4 3.24 24 44 900/14 A 9 CHV -70, 245 47, 300 6 2.3 310 22 -37 960726 B 9 CHV -70, 245 47, 300 6 2.1 31 22 76 9600730 B 9 CHV -70, 245 47, 588 21 2.2 137 33 45 960724 A 9 CHV -70, 245 47, 746 16 1.9 25 9 77 960924 A 9 CHV -70, 349 47, 476 16 1.9 25 9 77 960925 A 9 CHV -70, 041 47, 554 12 2.3 10 23 30 970114 C 9 CHV -70, 146 47, 509 17 3.2 111 35 40 970114 C 9 CHV -60, 900 47, 670 11 4.7 127 82 37 971028 A 4 NAM -66, 600 47, 000 7 5 71 </td <td>CHV</td> <td>-70.050 47.483</td> <td>14</td> <td>2.2</td> <td>148</td> <td>70</td> <td>47</td> <td>960714</td> <td>A</td> <td>9</td>	CHV	-70.050 47.483	14	2.2	148	70	47	960714	A	9
CHV -60, 944 47, 610 10 2.3 310 29 -39 900126 B 9 CHV -70, 213 47, 500 12 2.2 33 75 71 960019 D 9 CHV -70, 213 47, 500 12 2.2 33 75 71 9600234 A 9 CHV -70, 242 47, 548 13 2.0 137 33 49 9600234 A 9 CHV -70, 242 47, 548 13 2.0 137 33 49 9600234 A 9 CHV -70, 055 47, 853 22 2.7 79 69 77 960025 C 9 CHV -70, 041 47, 554 12 2.3 10 2.3 30 961025 A 9 CHV -70, 041 47, 554 12 2.3 10 2.3 30 961025 A 9 CHV -69, 877 47, 657 15 3.1 256 51 8 90014 <td>CHV</td> <td>-69.993 47.694</td> <td>/</td> <td>3.4</td> <td>324</td> <td>24</td> <td>44</td> <td>960714</td> <td>A</td> <td>9</td>	CHV	-69.993 47.694	/	3.4	324	24	44	960714	A	9
CHV -70. 243 47.300 6 2.1 37 22 76 900813 6 9 CHV -66.893 47.659 14 2.2 133 75 71 960923 B 9 CHV -70.415 47.588 21 2.2 133 75 960924 A 9 CHV -70.455 47.55 13 3.1 246 67 77 960924 A 9 CHV -70.055 47.55 12 2.1 11 35 40 970110 A 9 CHV -70.041 47.554 12 2.3 10 23 30 961028 A 9 CHV -60.947.670 11 4.7 127 82 37 971028 A 4 NAN -66.694 47.000 75 7 155 120 820109 A 5 NAN -66.694 40.070 75 7 157 159 50 820109 B 1 NAN -66.604<	CHV	-69.947 47.610	10	2.3	310	29	-39	960726	В	9
CHV -60, 213 47, 501 12 2.2 33 75 71 960923 B 9 CHV -70, 145 47, 588 21 2.0 137 33 19 960924 A 9 CHV -70, 242 47, 548 13 1 246 67 79 960924 A 9 CHV -70, 242 47, 548 13 1 246 67 79 960924 A 9 CHV -70, 055 47, 476 16 1 2.2 71 50 -79 961011 A 9 CHV -70, 049, 47, 257 15 3.2 11 256 51 8 971018 A 4 NAM -66, 600 47, 000 7 5,7 195 50 120 820111 B 21 NAM -66, 600 47, 000 18 4,1 324 67 46 860509 B 1 NAM -66, 500 47, 000 18 4,1 324 67 46 86017 A <td< td=""><td>CHV</td><td>-70.245 47.300</td><td>6</td><td>2.1</td><td>37</td><td>22</td><td>76</td><td>960819</td><td>D</td><td>9</td></td<>	CHV	-70.245 47.300	6	2.1	37	22	76	960819	D	9
CHV D0, 893 47, 699 14 2.2 103 79 45 900234 A 9 CHV 70, 242 47, 548 13 3.1 2.0 137 33 19 960924 A 9 CHV 70, 242 47, 548 13 3.1 2.0 137 33 19 960924 A 9 CHV -70, 242 47, 548 13 3.1 2.2 79 69 77 961011 C 9 CHV -70, 041 47, 554 12 2.3 10 -23 30 961025 A 9 CHV -70, 041 47, 554 12 2.3 10 23 30 970110 A 9 CHV -60 877 47, 657 15 3.1 256 51 8 970114 C 9 CHV -60 900 47, 670 11 4.7 125 50 120 820111 B 12 NAM -66, 609 47, 000 75 8.5 620 125 820111 B 12 13 <t< td=""><td>CHV</td><td>-70.213 47.501</td><td>12</td><td>2.2</td><td>33</td><td>/5</td><td>/1</td><td>960913</td><td>C</td><td>9</td></t<>	CHV	-70.213 47.501	12	2.2	33	/5	/1	960913	C	9
CHU -70.143 47.588 2.1 2.0 137 33 19 900224 A 9 CHU -66.750 47.853 2.2 2.2 79 667 77 960224 A 9 CHV -70.389 47.428 4 2.2 79 667 77 960225 C 9 CHV -70.389 47.428 4 2.2 71 53 -29 961028 A 9 CHV -70.041 47.554 17 3.2 111 25 30 971028 A 4 NAM -66.600 47.000 7 5.7 120 820111 B 21 NAM -66.504 657 8 5.4 200 60 125 820111 B 21 NAM -66.504 650 67 8.00 18 33 303 62 49 860509 B 1 NAM -66.504 650 657 8.00 18 33 800128 B	CHV	-69.893 47.659	14	2.2	103	79	45	960923	В	9
$ \begin{array}{c} LrV & -6, 750 \ d7, 853 \ 22 \ 22, 2 \ 79 \ 69 \ 77 \ 960922 \ A \ 9 \ 97 \ 96092 \ 97 \ 96092 \ 97 \ 96092 \ 97 \ 96092 \ 97 \ 96092 \ 97 \ 96092 \ 97 \ 97 \ 96092 \ 97 \ 97 \ 96092 \ 97 \ 97 \ 96092 \ 97 \ 97 \ 96092 \ 97 \ 97 \ 96092 \ 97 \ 97 \ 96092 \ 97 \ 97 \ 97 \ 97 \ 97 \ 97 \ 97 \ $	CHV		21	2.0	137	33	19	960924	A	9
GNV -69, 730 47, 633 22 2.6 79 67 79 661015 C 9 CHV -70, 389 47, 428 4 2.2 71 50 -29 961015 C 9 CHV -70, 049 47, 554 12 2.3 111 35 40 970110 A 9 CHV -69, 900 47, 670 11 4.7 125 52 37 9701128 A CHV -69, 900 47, 670 11 4.7 125 50 120 820109 A NAN -64, 680 40, 000 7 5.7 195 50 120 820109 A NAN -66, 600 47, 000 18 4.1 324 67 46 861017 A 2 NAN -66, 600 47, 000 18 3.9 120 81 3 880424 A 2 NAN 66 600 <t< td=""><td></td><td></td><td>13</td><td>3.1</td><td>240</td><td>67</td><td>79 77</td><td>900924</td><td>A</td><td>9</td></t<>			13	3.1	240	67	79 77	900924	A	9
$ \begin{array}{c} {\rm CrrV} & -70.039 47.478 10 \\ {\rm CrrV} & -70.039 47.478 10 \\ {\rm CrrV} & -70.041 47.554 12 \\ {\rm CrrV} & -70.041 47.554 12 \\ {\rm CrrV} & -70.041 47.554 12 \\ {\rm CrrV} & -69.877 47.657 15 \\ {\rm CrrV} & -69.877 47.657 15 \\ {\rm CrrV} & -69.900 47.607 11 \\ {\rm Tr} & 127 82 \\ {\rm Sr} & 37 971028 A \\ {\rm AA} \\ {\rm AAA} & -66.600 47.000 7 \\ {\rm Sr} & 5.7 195 \\ {\rm So} & 120 820109 A \\ {\rm Sr} \\ {\rm ANA} & -66.659 46.975 8 \\ {\rm Sr} & 42 000 60 125 820111 \\ {\rm B} 21 \\ {\rm NAA} & -66.559 46.975 8 \\ {\rm Sr} & 42 000 60 125 820111 B \\ {\rm Sr} \\ {\rm NAA} & -66.559 46.975 8 \\ {\rm Sr} & 42 000 18 \\ {\rm AI} 1 324 67 46 860509 B \\ {\rm I} \\ {\rm NAA} & -66.500 46.500 11 \\ {\rm Sr} & 303 62 49 860509 B \\ {\rm I} \\ {\rm NAA} & -66.500 46.500 11 \\ {\rm Sr} & 303 62 49 860509 B \\ {\rm I} \\ {\rm NAA} & -66.500 46.500 11 \\ {\rm Sr} & 3.9 120 81 3 \\ {\rm Sr} & 303 62 49 860509 B \\ {\rm I} \\ {\rm NAA} & -66.500 46.500 11 \\ {\rm Sr} & 3.9 120 81 3 \\ {\rm Sr} & 303 62 49 860509 B \\ {\rm I} \\ {\rm NAA} & -66.500 46.500 18 \\ {\rm AJ} 9 120 81 3 \\ {\rm Sr} & 303 62 49 860509 B \\ {\rm I} \\ {\rm NAA} & -66.500 46.200 18 \\ {\rm AJ} 3.9 120 81 3 \\ {\rm Sr} & 303 62 49 860500 C \\ {\rm I} \\ {\rm O} \\ {\rm NAA} & -66.600 47.000 5 \\ {\rm AJ} 1 343 79 33 940714 A 4 \\ {\rm AA} \\ {\rm AA} & -66.600 47.000 5 \\ {\rm AJ} 1 343 79 33 940714 A 4 \\ {\rm AA} \\ {\rm AA} & -75.090 46.230 18 4.2 117 46 76 60 808066 A 4 \\ {\rm GAT} -75.030 46.400 17 4.1 296 65 80 750712 A 7 \\ {\rm GA} \\ {\rm GAT} -75.500 46.230 18 4.2 117 46 65 60 810918 A \\ {\rm B} \\ {\rm GAT} -75.500 46.370 16 3.6 277 50 57 860606 B 10 \\ {\rm GAT} -75.500 46.370 16 3.6 277 50 57 8606068 B 1 \\ {\rm GAT} -75.200 46.370 16 3.6 277 50 57 8600606 B 1 \\ {\rm GAT} -75.200 46.370 18 4.3 9 122 86 50 8107014 A 4 \\ {\rm GAT} $			22 14	2. Z 1. 0	79	09		900925		9
