
Chapter 2

Intra-oceanic Subduction Zones

T.V. Gerya

2.1 Introduction

According to the common definition, intra-oceanic

subduction brings oceanic slabs under the overriding

plates of oceanic origin. As a consequence oceanic

magmatic arcs are formed worldwide (Fig. 2.1) with

typical examples such as the Izu-Bonin-Mariana arc,

the Tonga-Kermadec arc, the Vanuatu arc, the Solo-

mon arc, the New Britain arc, the western part of the

Aleutian arc, the South Sandwich arc and the Lesser

Antilles arc (Leat and Larter 2003). Intra-oceanic sub-

duction zones comprise around 17,000 km, or nearly

40%, of the subduction margins of the Earth (Leat and

Larter 2003). Indeed, intra-oceanic arcs are less well

studied than continental arcs since their major parts

are often located below sea level, sometimes with only

the tops of the largest volcanoes forming islands.

Intra-oceanic subduction zones are sites of intense

magmatic and seismic activities as well as metamor-

phic and tectonic processes shaping out arc composi-

tions and structures. During an ocean closure (e.g.,

Collins 2003) such arcs may collide with continental

margins creating distinct structural and compositional

record in continental orogens (such as in Himalaya,

Burg 2011) which makes them of particular interest

for the present book.

Several years ago Leat and Larter (2003) published

a comprehensive review on intra-oceanic subduction

systems. The review focused on tectonic and mag-

matic processes in intra-oceanic arcs and was mainly

based on observational constraints. In addition,

Schellart et al. (2007) compiled detailed nomenclature

and taxonomy of Subduction zones worldwide. The

following major characteristics of intra-oceanic sub-

duction zones can be summarized (Leat and Larter

2003; Schellart et al. 2007 and references therein)

• Convergence rates vary from ca 2 cm/yr in the Lesser

Antilles arc to 24 cm/yr in the northern part of the

Tonga arc, the highest subduction rates on Earth.

Typical rates are in the range 5–13 cm/yr. Intra-arc

variations are almost as large as inter-arc ones.

• Ages of subducting slabs range from ca 150 Ma

(Pacific Plate subducting beneath the Mariana arc)

to close to zero age (along part of the Solomon arc).

Along-arc variations in slab ages are typically not

large (�10 Ma). There are indeed large variations

in the topography of the subducting plates (up to

5 km, Fig. 2.1): some are relatively smooth, some

contain ridges and seamounts that affect subduction

and arc tectonics.

• Sediment thicknesses are notably variable (from 70m

to >6 km, typically 150–650 m). Sediment cover is

commonly thinner over basement highs. Variations

in thickness and composition of subducted sediments

are probably greatest where arcs are close to, or

cut across, ocean–continent boundaries.

• Accretion v. non-accretion. Most modern intra-

oceanic arcs are non-accreting, i.e. there is little or

no net accumulation of off-scrapped sediment

forming accretionary complexes. In other words,

all the sediments arriving at the trenches are sub-

ducted (over a period) into the mantle. The two

exceptions are the Lesser Antilles and Aleutian

arcs, both of which have relatively high sediment

inputs and where accretionary complexes have

formed.

T.V. Gerya

Geophysical Fluid Dynamics Group, Department of Earth

Sciences, Institute of Geophysics, Swiss Federal Institute of

Technology (ETH-Zurich), Sonneggstrasse, 5, 8092 Zurich,

Switzerland

e-mail: taras.gerya@erdw.ethz.ch

D. Brown and P.D. Ryan, Arc-Continent Collision, Frontiers in Earth Sciences,

DOI 10.1007/978-3-540-88558-0_2, # Springer-Verlag Berlin Heidelberg 2011

23



• Back-arc extension. Most of the arcs have closely

associated back-arc rifts. Only the Solomon and

Aleutian arcs are exceptions in having no apparent

back-arc extension. In most cases, the back-arc

extension takes the form of well-organized seafloor

spreading for at least part of the length of the back-

arc. Such spreading appears to follow arc extension

and rifting in at least some cases.

• Arc thicknesses depend on arc maturity, tectonic

extension or shortening, and the thickness of pre-

arc basement. Only approximately, therefore, is it

true to say that the thin crusts (e.g. of the South

Sandwich and Izu-Osgaswara) arcs represent arcs

in the relatively early stages of development,

whereas arcs with thicker crusts are more mature

(e.g. the Lesser Antilles and Aleutian arcs).

• Pre-arc basements of the arcs are very variable.