$\begin{array}{c} \begin{array}{c} \text{CHV} & -70 & 041 & 47.554 & 12 & 2.5 & 10 & 23 & 36 & 041028 & A & 0 \\ \text{CHV} & -70 & 196 & 47.569 & 17 & 3.2 & 111 & 35 & 40 & 970110 & A & 9 \\ \text{CHV} & -69 & 900 & 47.670 & 15 & 3.1 & 1256 & 551 & 8 & 9701128 & A & 4 \\ \text{CHV} & -69 & 900 & 47.670 & 17 & 4.7 & 127 & 52 & 37 & 971028 & A & 4 \\ \text{CHV} & -69 & 900 & 47.670 & 17 & 4.7 & 127 & 550 & 120 & 320111 & B & 51 \\ \text{NAA} & -66.600 & 47.670 & 18 & 3.6 & 200 & 60 & 128 & 320111 & B & 21 \\ \text{NAA} & -66.540 & 47.000 & 18 & 3.9 & 120 & 81 & 360228 & B & 1 \\ \text{NAA} & -66.540 & 47.000 & 18 & 3.9 & 120 & 81 & 360424 & A & 28 \\ \text{NAA} & -65.670 & 46.000 & 18 & 3.9 & 120 & 81 & 360424 & A & 2 \\ \text{NAA} & -65.820 & 47.210 & 18 & 3.5 & 145 & 57 & 54 & 880424 & A & 2 \\ \text{NAA} & -65.820 & 47.210 & 18 & 3.5 & 145 & 57 & -85 & 900108 & C & 10 \\ \text{NAA} & -66.600 & 47.000 & 5 & 4.0 & 131 & 67 & 112 & 980116 & A & 4 \\ \text{NAA} & -66.600 & 47.000 & 5 & 4.0 & 131 & 67 & 112 & 980116 & A & 4 \\ \text{GAT} & -76.300 & 47.230 & 18 & 4.5 & 155 & 55 & 60 & 310012 & B & 20 \\ \text{GAT} & -76.300 & 47.200 & 18 & 4.5 & 155 & 55 & 900108 & C & 10 \\ \text{NAA} & -66.610 & 47.000 & 5 & 4.0 & 131 & 67 & 112 & 980116 & A & 4 \\ \text{GAT} & -75.003 & 46.090 & 0 & 3.5 & 308 & 80 & -80 & 810918 & A & 8 \\ \text{GAT} & -75.150 & 46.360 & 19 & 3.7 & 271 & 65 & 4 & 820806 & B & 8 \\ \text{GAT} & -75.150 & 46.350 & 13 & 3.2 & 118 & 62 & 11 & 860605 & B & 1 \\ \text{GAT} & -75.150 & 46.350 & 13 & 3.2 & 118 & 62 & 11 & 860605 & B & 1 \\ \text{GAT} & -75.150 & 46.350 & 18 & 3.7 & 107 & 86 & 50 & 871007 & C & 2 \\ \text{GAT} & -75.150 & 45.360 & 18 & 3.7 & 107 & 86 & 50 & 871023 & 2 & 20 \\ \text{GAT} & -75.150 & 46.350 & 18 & 3.7 & 107 & 86 & 50 & 871023 & 2 & 20 \\ \text{GAT} & -74.800 & 45.190 & 18 & 4.4 & 308 & 49 & 115 & 960306 & B & 1 \\ \text{GAT} & -74.800 & 45.190 & 18 & 4.4 & 308 & 49 & 115 & 960306 & B & 1 \\ \text{GAT} & -74.800 & 45.190 & 18 & 4.4 & 308 & 49 & 115 & 960306 & B & 1 \\ \text{GAT} & -74.800 & 45.190 & 18 & 4.4 & 308 & 49 & 115 & 960314 & A & 4 \\ \text{GAT} & -74.400 & 45.600 & 18 & 3.7 & 118 & 62 & 44 & 991031 & B & 4 \\ \text{MNT} & -74$	CHV	-70.000 47.470	10	1.9	25 71	29 50	_20	961011	Δ	9
CHV -70, 196 47, 509 17 3: 2 111 55 40 970110 A 9 CHV -60, 900 47, 657 15 3: 1 256 51 8 970114 C 9 CHV -60, 900 47, 657 15 3: 1 256 51 8 970114 C 9 CHV -60, 900 47, 670 11 4: 7 127 82 37 971028 A 5 NAN -66, 600 47, 900 7 5: 7 195 50 120 820119 B 21 NAN -66, 659 46, 905 8 5. 4 200 60 125 820113 B 21 NAN -66, 150 46, 540 11 3: 3 303 62 49 860509 B 1 NAN -66, 150 46, 540 11 3: 3 303 62 49 860509 B 1 NAN -66, 150 46, 630 17 3: 5 324 67 46 861017 A 2 NAN -66, 640 47, 000 18 4: 1 324 67 46 861017 A 2 NAN -66, 570 48, 000 18 3: 9 120 81 3 880128 B 3 NAN -64, 900 46, 030 4 3: 7 307 59 54 880424 A 2 NAN -66, 820 47, 200 18 3: 0 116 75 -85 900108 C 10 NAN -66, 820 47, 210 18 3: 0 116 75 -85 900108 C 10 NAN -66, 610 47, 020 5 4: 1 343 79 33 940714 A 4 GAT -75. 900 46, 230 18 4: 2 117 46 76 000806 A 4 GAT -75. 900 46, 230 18 4: 2 117 46 76 000806 A 4 GAT -75. 900 46, 230 18 4: 2 117 46 76 000806 A 4 GAT -75. 900 46, 230 18 4: 2 117 46 76 000806 A 4 GAT -75. 800 46, 609 0 7. 3. 5 308 80 -80 810918 A 8 GAT -75. 800 46, 609 0 7. 3. 5 308 80 -80 810918 A 8 GAT -75. 150 45. 750 16 2. 6 277 50 57 860806 B 8 GAT -75. 150 45. 750 16 2. 6 277 50 57 860806 B 1 GAT -75. 200 46, 370 16 3. 6 277 50 57 860806 B 1 GAT -75. 200 46, 370 16 3. 6 277 50 57 860806 B 1 GAT -75. 200 46, 370 16 3. 6 277 50 57 860806 B 1 GAT -75. 200 46, 370 16 3. 6 277 50 57 860806 B 1 GAT -75. 800 4. 400 18 3. 9 122 86 50 870707 C 2 GAT -75. 800 46, 400 12 4: 5 158 45 121 901019 B 19 GAT -74. 800 46, 900 12 4: 5 158 45 121 901019 B 19 GAT -74. 800 46, 900 12 4: 5 158 45 121 901019 B 19 GAT -74. 800 46, 900 12 4: 5 158 45 121 901019 B 19 GAT -74. 800 46, 190 18 4: 4 192 66 67 0 79 850130 C 2 GAT -75. 800 46, 340 18 3. 9 122 86 50 871023 B 2 GAT -75. 800 46, 340 18 3. 9 122 86 50 871023 B 2 GAT -75. 800 46, 490 12 4: 5 158 45 121 901019 B 19 GAT -74. 800 46, 190 18 4: 4 164 27 66 980730 A 4 GAT -74. 800 46, 190 18 4: 4 190765 A 8 MNT -74. 400 45. 680 18 3. 4 119 52 277 821124 C 8 MNT -74. 400 45. 640 18 2.9 03 87 571 -8 840	CHV	-70 041 47 554	4 12	2.2	10	23	30	961023	Δ	9
CHV -69.8077.47.657.15 CHV -69.90047.670 CHV -69.90047.000 CHV -69.90047.670 CHV -69.90047.000 CHV -69.90047.670 CHV -69.90047.000 CHV -69.90047.000 CHV -69.90047.000 CHV -69.90047.670 CHV -69.90047.000 CHV -60.90047.000 CHV -75.90046.400 CHV -74.80046.100 CHV -74	CHV	-70 196 47 509	17	3.2	111	35	40	970110	A	ģ
CHV -69.900 47.670 11 4.7 127 82 37 971028 A 4 NAN -66.600 47.000 7 5.7 195 50 120 820119 A 5 NAN -66.600 47.000 7 5.7 195 50 120 820119 A 5 NAN -66.600 47.000 18 3.6 121 78 54 840923 B 1 NAN -66.540 47.000 18 3.9 120 81 3 880128 B 2 NAN -66.620 47.000 18 3.9 120 81 880128 B 2 NAN -66.80 46.030 4 3 7 307 59 54 880128 A 2 NAN -66.820 47.200 18 3.0 116 75 -85 900108 C 10 NAN -66.610 47.020 5 4.0 131 67 129 9007330 C 10 NAN -66.610 47.020 5 4.0 131 67	CHV	-69.877 47.657	15	3.1	256	51	8	970114	C	9
NAN -66.600 47.000 7 5.7 195 50 120 820109 A 5 NAN -66.659 6.975 8 5.4 200 60 125 820111 B 21 NAN -66.650 61 13 3 303 62 49 860509 B 1 NAN -66.540 11 3.3 303 62 49 860509 B 1 NAN -66.540 48 000 18 4.1 324 67 46 860107 A 2 NAN -66.600 47.000 18 3.7 307 59 54 880424 A 2 0 0 10 NAN -66.600 47.000 5 4.0 131 67 112 980715 B 4 4 NAN -66.600 47.000 5 4.0 131 67 112 980715 B 4 2 117 46 6000000 3.5 308 80 <	CHV	-69.900 47.670	11	4.7	127	82	37	971028	Ă	4
NAN -66. 659 46. 075 8 5.4 200 60 125 820111 B 21 NAN -66. 180 46. 000 12 3.6 121 78 54 840923 B 1 NAN -66. 540 47.000 18 4.1 324 67 46 861017 A 2 NAN -66. 520 46.030 4 3.7 307 59 54 880424 A 2 NAN -66.820 6.630 17 3.5 324 59 60 890810 C 10 NAN -66.620 7.290 18 3.5 145 52 71 900330 C 10 NAN -66.600 47.000 5 4.0 131 67 112 980715 B 4 GAT -75.090 46.230 18 4.2 117 46 76 000806 A 4 631 133 2 118 62 12 980715 B 4 631	NAN	-66.600 47.000	7	5.7	195	50	120	820109	А	5
NAN -64.880 46.000 12 3.6 121 78 54 840223 B 1 NAN -66.150 46.540 11 3.3 303 62 49 860509 B 1 NAN -66.570 48.000 18 3.9 120 81 3 880124 A 2 NAN -66.520 47.210 18 3.0 116 75 -85 900180 C 10 NAN -66.602 70.7210 18 3.5 145 52 71 900330 C 10 NAN -66.602 70.000 5 4.1 343 79 33 940714 A ANA -66.602 70.001 8 4.2 117 76 76 000806 A 4 64 64 65 80 750712 A 7 GAT -75.090 66.230 18 4.5 155 55 59 031012 B 20 7 63 80 801918 <t< td=""><td>NAN</td><td>-66.659 46.975</td><td>8</td><td>5.4</td><td>200</td><td>60</td><td>125</td><td>820111</td><td>В</td><td>21</td></t<>	NAN	-66.659 46.975	8	5.4	200	60	125	820111	В	21
NAN -66. 150 46. 540 11 3.3 303 62 49 860509 B 1 NAN -66. 540 7000 18 3.9 120 81 3 880128 B 3 NAN -66. 400 60.030 4 3.7 307 59 54 880424 A 2 NAN -66. 920 47.210 18 3.0 116 75 -85 900108 C 10 NAN -66.610 47.020 5 4.0 131 67 112 900330 C 10 NAN -66.610 47.020 5 4.0 131 67 12 900715 B 4 GAT -76.360 47.010 18 4.2 117 46 76 000806 A 4 GAT -75.030 46.460 17 4.1 296 65 80 8001918 A 8 GAT -75.030 46.460 10 3.5 308 80 118 806050	NAN	-64.880 46.000	12	3.6	121	78	54	840923	В	1
NAN -66. 540 47. 000 18 3.9 120 81 3 861117 A 2 NAN -64. 900 46. 030 4 3.7 307 59 54 880424 A 2 NAN -66. 820 47. 210 18 3.5 324 59 60 890810 C 10 NAN -66. 820 47. 200 18 3.5 145 52 71 900330 C 10 NAN -66. 600 47. 000 5 4.1 343 79 33 940714 A 4 ANN -66. 610 47. 020 5 4.1 343 79 33 940714 A 4 GAT -76. 280 46. 400 17 4.1 1346 71 2980715 B 4 G A 7 71 71 71 71 71 71 73 30 400806 B 8 6AT -75 30 46. 90 93 7 271 65 4 820	NAN	-66.150 46.540	11	3.3	303	62	49	860509	В	1
NAN -65.670 48.000 18 3.9 120 81 3 880128 B 3 NAN -64.900 46.030 17 3.5 324 59 60 890810 C 10 NAN -66.920 47.210 18 3.0 116 75 -85 900108 C 10 NAN -66.600 47.000 5 4.1 343 79 33 940714 A 4 NAN -66.610 47.020 5 4.0 131 67 112 980715 B 4 GAT -76.360 47.010 18 4.5 155 55 59 031012 B 20 GAT -75.030 46.400 17 4.1 296 65 80 750712 A 7 7 36 31012 B 20 65 80 750712 A 7 50 65 80 750712 A 7 7 56 84 8060618 1 80 80	NAN	-66.540 47.000	18	4.1	324	6/	46	861017	A	2