Only one intra-oceanic arc (the Aleutian arc) is

built on normal ocean crust. The others are built

on basements comprising a range of oceanic lithol-

ogies, including ocean crust formed at back-arc

spreading centres, earlier intra-oceanic arcs, accre-

tionary complexes and oceanic plateaux. This also

points out toward complexity of intraoceanic sub-

duction (re)initiation scenarios.

In the recent years significant new literature on

intra-oceanic subduction appeared (in particular, on

high-resolution seismic studies of arc structures and

on numerical modeling of intra-oceanic subduction)

that should be added to the state-of-the-art knowledge

which is one of the reasons for writing this chapter.

Also, taking into account that the present volume

mainly concentrates on arc collision processes I will

focus the review on relatively shallow portions of

intraoceanic subduction-arc system from which the

record can be preserved in the resulting collision

zones (e.g. Burg 2011). The following major issues

will be discussed in the review

• Initiation of intra-oceanic subduction

• Internal structure and composition of arcs

• Subduction channel processes

• Dynamics of crustal growth

• Geochemistry of intra-oceanic arcs

In order to keep a cross-disciplinary spirit of mod-

ern intra-oceanic subduction studies often combining

Fig. 2.1 Location of modern intra-oceanic subduction zones.

The trenches of these subduction systems are indicated by

heavy black lines, and identified by numbers that correspond

to those of Leat and Larter (2003): 1 – MacQuarie; 2 – Tonga-

Kermadec; 3 – Vanuatu (New Hebrides); 4 – Solomon; 5 – New

Britain; 6 – Halmahara; 7 – Sangihe; 8 – Ryuku; 9 – Mariana;

10 – Izu-Bonin (Ogasawara); 11 – Aleutian; 12 – Lesser

Antilles; 13 – South Sandwich.
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observational constrains with results of numerical

geodynamic modelling the later will be used here

for visualizing various subduction-related processes

instead of more traditional hand-drawn cartoons.

2.2 Initiation of Intra-oceanic
Subduction

It is yet not entirely clear how subduction in general

and intraoceanic subduction in particular is initiated.

The gravitational instability of an old oceanic plate is

believed to be the main reason for subduction (Vlaar

and Wortel 1976; Davies 1999). Oceanic lithosphere

becomes denser than the underlying asthenosphere

within 10–50 Ma after it forms in a mid-ocean ridge

due to the cooling from the surface (Oxburg and

Parmentier 1977; Cloos 1993; Afonso et al. 2007,

2008). However, despite the favourable gravitational

instability and ridge-push, the bending and shear resis-

tance of the lithosphere prevent subduction from aris-

ing spontaneously (McKenzie 1977). Consequently,

the following question arises: what forces can trigger

subduction (besides the negative buoyancy and ridge-

push)? At least 12 hypotheses have been proposed to

answer this question:

1. Plate rupture within an oceanic plate or at a

passive margin (e.g. McKenzie 1977; Dickinson

and Seely 1979; Mitchell 1984; M€ueller and

Phillips 1991).

2. Reversal of the polarity of an existing subduction

zone (e.g. Mitchell 1984).

3. Change of transform faults into trenches (e.g.

Uyeda and Ben-Avraham 1972; Hilde et al. 1976;

Karson and Dewey 1978; Casey and Dewey 1984).

4. Sediment or other topographic loading at conti-

nental/arc margins (e.g. Dewey 1969; Fyfe and

Leonardos 1977; Karig 1982; Cloetingh et al.

1982; Erickson 1993; Pascal and Cloetingh 2009).

5. Forced convergence at oceanic fracture zones

(e.g. M€ueller and Phillips 1991; Toth and Gurnis

1998; Doin and Henry 2001; Hall et al. 2003;

Gurnis et al. 2004).

6. Spontaneous initiation of retreating subduction

(Fig. 2.2) due to a lateral thermal buoyancy con-

trast at oceanic fracture zones separating oceanic

plates of contrasting ages (e.g. Gerya et al. 2008;

Nikolaeva et al. 2008; Zhu et al. 2009).

7. Tensile decoupling of the continental and oceanic

lithosphere due to rifting (Kemp and Stevenson

1996).

8. Rayleigh-Taylor instability due to a lateral com-

positional buoyancy contrast within the litho-

sphere (Niu et al. 2003).

9. Addition of water into the lithosphere (Regenauer-

Lieb et al. 2001; Van der Lee et al. 2008).

10. Spontaneous thrusting (Fig. 2.3) of the buoyant

continental/arc crust over the oceanic plate (Mart

et al. 2005; Nikolaeva et al. 2010; Goren et al.

2008).

11. Small-scale convection in the sub-lithospheric

mantle (Solomatov 2004).

12. Interaction of thermal-chemical plumes with the

lithosphere (Ueda et al. 2008).

In the recent review by Stern (2004 and references

therein) two major types of subduction initiation sce-

narios applicable to intraoceanic subduction are pro-

posed based on both theoretical considerations and

natural data: induced and spontaneous. Induced sub-

duction nucleation may follow continuation of plate

convergence after jamming of a previously active sub-

duction zone (e.g. due to arrival of a buoyant crust to

the trench). This produces regional compression, uplift

and underthrusting that may yield a new subduction

zone in a different place. Two subtypes of induced

initiation, transference and polarity reversal, are dis-

tinguished (Stern 2004 and references therein). Trans-

ference initiation moves the new subduction zone

outboard of the failed one. The Mussau Trench and

the continuing development of a plate boundary SW of

India in response to Indo–Asian collision are the best

Cenozoic examples of transference initiation pro-

cesses (Stern 2004 and references therein). Polarity

reversal initiation also follows collision, but continued

convergence in this case results in a new subduction

zone forming behind the magmatic arc; the response of

the Solomon convergent margin following collision

with the Ontong Java Plateau (Stern 2004 and refer-

ences therein) and dramatic reorganization of the

tectonic plate boundary in the New Hebrides region

(Pysklywec et al. 2003 and references therein) are

suggested to be the examples of this mode.

Spontaneous nucleation results from inherent gravi-

tational instability of sufficiently old oceanic lithosphere
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compared to the underlying mantle, which is also the

main reason for operating of the modern regime of

plate tectonics. It is widely accepted (e.g. Stern 2004

and references therein) that intra-oceanic subduction

can initiate spontaneously either at a transform/fracture

zone (Fig. 2.2) or at a passive continental/arc margin

(Fig. 2.3), in a fashion similar to lithospheric delami-

nation. According to the theoretical prediction (e.g.

Stern 2004) and numerical modeling results (e.g.

Gerya et al. 2008; Nikolaeva et al. 2008; Zhu et al.

2009) spontaneous initiation across a fracture zone

separating oceanic plates of contrasting ages associ-

ates with an intense seafloor spreading (Fig. 2.2,

0.3–1.5 Myr), as asthenosphere wells up to replace

sunken lithosphere of the older plate. This is the pre-

sumable origin of most boninites and ophiolites (Stern

2004 and references therein). Such initiation process

assumed to have produced new subduction zones along

the western edge of the Pacific plate during the Eocene

(Stern 2004 and references therein). Development of

self-sustaining one-sided subduction is marked by the

beginning of down-dip slab motion, formation of the

mantle wedge and appearance of the magmatic arc

at 100–200 km distance from the retreating trench

(Fig. 2.2).

Passive continental/arc margin collapse (Fig. 2.3) is

driven by the geometry of the margin, where relatively

thick (20–35 km) low-density continental/arc crust is

Fig. 2.2 Dynamics of spontaneous initiation of retreating subduction at a transform/fracture zone separating oceanic plates of

contrasting ages. Results from 2D numerical experiments by Gerya et al. (2008).
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bounded laterally by significantly more dense oceanic

lithosphere. When during the margin evolution forces

generated from this lateral density contrast become big

enough to overcome the continental/arc crust strength

then this crust starts to creep over the oceanic one

(Fig. 2.3, 0.3Myr). This causes deflection of the oceanic

lithosphere (Fig. 2.3, 0.3 Myr) and may actually lead to

its delamination from the continental/arc lithosphere

(Fig. 2.3, 0.3–1.9 Myr) thus triggering retreating sub-

duction process (Fig. 2.3, 1.9–3.2 Myr). This type of

subduction nucleation has been successfully modelled

with both analogue (Mart et al. 2005; Goren et al. 2008)

and numerical (Nikolaeva et al. 2010) techniques. No

undeniable modern example of such ongoing subduc-

tion initiation is yet known: a possible recent exception

is suggestion for subduction/overthrusting initiation at

the eastern Brasilian margin (Marques et al. 2008).

Indeed, Goren et al. (2008) speculated that such type

of initiation was relevant in the past for two active

intra-oceanic subduction systems in which Atlantic

lithosphere is being subducted: the Lesser-Antilles

and the South Sandwich subduction systems. Also,

Masson et al. (1994) and Alvarez-Marron et al.