NAN -64. 900 46. 630 47 3. 7 307 39 54 880424 A 2 NAN -66. 820 47. 210 18 3. 0 116 75 -85 900108 C 10 NAN -66. 8230 47. 290 18 3. 5 145 52 71 900330 C 10 NAN -66. 600 47. 020 5 4. 0 131 67 112 980715 B GAT -76. 360 47. 010 18 4. 2 117 46 76 000866 A GAT -75. 109 46. 460 17 4. 1 296 65 80 750712 A 7 GAT -75. 100 45. 890 19 3. 7 271 65 4 820806 B 8 GAT -75. 100 45. 750 16 2. 6 296 70 79 850130 C 2 2 6 60 810918 A 16 36 77 50 57 860806	NAN	-65.670 48.000	18	3.9	120	81	3	880128	B	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4 17	3.7 2 E	307	59	54 60	880424	A	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-03. 620 40. 030	17 10	3.5	324 116	09 75	00 85	070010	C	10
NAN -66. 600 47. 200 55 4.1 343 77 33 940714 A 4 NAN -66. 610 47. 020 5 4.0 131 67 112 980715 B 4 GAT -75. 090 46. 230 18 4.2 117 46 76 000806 A 4 GAT -76. 360 47. 010 18 4.5 155 55 59 031012 B 20 GAT -75. 303 46. 460 17 4.1 296 65 80 750712 A 7 GAT -75. 150 35 308 80 -80 810918 A 8 GAT -75. 150 45. 750 16 2.6 296 70 79 850130 C 8 GAT -75. 150 45. 750 16 2.6 297 70 87 860806 1 GAT -75. 200 46. 350 18 2.8 87 60 6 870707 C 2 </td <td>ΝΔΝ</td> <td>-68 230 47.210</td> <td>18</td> <td>3.0</td> <td>145</td> <td>52</td> <td>-05</td> <td>900108</td> <td>C</td> <td>10</td>	ΝΔΝ	-68 230 47.210	18	3.0	145	52	-05	900108	C	10
NAN -66. 610 47. 020 5 4.0 131 67 112 980715 B 4 GAT -75. 090 46. 230 18 4.2 117 46 76 000806 A 4 GAT -76. 360 47. 010 8 4.5 155 55 59 031012 B 20 GAT -75. 300 46. 400 17 4.1 296 65 80 750712 A 7 GAT -75. 030 46. 455 890 19 3.7 271 65 4 820806 B 8 GAT -75. 460 455. 750 16 2.6 296 70 79 850130 C 8 GAT -74. 810 45. 880 18 3.1 137 55 84 860618 C 1 GAT -74. 830 46. 200 16 2.8 87 60 60 871070 2 2 GAT -75. 200 46. 330 18 3.9 27 55	NAN	-66 600 47 000	5	4 1	343	79	33	940714	Ă	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NAN	-66, 610 47, 020	5	4.0	131	67	112	980715	B	4
GAT -76. 360 47. 010 18 4.5 155 55 59 031012 B 20 GAT -76. 280 46. 460 17 4.1 296 65 80 750712 A 7 GAT -75. 030 46. 090 0 3.5 308 80 -80 810918 A 8 GAT -75. 460 45. 890 19 3.7 271 65 4 820806 B 8 GAT -75. 090 46. 350 13 3.2 118 62 11 8606018 C 1 GAT -74. 810 45. 880 18 3.1 137 55 84 860618 C 1 GAT -74. 800 46. 350 18 3.6 277 50 57 860806 B 1 GAT -75. 690 46. 340 18 3.9 122 86 50 870707 C 20 GAT -75. 590 46. 490 12 4.5 158 5121 901079<	GAT	-75.090 46.230	18	4.2	117	46	76	000806	Ā	4
GAT -76. 280 46. 460 17 4. 1 296 65 80 750712 A 7 GAT -75. 030 46. 090 0 3. 5 308 80 -80 810918 A 8 GAT -75. 150 45. 750 16 2. 6 296 70 79 850130 C 8 GAT -75. 090 46. 370 16 3. 6 277 50 57 860806 B 1 GAT -74. 810 46. 200 16 2. 8 45 90 20 870521 C 2 GAT -75. 690 46. 370 16 3. 6 277 50 57 860806 B 1 GAT -75. 810 46. 350 18 2. 8 87 60 6 870707 C 2 GAT -75. 690 46. 30 18 3. 9 12 86 50 880310 A 2 GAT -75. 590 46. 40 18 3. 9 27 55 84	GAT	-76.360 47.010	18	4.5	155	55	59	031012	В	20
GAT -75.030 46.090 0 3.5 308 80 -80 810918 A 8 GAT -75.460 45.890 19 3.7 271 65 4 820806 B 8 GAT -75.150 45.750 16 2.6 296 70 79 850130 C 8 GAT -75.090 46.350 13 3.2 118 62 11 860618 1 GAT -74.810 45.880 18 3.1 137 55 84 860618 1 GAT -74.830 46.200 16 2.8 45 90 20 870521 C 2 GAT -74.804 46.300 18 3.7 107 86 50 871023 B 2 GAT -75.500 46.340 18 3.9 122 86 50 880310 A 20 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4	GAT	-76.280 46.460	17	4.1	296	65	80	750712	Α	7
GAI -75, 460 45, 890 19 3, 7 271 65 4 820806 B 8 GAT -75, 150 45, 750 16 2, 6 296 70 79 850130 C 8 GAT -74, 810 45, 880 18 3, 1 137 55 84 860618 C 1 GAT -74, 810 46, 350 18 2, 8 87 60 6 870707 C 2 GAT -74, 830 46, 350 18 2, 8 87 60 6 870707 C 2 GAT -74, 520 45, 760 18 3, 9 122 86 50 870107 C 10 GAT -75, 590 46, 340 18 3, 9 27 55 84 901007 C 10 GAT -74, 930 45, 930 18 4, 4 308 49 115 960314 A 4 GAT -74, 190 45, 840 18 4, 64 1464 27 66<	GAT	-75.030 46.090	0	3.5	308	80	-80	810918	A	8
GAT -75.090 46.350 16 2.6 296 70 79 850130 C 8 GAT -75.090 46.370 16 3.6 277 50 57 860806 B 1 GAT -74.830 46.370 16 3.6 277 50 57 860806 B 1 GAT -75.810 46.350 18 2.8 87 60 6 870707 C 2 GAT -75.800 46.350 18 3.7 107 86 50 870103 A 2 GAT -75.90 46.330 18 3.9 27 55 84 901007 C 10 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4 GAT -74.930 45.930 18 4.4 164 27 66 980730 A 4 GAT -74.190 45.840 18 4.2 95 68 44 991031	GAI	-75.460 45.890	19	3.7	271	65	4	820806	В	8
GAT -73.090 40.330 13 3.2 110 02 11 800005 B 1 GAT -74.810 45.800 18 3.1 137 55 84 800618 C 1 GAT -74.810 46.370 16 3.6 277 50 57 860806 B 1 GAT -74.810 46.320 16 2.8 45 90 20 870521 C 2 GAT -75.810 46.340 18 3.9 122 86 50 871023 B 2 GAT -75.590 46.490 12 4.5 158 45 121 901019 B 19 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4 GAT -74.800 46.190 18 4.2 95 68 44 991031 B 4 GAT -74.400 45.840 18 3.6 119 52 440905 A	GAT		10	2.6	296	70	79 11	850130		8
GAT -74.010 45.000 16 3.1 137 50 64 600016 C 1 GAT -75.200 46.370 16 2.8 45 90 20 870521 C 2 GAT -75.810 46.350 18 2.8 87 60 6 870707 C 2 GAT -75.200 46.340 18 3.9 107 86 50 880310 A 2 GAT -75.200 46.330 18 3.9 27 55 84 901007 C 10 GAT -75.590 46.490 12 4.5 158 45 121 901019 B 19 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4 GAT -74.190 45.840 18 4.2 95 68 44 991031 B 4 GAT -74.310 45.840 18 3.7 118 62 49 810704	GAT		13	3.∠ 2.1	110	02	11	800000	Б	1
GAT -74.830 46.200 16 2.8 45 90 20 870521 C 2 GAT -75.810 46.350 18 2.8 87 60 6 870521 C 2 GAT -74.820 45.760 18 3.7 107 86 50 870521 C 2 GAT -74.500 46.300 18 3.9 122 86 50 880310 A 2 GAT -75.200 46.400 12 4.5 158 45 121 901007 C 10 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4 GAT -74.800 46.190 18 4.4 164 27 66 980730 A 4 GAT -74.800 46.190 18 4.2 95 68 44 991031 B 4 GAT -74.400 45.680 18 3.6 119 52 27 780730	GAT	-74.010 43.000	16	3.1 3.6	137	50	04 57	860806	B	1
GAT -75.800 46.300 18 2.8 87 60 6 870707 C 2 GAT -74.520 45.760 18 3.7 107 86 50 870707 C 2 GAT -75.690 46.340 18 3.9 122 86 50 880310 A 2 GAT -75.590 46.490 12 4.5 158 45 121 901007 C 10 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4 GAT -74.90 45.810 18 4.3 296 64 61 970524 A GAT -74.300 45.840 18 4.2 95 68 44 991031 B 4 GAT -74.400 45.680 18 3.6 119 52 27 780730 A 8 MNT -74.600 45.130 13 2.5 300 73 -58.0 810704 C <td>GAT</td> <td>-74 830 46 200</td> <td>16</td> <td>28</td> <td>45</td> <td>90</td> <td>20</td> <td>870521</td> <td>C</td> <td>2</td>	GAT	-74 830 46 200	16	28	45	90	20	870521	C	2
GAT -74.520 45.760 18 3.7 107 86 50 871023 B 2 GAT -75.690 46.340 18 3.9 122 86 50 880310 A 2 GAT -75.200 46.340 12 4.5 158 45 121 901019 B 19 GAT -74.930 45.930 18 4.4 308 49 115 960314 A 4 GAT -74.930 45.930 18 4.4 164 27 66 980730 A 4 GAT -74.800 46.190 18 4.2 95 68 44 991031 B 4 MNT -74.400 45.680 18 3.6 119 52 27 780730 A MNT -74.600 45.130 13 2.5 300 73 -58.0 810704 C 8 MNT -74.600 45.170 13 3.4 252 36 14 810705 A	GAT	-75 810 46 350	18	2.0	87	60	6	870707	č	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GAT	-74, 520, 45, 760	18	3.7	107	86	50	871023	B	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GAT	-75.690 46.340	18	3.9	122	86	50	880310	А	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GAT	-75.200 46.330	18	3.9	27	55	84	901007	С	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GAT	-75.590 46.490	12	4.5	158	45	121	901019	В	19