(1996, 1997) argued that an arrested subduction zone

nucleation can be distinguished in the North Iberian

Margin based on structural and seismic data.

Both spontaneous and induced subduction initia-

tion can be potentially distinguished by the record

left on the upper plates: induced nucleation begins

with strong compression and uplift, whereas spontane-

ous one begins with rifting and seafloor spreading

(Stern 2004).

Fig. 2.3 Dynamics of spontaneous subduction initiation at a passive continental/arc margin. Results from 2D numerical experi-

ments by Nikolaeva et al. (2010).
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2.3 Internal Structure of Intra-oceanic
Arcs

Internal structure and compositions of intra-oceanic

arcs are strongly variable depending on both the pre-

existing plate structure and on the dynamics of sub-

duction and associated crustal growth (e.g. Leat and

Larter 2003). In addition, deep parts of the arcs are

mainly reconstructed based on seismic data and frag-

mentary records left in orogens after arc-continent

collisions, which creates further uncertainties for

interpretations of intra-oceanic arc structures. As was

indicated by Tatsumi and Stern (2006) understanding

how continental crust forms at intra-oceanic arcs

requires knowledge of how intra-oceanic arcs form

and mature with key questions being:

1. What is the nature of the crust and mantle in the

region prior to the beginning of subduction?

2. How does subduction initiate and initial arc crust

form?

3. How do the middle and lower arc crusts evolve?

4. What are the spatial changes of arc magma and

crust compositions of the entire arc?

In this respect, in addition to robust natural data,

realistic self-consistent numerical modelling of sub-

duction and associated crustal growth (e.g., Nikolaeva

et al. 2008; Kimura et al. 2009; Sizova et al. 2009;

Gerya and Meilick 2011) can complement the inter-

pretations of details and variability in arc structures.

Figure 2.4 shows a schematic cross-section across a

mature intra-oceanic arc corresponding to the retreat-

ing subduction regime. The cross-section is based

on recent results of numerical petrological-thermome-

chanical modelling (Gerya and Meilick 2011). The

following major structural components of the arc can

be distinguished based on this scheme and natural

data: (a) accretion prism (if present), (b) pre-arc base-

ment (c) serpentinized fore-arc including subduction

channel composed of tectonic melange, (d) magmatic

crust, (e) sub-arc lithosphere (cumulates?, replacive

rocks?, intercalation of crustal and mantle rocks and

melts?), (f) back-arc region with new oceanic floor and

a spreading center and (g) paleo-arc (in the rear part

Fig. 2.4 Schematic cross-section of an intra-oceanic arc associated with retreating subduction. Results from 2D numerical

experiments by Gerya and Meilick (2011).
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of the back-arc spreading domain). Obviously this

structure is non-unique and significant variations can

be expected in both nature (e.g. Tatsumi and Stern

2006; Takahashi et al. 2007, 2009; Kodaira et al.

2006, 2007, 2008) and models (e.g. Nikolaeva et al.

2008; Sizova et al. 2009; Gerya and Meilick 2011),

depending on arc history, subduction dynamics and

sub-arc variations in melt production intensity, distri-

bution and evolution (e.g. Tamura 1994; Tamura et al.

2002; Honda et al. 2007; Zhu et al. 2009).

Recently new high-resolution data (see Calvert

2011) were obtained concerning seismic structure

of the arc crust in Izu-Bonin-Mariana system (e.g.

Takahashi et al. 2007, 2009; Kodaira et al. 2006,

2007, 2008). These data suggest that lateral variations

in crustal thickness, structure and composition occur

both along and across intra-oceanic arcs (e.g.

Figs. 4.1–4.7 in Calvert 2011; Kodaira et al. 2006;

Takahashi et al. 2009). Such variations are interpreted

as being the results of laterally and temporally variable

magmatic addition and multiple episodes of fore-arc,

intra-arc and back-arc extension (e.g. Takahashi et al.

2007, 2009; Kodaira et al. 2006, 2007, 2008). Seismic

models demonstrate notable velocity variations

(Fig. 4.1 in Calvert 2011) within the arc middle and

lower crusts, which are interpreted to be respectively

of intermediate to felsic and mafic compositions (e.g.