GAT -74. 190 45. 810 18 4. 3 296 64 61 970524 A 4 GAT -74. 800 46. 190 18 4. 4 164 27 66 980730 A 4 GAT -74. 310 45. 840 18 4. 2 95 68 44 991031 B 4 MNT -74. 720 44. 960 20 5. 8 313 70 52 440905 A 17 MNT -74. 620 45. 140 13 3. 7 118 62 49 810704 A 8 MNT -74. 600 45. 130 13 2. 5 300 73 -58. 0 810704 C 8 MNT -74. 610 45. 120 13 1. 4 280 38 -65 810705 B 8 MNT -74. 610 45. 120 13 1. 9 304 36 54 810707 A 8 MNT -74. 610 45. 120 13 1. 9 304 36 <	GAT	-74.930 45.930	18	4.4	308	49	115	960314	A	4
GA1 -74.80046.19018 4.4 164 27 66 980730A 4 GAT -74.31045.84018 4.2 95 68 44 991031B 4 MNT -74.72044.96020 5.8 31370 52 440905A 17 MNT -74.4045.68018 3.6 119 52 27 780730A 8 MNT -74.62045.14013 3.7 118 62 49 810704A 8 MNT -74.62045.12013 1.4 28038 -65 810705B 8 MNT -74.61045.12013 1.4 28038 -65 810705A 8 MNT -74.61045.12013 1.9 304 36 54 810707A 8 MNT -74.6045.54012 2.5 10380 28 821031C 8 MNT -74.4045.44018 2.9 203 75 27 821124 8 MNT -73.44045.44018 2.9 203 75 27 821124 8 MNT -73.90045.67018 3.4	GAI	-74.190 45.810	18	4.3	296	64	61	970524	A	4
GA1 -74.310 45.840 18 4.2 95 68 44 991031 B 4 MNT -74.410 45.680 18 3.6 119 52 440905 A 17 MNT -74.440 45.680 18 3.6 119 52 27 780730 A 8 MNT -74.620 45.140 13 3.7 118 62 49 810704 A 8 MNT -74.600 45.120 13 1.4 280 38 -65 810705 B 8 MNT -74.610 45.120 13 1.4 280 38 -65 810705 B 8 MNT -74.610 45.120 13 1.9 304 36 54 810707 A 8 MNT -74.460 45.780 18 2.8 69 40 82 810920 A 8 MNT -73.440 45.440 18 2.9 203 75 27 821124 C	GAT	-74.800 46.190	18	4.4	164	27	66	980730	A	4
MNT -74. 720 44. 700 20 3.3 313 70 32 440703 A 17 MNT -74. 440 45. 680 18 3.6 119 52 27 780730 A 8 MNT -74. 620 45. 140 13 3.7 118 62 49 810704 A 8 MNT -74. 600 45. 120 13 1.4 280 38 -65 810705 B 8 MNT -74. 610 45. 120 13 1.4 280 38 -65 810705 A 8 MNT -74. 610 45. 120 13 1.9 304 36 54 810707 A 8 MNT -74. 460 45. 780 18 2.8 69 40 82 810920 A 8 MNT -74. 460 45. 440 18 2.9 203 75 27 821124 C 8 MNT -73. 900 45. 670 18 3.4 104 61 78			18	4.Z 5.Q	90 212	08 70	44 50	440905	D A	4
MNT -74. 440 43. 600 10 3.0 117 52 27 760730 A 8 MNT -74. 620 45. 140 13 3.7 118 62 49 810704 A 8 MNT -74. 600 45. 120 13 1.4 280 38 -65 810705 B 8 MNT -74. 610 45. 120 13 1.4 280 38 -65 810705 A 8 MNT -74. 620 45. 170 13 3.4 252 36 14 810705 A 8 MNT -74. 610 45. 120 13 1.9 304 36 54 810707 A 8 MNT -74. 460 45. 540 12 2.5 103 80 28 821031 C 8 MNT -73. 440 45. 440 18 2.9 203 75 27 821124 C 8 MNT -75. 050 45. 620 11 2.0 310 50 -90	MNT	-74.720 44.900	20 18	3.6	110	52	27	780730	A A	2 I /
MNT -74.600 45.130 13 2.5 300 73 -58.0 810704 C 8 MNT -74.610 45.120 13 1.4 280 38 -65 810705 B 8 MNT -74.620 45.170 13 3.4 252 36 14 810705 A 8 MNT -74.610 45.120 13 1.9 304 36 54 810707 A 8 MNT -74.60 45.120 13 1.9 304 36 54 810707 A 8 MNT -74.460 45.540 12 2.5 103 80 28 821031 C 8 MNT -73.440 45.440 18 2.9 203 75 27 821124 C 8 MNT -73.900 45.670 18 3.4 104 61 78 831101 A 8 MNT -74.770 45.700 11 2.8 33 42 67 831210 <td>MNT</td> <td>-74 620 45 140</td> <td>13</td> <td>3.0</td> <td>118</td> <td>62</td> <td>49</td> <td>810704</td> <td>Δ</td> <td>8</td>	MNT	-74 620 45 140	13	3.0	118	62	49	810704	Δ	8
MNT -74. 610 45. 120 13 1.4 280 38 -65 810705 B 8 MNT -74. 620 45. 170 13 3.4 252 36 14 810705 A 8 MNT -74. 610 45. 120 13 1.9 304 36 54 810707 A 8 MNT -74. 380 45. 780 18 2.8 69 40 82 810920 A 8 MNT -74. 460 45. 540 12 2.5 103 80 28 821031 C 8 MNT -73. 440 45. 440 18 2.9 203 75 27 821124 C 8 MNT -75. 050 45. 620 11 2.0 310 50 -90 831016 C 8 MNT -74. 770 45. 700 11 2.8 33 42 67 831210 B 8 MNT -75. 120 45. 560 19 3.0 87 51 -8	MNT	-74,600,45,130	13	2.5	300	73	-58.0	810704	C	8
MNT -74.620 45.170 13 3.4 252 36 14 810705 A 8 MNT -74.610 45.120 13 1.9 304 36 54 810707 A 8 MNT -74.380 45.780 18 2.8 69 40 82 810920 A 8 MNT -74.460 45.540 12 2.5 103 80 28 821031 C 8 MNT -73.440 45.440 18 2.9 203 75 27 821124 C 8 MNT -75.050 45.620 11 2.0 310 50 -90 831016 C 8 MNT -73.900 45.670 18 3.4 104 61 78 831101 A 8 MNT -74.770 45.700 11 2.8 33 42 67 831210 B 8 MNT -75.120 45.560 19 3.0 87 51 -8 840117	MNT	-74.610 45.120	13	1.4	280	38	-65	810705	B	8
MNT -74. 610 45. 120 13 1.9 304 36 54 810707 A 8 MNT -74. 380 45. 780 18 2.8 69 40 82 810920 A 8 MNT -74. 460 45. 540 12 2.5 103 80 28 821031 C 8 MNT -73. 440 45. 440 18 2.9 203 75 27 821124 C 8 MNT -75. 050 45. 620 11 2.0 310 50 -90 831016 C 8 MNT -73. 900 45. 670 18 3.4 104 61 78 831101 A 8 MNT -74. 770 45. 700 11 2.8 33 42 67 831210 B 8 MNT -75. 120 45. 560 19 3.0 87 51 -8 840117 B 8 MNT -75. 050 45. 200 5 3.3 299 41 41	MNT	-74.620 45.170	13	3.4	252	36	14	810705	Ā	8
MNT -74.380 45.780 18 2.8 69 40 82 810920 A 8 MNT -74.460 45.540 12 2.5 103 80 28 821031 C 8 MNT -73.440 45.440 18 2.9 203 75 27 821124 C 8 MNT -75.050 45.620 11 2.0 310 50 -90 831016 C 8 MNT -73.900 45.670 18 3.4 104 61 78 831101 A 8 MNT -74.770 45.700 11 2.8 33 42 67 831210 B 8 MNT -75.120 45.560 19 3.0 87 51 -8 840117 B 8 MNT -75.050 45.200 5 3.3 299 41 41 841126 A 8 MNT -74.240 45.530 11 2.8 107 55 84 860720	MNT	-74.610 45.120	13	1.9	304	36	54	810707	Α	8
MNT -74.46045.54012 2.5 103 80 28 821031 C 8 MNT -73.44045.44018 2.9 203 75 27 821124 C 8 MNT -75.05045.62011 2.0 310 50 -90 831016 C 8 MNT -73.90045.67018 3.4 104 61 78 831101 A 8 MNT -74.77045.70011 2.8 33 42 67 831210 B 8 MNT -75.12045.56019 3.0 87 51 -8 840117 B 8 MNT -75.05045.2005 3.3 299 41 41 841126 A 8 MNT -74.24045.53011 2.8 107 55 84 860720 C 1 MNT -74.25045.10010 3.3 19046 76 860813 1 1	MNT	-74.380 45.780	18	2.8	69	40	82	810920	А	8
MNI -73.440 45.440 18 2.9 203 75 27 821124 C 8 MNT -75.050 45.620 11 2.0 310 50 -90 831016 C 8 MNT -73.900 45.670 18 3.4 104 61 78 831101 A 8 MNT -74.770 45.700 11 2.8 33 42 67 831210 B 8 MNT -75.120 45.560 19 3.0 87 51 -8 840117 B 8 MNT -75.050 45.200 5 3.3 299 41 41 841126 A 8 MNT -74.240 45.530 11 2.8 107 55 84 860720 C 1 MNT -74.250 45.100 10 3.3 190 46 76 860813 A 1 Page 2	MNT	-74.460 45.540	12	2.5	103	80	28	821031	C	8
MINI -75.050 45.620 11 2.0 310 50 -90 831016 C 8 MNT -73.900 45.670 18 3.4 104 61 78 831101 A 8 MNT -74.770 45.700 11 2.8 33 42 67 831210 B 8 MNT -75.120 45.560 19 3.0 87 51 -8 840117 B 8 MNT -75.050 45.200 5 3.3 299 41 41 841126 A 8 MNT -74.240 45.530 11 2.8 107 55 84 860720 C 1 MNT -74.250 45.100 10 3.3 190 46 76 860813 A 1 Page 2	MNI	-/3.440 45.440	18	2.9	203	/5	27	821124	C	8
MINT -73.90045.07018 3.4 104 61 78 831101 A 8 MNT -74.77045.70011 2.8 33 42 67 831210 B 8 MNT -75.12045.56019 3.0 87 51 -8 840117 B 8 MNT -75.05045.2005 3.3 299 41 41 84126 A 8 MNT -74.24045.5301 12.8 107 55 84 860720 C 1 MNT -74.25045.10010 3.3 190 46 76 860813 A 1			11	2.0	310	50	-90	831016	C	8
MNT -74.76 45.700 11 2.8 35 42 67 631210 B 8 MNT -75.120 45.560 19 3.0 87 51 -8 840117 B 8 MNT -75.050 45.200 5 3.3 299 41 41 841126 A 8 MNT -74.240 45.530 11 2.8 107 55 84 860720 C 1 MNT -74.250 45.100 10 3.3 190 46 76 860813 A 1 Page 2		-13.900 45.6/0	10 11	3.4 2.0	104	01 10	10 67	031101 021210	A R	б о
MNT -75.050 45.200 5 3.3 299 41 41 841126 A 8 MNT -74.240 45.530 11 2.8 107 55 84 860720 C 1 MNT -74.250 45.100 10 3.3 190 46 76 860813 A 1 Page 2	MNT		10	∠.o 3 ∩	33 87	42 51	-8	8/0117	B	o Q
MNT -74. 240 45. 530 11 2. 8 107 55 84 860720 C 1 MNT -74. 250 45. 100 10 3. 3 190 46 76 860813 A 1 Page 2	MNT	-75,050 45 200	5	33	299	41	41	841126	Ă	8
MNT -74. 250 45. 100 10 3. 3 190 46 76 860813 Å 1 Page 2	MNT	-74, 240 45, 530	11	2.8	107	55	84	860720	Ċ	1
Page 2	MNT	-74.250 45.100	10	3.3	190	46	76	860813	Ā	1
-					Page 2					

		f	rocal_me	echani sms_	_all.txt			-	-
MNT MNT MNT PEM PEM PEM PEM PEM PEM PEM PEM ECA ECA ECA ECA ECA ECA ECA	-75.000 45.010 -74.990 45.010 -75.300 45.210 -74.960 45.580 -75.750 45.200 -76.680 45.610 -77.340 45.780 -78.420 46.310 -75.630 45.570 -75.340 45.770 -75.620 45.170 -75.620 45.170 -78.930 46.840 -95.620 71.180 -79.460 43.790 -71.070 47.560 -113.200	9 9 18 12 12 9 14 4 7 17 18 13 18 18 18 18 18 80. 570	3. 4 2. 1 2. 9 4. 1 1. 2 3. 1 3. 4 3. 0 1. 8 3. 3 4. 1 3. 3 4. 1 3. 2 4. 1 3. 2 1. 8 3. 3 4. 1 2. 1 3. 4 1. 8 3. 2 4. 1 2. 1 3. 2 1. 8 3. 2 1. 8 3. 2 1. 8 3. 1 2. 9 1. 1 2. 9 1. 1 2. 9 1. 1 2. 1 2. 1 3. 1 3. 1 2. 1 3. 1 3. 1 3. 1 3. 1 2. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3	310 314 226 313 224 52 272 317 178 348 343 291 320 148 16 289 4.6	40 38 42 57 22 77 57 48 25 80 56 46 33 47 25 47 64	44 47 -50 53 63 59 66 19 -11 39 78 77 99 65 52 70 64	880809 880811 900303 980418 831011 831013 850824 860110 860530 870619 871111 880515 000101 000405 000524 000712 16	A A C A B A A B C B B A D C B O01003	3 3 10 4 8 8 1 1 2 2 3 19 4 4 4 D
ECA 4	-116. 480	80. 940	18	5.2	68	55	30	001113	D
ECA ECA ECA ECA ECA ECA ECA ECA ECA ECA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 10 20 10 9 2 0 12 8 18 2 18 18 18 18 18 18 29 29 29 26 18 18 18 18 18 18 18 18 77. 100	$\begin{array}{c} 4.\ 2\\ 5.\ 1\\ 6.\ 1\\ 3.\ 0\\ 4.\ 5\\ 5.\ 8\\ 9\\ 4.\ 2\\ 6.\ 1\\ 7\\ 5.\ 8\\ 1\\ 7\\ 5.\ 8\\ 1\\ 7\\ 4.\ 2\\ 18 \end{array}$	$\begin{array}{c} 272 \\ 196 \\ 122 \\ 249 \\ 130 \\ 300 \\ 128 \\ 343 \\ 255 \\ 178 \\ 186 \\ 195 \\ 284 \\ 284 \\ 222 \\ 296 \\ 343 \\ 326 \\ 170 \\ 339 \\ 260 \\ 66 \\ 80 \\ 100 \\ 74 \\ 4. 6 \end{array}$	45 40 74 59 45 67 41 42 47 41 56 53 51 47 41 46 53 51 48 72 45 60 215	86 111 140 166 80 46 69 85 69 75 19 83 -74 72 56 77 82 55 139 103 58 64 -45 -44 -39 87	010324 020420 291118 351101 760713 761000 780218 840119 850412 860420 870705 870723 870817 871214 880512 881125 881125 881125 881125 881125 881125 881125 881125 881125 881126 890316 900424 950308 950310 950718 35	B A A A B A A B A A B D C B A A B C B A A C C A C C S 950824	20 19 14 16 2 1 3 2 2 2 3 3 3 19 3 3 10 4 4 4 B
ECA 4	-107.180	76.670	18	4.7	71	61	29	960222	В
ECA ECA ECA ECA ECA ECA ECA ECA ECA ECA	-87.750 56.670 -76.640 59.610 -71.420 46.800 -88.190 64.840 -54.740 59.090 -91.540 76.330 -56.380 43.750 -79.440 81.900 -60.940 57.830 -89.890 80.970 -110.240	18 18 22 18 18 18 18 18 18 18 79. 790	4.0 4.2 4.5 5.7 4.9 4.1 4.4 4.3 4.0 5.3 18	28 238 244 216 140 185 215 12 90 137 5.3	43 49 35 73 43 53 40 74 54 50 85	-35 80 106 15 1 40 11 -37 -20 2 48	960516 970714 971106 980121 980311 980317 980414 980521 980609 19	C B A D C D B C C C 990101	4 19 4 4 4 4 4 8
ECA ECA	-58.030 60.900 -78.990 43.710	18 18	5.3 3.8	117 120 Page 3	41 61	-12 -28	990729 991126	D B	4 4