Takahashi et al. 2007). In the regions of the maximal

thickness (around 20 km, Fig. 4.1 in Calvert 2011) the

oceanic-island-arc crust is composed of a volcanic-

sedimentary upper crust with velocity of less than

6 km/s, a middle crust with velocity of ~6 km/s,

laterally heterogeneous lower crust with velocities

of ~7 km/s, and unusually low mantle velocities

(Takahashi et al. 2009; also see crust–mantle transition

layer in Fig. 4.1a, b in Calvert 2011). Petrologic mod-

eling of Takahashi et al. (2007) suggests that the

volume of the lower crust, presumably composed

of restites and olivine cumulates remained after the

extraction of the middle crust, should be significantly

larger than is observed on the seismic cross-sections.

Therefore, such mafic-ultramafic part of the lower

crust (if at all present in the arcs, e.g. Jagoutz et al.

2006) should have seismic properties similar to the

mantle ones and consequently look seismically as

a part of the mantle lithosphere.

There are notable uncertainties in interpreting seis-

mic structures of intra-oceanic arcs, which are related

to current uncertainties in understanding melt differ-

entiation processes under the arcs. As summarised by

Leat and Larter (2003) the major element composition

of magmas feeding arcs from the mantle has been and

remain (e.g. Jagoutz et al. 2006) a subject of debate,

particularly regarding the Mg and A1 contents of

primary magmas. Mafic compositions in arcs have

variable MgO content, but with a clear cut-off at

about 8 wt% MgO or even less (in the case of mature

arcs). High-MgO, primitive non-cumulate magmas

have indeed been identified in many arcs, but they

are always volumetrically very minor (Davidson

1996). One question is, therefore, whether the MgO

cut-off point represents composition of the mantle-

derived parental magmas, or whether the mantle-

derived parental magmas are significantly more

MgO-rich (>10% MgO), but are normally unable to

reach the surface and erupt. It has been argued that

they have difficulty in traversing the crust without

encountering magma chambers because of their

relatively high density (Smith et al. 1997; Leat et al.

2002). In addition, as argued by Pichavant and

Macdonald (2003) only the most water-poor primitive

magmas are able to traverse the crust without adiabati-

cally freezing.

It should, however, be mentioned that the above

explanations are not fully satisfactory in explaining

the “MgO-paradox”. First, as has recently been

demonstrated numerically (Gerya and Burg 2007;

Burg et al. 2009) local density contrast between rising

dense magmas and surrounding crustal rocks plays

only a secondary role compared the rheology of the

crust. According to the numerical results, in case of

relatively strong lower crust even very dense ultra-

mafic magmas can easily reach the surface given that

they are generated below a sufficiently dense and thick

mantle lithosphere. Second, when differentiation of

the parental high-MgO mantle-derived magma takes

place inside the arc crust, significant volumes of high-

MgO cumulates should be produced. Fractionation

models indicate that 15–35% crystallization is neces-

sary to lower the MgO content adequately (e.g., Con-

rad and Kay 1984). Such cumulates should either (1)

form a major component below the seismic Moho (e.g.

Kay and Kay 1985; M€untener et al. 2001; Takahashi

et al. 2007) or (2) delaminate and sink back into

the mantle (e.g., Kay and Kay 1991, 1993; Jull and

Kelemen 2001). The delamination theory is presently

favoured based on the lack of appropriate upper man-

tle rocks brought to the surface in continental regions
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(e.g. Rudnick and Gao 2003), the absence of primitive

cumulate rocks in the exposed Talkeetna paleo-island

arc crust section (Kelemen et al. 2003) and evidence

for active foundering of the lower continental crust

below the southern Sierra Nevada, California (Zandt

et al. 2004; Boyd et al. 2004).

An alternative explanation of magma differentia-

tion processes in the arcs has recently been proposed

by Jagoutz et al. (2006) based on geochemical

data from the Kohistan paleo-arc in NW Pakistan.

According to this hypothesis the melt rising through

the Moho boundary of an arc has already a low-MgO

basaltic–andesitic composition, while the primary

magma generated in the mantle wedge is a high-MgO

primitive basaltic liquid. Fractionation of the mantle-

derived melt takes place in the mantle lithosphere

within km-scaled isolated conduits (replacive chan-

nels). The dunitic ultramafic bodies found in the

lowermost section of the Kohistan paleo-arc are inter-

preted as remnants of such melt channels through

which the low-MgO (i.e. differentiated) lower-crustal

intrusive mafic sequence was fed. As suggested by

Jagoutz et al. (2007) such differentiation within the

upper mantle is an important lower crust-forming pro-

cess which can also explain the absence of high-MgO

cumulates in the lower crust of exposed island arcs

(e.g., Kelemen et al. 2003).