		f	ocal_mec	hani sms_	all.txt				
ECA 4	-120. 440	75.380	18	5.7	149	77	38	991207	В
ECA ECA ECA ECA ECA ECA CVN CVN CVN CVN CVN CVN CVN CVN CVN CVN	$\begin{array}{c} -70.010 & 73.070 \\ -70.010 & 73.070 \\ -73.600 & 60.120 \\ -73.600 & 60.120 \\ -73.600 & 60.120 \\ -78.100 & 37.750 \\ -77.770 & 38.070 \\ -77.770 & 38.070 \\ -77.770 & 38.070 \\ -77.580 & 37.840 \\ -77.500 & 37.840 \\ -77.500 & 37.840 \\ -77.500 & 37.840 \\ -77.500 & 37.840 \\ -78.420 & 37.750 \\ -78.420 & 37.750 \\ -78.420 & 37.750 \\ -78.400 & 37.750 \\ -78.400 & 37.750 \\ -80.540 & 37.430 \\ -80.510 & 37.940 \\ -78.400 & 37.750 \\ -80.540 & 37.430 \\ -80.510 & 37.90 \\ -80.760 & 37.270 \\ -80.790 & 37.200 \\ -80.790 & 37.200 \\ -80.790 & 37.200 \\ -80.790 & 37.200 \\ -80.790 & 37.200 \\ -80.790 & 37.200 \\ -80.790 & 35.750 \\ -90.150 & 35.830 \\ -90.460 & 36.440 \\ -89.510 & 36.370 \\ -90.230 & 35.750 \\ -90.150 & 35.830 \\ -89.460 & 36.540 \\ -90.480 & 35.590 \\ -89.580 & 37.160 \\ -89.830 & 36.540 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -90.480 & 35.590 \\ -84.350 & 35.610 \\ -84.350 & 35.610 \\ -84.350 & 35.560 \\ -84.490 & 34.940 \\ -84.230 & 35.570 \\ -83.820 & 36.110 \\ -83.820$	$\begin{array}{c} 10\\ 10\\ 3\\ 3\\ 10\\ 5\\ 5\\ 3\\ 5\\ 10\\ 13\\ 10\\ 8\\ 15\\ 7\\ 10\\ 18\\ 16\\ 9\\ 7\\ 12\\ 1\\ 5\\ 2\\ 14\\ 8\\ 15\\ 2\\ 16\\ 9\\ 16\\ 15\\ 11\\ 5\\ 14\\ 1\\ 2\\ 7\\ 7\\ 18\\ 3\\ 29\\ 13\\ 19\\ 8\\ 5\\ 23\\ \end{array}$	7.30323369031969014248201405129627617263198546002031588277	$\begin{array}{c} 172\\ 190\\ 251\\ 240\\ 200\\ 66\\ 3\\ 341\\ 310\\ 346\\ 158\\ 316\\ 327\\ 333\\ 3\\ 346\\ 278\\ 340\\ 327\\ 335\\ 3\\ 346\\ 278\\ 340\\ 320\\ 7\\ 165\\ 55\\ 315\\ 55\\ 315\\ 55\\ 320\\ 304\\ 220\\ 350\\ 304\\ 220\\ 85\\ 45\\ 220\\ 140\\ 90\\ 30\\ 120\\ 140\\ 90\\ 83\\ 93\\ 268\\ 284\\ 90\\ 63\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 255\\ 200\\ 140\\ 90\\ 30\\ 120\\ 140\\ 90\\ 83\\ 254\\ 109\\ 283\\ 254\\ 109\\ 283\\ 275\\ 92\\ 307\\ 302\\ 302\\ 302\\ 302\\ 302\\ 302\\ 302\\ 302$	82 30 54 85 34 71 42 79 45 963 67 55 80 66 55 80 66 55 80 65 88 47 75 60 65 75 70 55 80 85 40 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 80 55 80 85 75 80 85 75 80 85 75 80 85 75 80 85 75 80 85 75 80 85 75 80 85 75 80 85 75 80 80 55 70 55 80 85 75 80 80 55 70 55 80 55 70 55 80 55 70 55 80 55 70 55 80 55 55 80 55 55 80 55 55 80 55 55 70 55 80 55 55 80 55 55 70 55 80 55 55 70 55 70 55 70 55 70 55 70 55 55 70 55 55 70 55 55 55 70 55 55 70 55 55 70 55 55 55 55 70 55 55 70 55 55 70 55 55 70 55 55 70 55 55 55 70 55 55 70 55 55 70 55 55 55 55 55 55 55 55 55 55 55 55 55		331120a 331120b 891225a 891225b 891225c 031209 030505 800804 800926 820118 820605 820625 820920 830810 840817 84007 840817 810211a 810211b 801202 830125 830526 830710 830912 840207 030606 040615 050210 050501 050501 050620 620202 630303 650814 701117 750613 760325 900926 910504 940205 961129 040716a 830708 840214 840317 840419 840830 841022 860711 870711	АААААОСССВВВСАВВССАВСВВСВАВВААВВАААВАААВ	1512222853333333333333333333333333333333
ETN	-84.400 35.520	20	3.1	268	41	-12	870901	В	36

		f	ocal me	chani sms	all.txt				
ETN	-84.320 35.630	20	3.3	96	71	-30	870922	В	36
ETN	-84.190 35.280	13	2.9	300	62	-22	880109	В	36
ETN	-84.670 35.360	10	2.5	59	48	-19	880213	С	36
ETN	-83.820 35.330	1	3.5	332	50	23	880218	В	36
ETN	-83.990 35.820	14	2.4	290	83	-19	880311	С	36
ETN	-84.210 35.780	18	2.3	261	55	-30	880423	В	36
ETN	-83.740 36.110	17	2.3	111	79	-49	880424	А	36
ETN	-84.430 35.500	23	2.9	266	73	-58	890907	В	36
ETN	-83.930 36.610	25	2.4	113	71	-36	891202	В	36
ETN	-85.020 35.050	4	3.1	227	76	-27	930115	В	36
CHL	-80.178 32.963	7	2.3	300	70	19	810319	В	39
CHL	-80.167 32.935	7	3.3	321	78	52	831106	В	39
CHL	-80.146 32.941	5	1.9	357	49	121	871006	В	39
CHL	-80.148 32.934	6	3.3	276	35	36	880123	А	39
CHL	-80.218 32.979	10	2.0	7	49	119	880623	С	39
CHL	-80.158 32.929	7	2.0	325	40	90	890602	А	39
CHL	-80.155 32.930	7	1.6	350	90	175	890608	А	39
CHL	-80. 152 32. 949	5	2.8	13	52	161	900618	В	39
CHL	-80.140 32.932	6	2.7	347	77	113	900818	С	39
CHL	-80.130 32.945	4	3.4	10	56	110	901113	С	39
CHL	-80. 152 32. 987	6	1.5	15	45	115	910824	В	39
EUS	-78.900 46.870	10	4.6	116	68	69	000101	U	25
EUS	-74.250 43.950	6	3.6	150	54	120	000420	U	25
EUS	-80.830 41.990	5	3.9	5	79	159	010126	U	25
EUS	-92.190 35.190	5	4.3	20	85	-165	010504	U	35
EUS	-104.640	37.150	3	4.2	215	30	-80	010904	U
EUS	-104.470	37.140	2	4.4	190	25	-130	010905	U
EUS	-73.660 44.510	10	5.0	360	35	80	020420	U	35
EUS	-87.780 37.970	19	4.5	120	80	10	020618	U	35
EUS EUS EUS EUS EUS	-98.900 42.810 -80.070 32.360 -85.500 34.550 -85.500 34.550 -101.750	8 9 12 12 43. 100	4.1 4.0 4.6 4.6 15	90 350 275 275 3.9 Page 5	50 40 75 75 85	-110 90 5 5 60	021103 021111 030429 030429 -130	U U U U 030525	35 35 35 35 U

focal_mechanisms_all.txt

35		•		num sins_					
EUS EUS	-91.720 36.800 -104.990	5 36. 850	3.7 4	25 4. 1	80 170	-165 55	030816 -100	U 030913	35 U
EUS	-104.850	36.850	4	4.4	175	55	-95	040322	U
EUS	-104.560	32.530	3	3.9	345	50	-120	040523	U
EUS	-104.580	32.530	2	3.6	5	70	-110	040622	U
35 EUS EUS 35	-88.960 41.440 -104.920	7 36. 890	4.2 4	20 4. 3	90 155	-165 65	040628 -120	U 040801	35 U
EUS EUS EUS EUS EUS EUS EUS	-78.250 43.690 -86.280 64.760 -85.750 39.610 -87.900 32.970 -69.730 47.750 -104.860	3 23 13 3 12 36. 950	3.2 4.2 3.8 4.3 4.6 4	125 155 320 35 350 4.9	65 60 75 40 30 160	35 80 15 -115 80 40	040804 040826 040912 041107 050306 -110	U U U U U 050810	35 35 35 35 35 U
EUS EUS	-82.800 35.880 -104.570	8 32. 520	3.7 5	90 4. 1	60 230	-60 40	050825 -85	U 051219	35 U
EUS EUS EUS EUS	-70.46047.380 -68.79047.000 -68.17044.330 -104.900	25 17 2 37.060	3.8 3.5 3.9 2	15 170 340 4.4	55 25 35 205	85 45 85 50	060407 060714 061003 -60	U U U 070103	35 35 35 U
EUS EUS	-96.27022.020 -104.790	11 36. 930	5.6 4	190 3.4	75 195	-160 50	070523 -60	U 070609	35 U
EUS EUS EUS	-90. 940 37. 480 -78. 200 42. 800 -104. 800	5 2 39. 900	4.6 4.3 4	260 110 4. 5	40 70 165	-70 20 52	651021 660101 -174	A A 670410	29 29 U
EUS EUS EUS	-78.200 42.900 -90.440 37.440 -104.700	3 15 39. 900	4.1 4.0 3	130 350 4.8	50 60 130	40 135 35	670613 670721 -90	A B 670809	29 28 U
EUS	-104. 700	40.000	5	4.5	158	52	-63	671127	U
EUS EUS EUS EUS EUS EUS EUS EUS EUS EUS	-88.37037.910 -86.50064.400 -80.58033.310 -82.53033.910 -89.40041.600 -70.90045.300 -84.00035.800 -88.07038.550 -96.00045.700 -100.700	22 12 2 13 6 13 15 8 33.000	5.3 4.6 4.4 4.0 4.1 4.5 4.1 4.3 4.3 3	0 162 260 350 170 300 190 310 330 4.5	46 72 40 65 70 80 70 70 90 260	79 90 100 160 70 150 0 160 60	681109 711002 720203 720802 720915 730615 731130 740403 750709 -60	A A U B A C B B 780616	29 29 24 29 29 29 29 29 29 U
EUS EUS EUS EUS EUS EUS EUS 21	-83.910 38.170 -66.650 46.980 -71.600 43.500 -92.210 35.170 -74.260 43.940 -105.720	12 7 8 6 9 42.370	5.0 5.1 4.2 5.0 4.9 25	30 200 200 330 170 5.3	60 60 35 60 70 350	180 125 120 55 115 60	800727 820111 820119 820121 831007 335	U U U U 841018	23 21 21 21 21 U
EUS EUS EUS EUS	-81.160 41.650 -84.390 40.550 -87.950 38.710 -75.590 46.470	6 4 10 11	4.7 4.4 5.0 4.6	25 20 135 141	80 80 70 42	165 -170 15 90	860131 860712 870610 901019	U U U U	21 30 31 25

Page 6

		f	ocal mod	hanisms	all tvt				
EUS	-73.460 45.200	12	3. 9	144	45	96	931116	U	25
EUS 26	-103.300	30. 260	20	5.6	114	64	-101	950414	U
EUS	-71.910 44.290	6	3.7	95	50	40	950616	U	25
EUS	-74.430 45.990	6	3.7	136	36	98	960314	U	25
EUS	-71.350 44.180	7	3.4	144	60	93	960821	U	25
EUS	-74.190 45.810	22	3.6	96	33	60	970524	U	25
EUS	-87.300 31.200	5	4.9	94	62	-90	971024	U	35
EUS	-69.910 47.670	5	4.3	27	66	111	971028	U	25
EUS	-71.350 46.750	12	4.5	39	63	87	971106	U	25
EUS	-98.510 34.940	19	3.9	120	70	-60	980428	U	35
EUS	-74.720 46.170	9	3.7	150	27	75	980730	U	25
EUS	-80.390 41.490	3	4.5	110	70	20	980925	U	34
EUS	-66.390 49.690	5	4.4	30	63	93	990316	U	25
EUS	-95.560 40.630	12	3.5	290	55	-135	040716b	U	35
EUS	-86.930 33.180	4	3.6	30	30	-100	040819b	U	35
EUS	-66.660 46.980	9	5.5	200	45	120	820109a	U	21
EUS	-66.650 47.020	6	4.8	215	60	130	820109b	U	21
EUS	-76.010 40.340	2	4.0	156	45	108	940116a	U	25
EUS	-76.010 40.340	3	4.0	121	60	66	940116a	U	33
EUS	-76.050 40.340	2	4.6	159	48	102	940116b	U	25
EUS	-76.050 40.340	3	4.6	135	49	68	940116b	U	33

charl evoi x-cl assi fi cati on. txt

Charlevoix stress field

median 90% CI

Groups with SHmax sub-parallel to local "tectonic" SHmax, about 1 - subset below North shore (NW of mid-river splitting 042 - 050 2 - subset inside small crater (part of 1, except 2 economics) 039 - 065 2b - subset central NW (central part of 1) 036 - 073	ut N050 ng Line) N046 g) N052 N054
Same but with larger spread or poorer agreement 3 - subset west of E289.85 (S half of 1 + 7 eq) 048 - 074 4 - subset ND2 (S part of 1 + 2 eq) NO58	N061
5 - subset ND4 (small cluster below NW shore)	N065
045 - 085 5b - subset SW (SW-most part of 1, poorly resolved) 041 - 076	N059
Groups with SHmax most oblique to local tectonic stress 6 - subset below east side of river (SE of mid-river I 091 - 115 7 - subset outside large crater (similar to 9) 091 - 119	i ne) N103 N105
8 - subset depth > 12 km (mostly SE + few NW eq) 094 - 139	N116
9 - subset ND1 (N end of CHV, similar to 7) 095 - 120	N108
Same but with larger spread or poorer resolution 10 - subset ND3 (but apparently bimodal, poorly resolv 105 - 140 11 - subset TD5 (depth 20-23 km, mix spatial distribut	ved ?) N123
085 - 145 12 - subset Central SE (central part of 2) 086 - 136	N111

Concl usi ons

3 events at NW end that may be part of N-end group (case 9 above) 2 SE events included in ND2 may be part of this group

(2) Groups showing maximum SHmax rotation are North End cluster (ND1, case 9 above), outside large crater (same as ND1-North End), central SE cluster, and below east side of river at

large