2.4 Subduction Channel Processes

Subduction channel development is an important

component of intra-oceanic arc evolution (Fig. 2.4).

Processes taking place in the subduction channel lives

notable and directly accessible record at the surface in

form of exhumed high- and ultrahigh-pressure rocks

complexes (e.g., Ernst 1977; Cloos 1982; Shreve and

Cloos 1986; Hermann et al. 2000; Abbott et al. 2006;

Federico et al. 2007; Krebs et al. 2008). Subduction

channel processes may also contribute to a magmatic

record through deep subduction and melting of

hydrated rock mélanges formed in the channel (e.g.,

Gerya and Yuen 2003; Gerya et al. 2006; Castro and

Gerya 2008; Zhu et al. 2009).

It is widely accepted that the deep burial of high

pressure metamorphic rocks in intra-oceanic settings

is due to subduction of these rocks with the downgoing

slab. However, the mechanisms of their exhumation

remain subject of discussion and several models

have been proposed (e.g., Cloos 1982; Platt 1993;

Maruyama et al. 1996; Ring et al. 1999). According

to the most popular corner flow model (Hsu 1971;

Cloos 1982; Cloos and Shreve 1988a, b; Shreve and

Cloos 1986; Gerya et al. 2002), exhumation of high-

pressure metamorphic crustal slices at rates on the

order of the plate velocity is driven by forced flow in

a wedge-shaped subduction channel.

Gerya et al. (2002) investigated numerically the

self-organizing evolution of the accretionary wedge

and the subduction channel during intra-oceanic sub-

duction (Fig. 2.5). In this model the geometry of the

accretionary wedge and the subduction channel are

neither prescribed nor assumed to represent a steady

state. Instead, the system is free to evolve, starting from

an imposed early stage of subduction, being controlled

by the progressive modification of the thermal, petro-

logical, and rheological structure of the subduction

zone. In this evolution, upward migration of the

aqueous fluid released from the subducting slab and

progressive hydration of the mantle wedge play a

dominant role. The following conclusions have been

made based on numerical results (Gerya et al. 2002):

• Burial and exhumation of high-pressure metamor-

phic rocks in subduction zones are likely affected

by progressive hydration (serpentinization) of the

fore-arc mantle lithosphere (e.g. Schmidt and Poli

1998). This process controls the shape and internal

circulation pattern of a subduction channel. Widen-

ing of the subduction channel due to hydration of

the hanging wall mantle results in the onset of

forced return flow in the channel. This may explain

why the association of high- and/or ultrahigh-

pressure metamorphic rocks with more or less

hydrated (serpentinized) mantle material is often

characteristic for high-pressure metamorphic com-

plexes. Complicated non-steady geometry of weak

hydrated subduction channels (Figs. 2.7, 2.9 and

2.11) was also predicted numerically (Gerya et al.

2006; Gorczyk et al. 2006, 2007a; Nikolaeva et al.

2008). This geometry forms in response to non-

uniform water release from the slab that is con-

trolled by metamorphic (dehydration) reactions in

subducting rocks. Depleted mantle rocks from the

base of the arc lithosphere and newly formed mag-

matic arc crust can be included into the channels
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Fig. 2.5 Spontaneous development of weak serpentinized

subduction channel during intra-oceanic subduction. Left col-

umn – development of the lithological field and isotherms (white
lines, oC). Right column – development of P–T paths for

two rock fragments (see open circle and open rectangle in the

left column). Results from 2D numerical modelling by Gerya

et al. (2002).
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(Figs. 2.11 and 2.12) at a mature stage of subduc-

tion (Nikolaeva et al. 2008).

• The shape of the P–T path, and the maximum P–T

conditions achieved by an individual high-pressure

metamorphic rock, depend on the specific trajec-

tory of circulation in the subduction channel

(Fig. 2.5). Both clockwise and counterclockwise

P–T paths are possible for fragments of oceanic

crust that became involved in the circulation. Coun-

terclockwise P–T paths are found for slices that are

accreted to the hanging wall at an early stage of

subduction, and set free by the progress of hydra-

tion and softening in a more evolved stage, return-

ing towards the surface in a cooler environment. On

the other hand, slices that were involved in contin-

uous circulation, or that entered the subduction

zone when a more stable thermal structure was

already achieved, reveal exclusively clockwise tra-

jectories. Model also indicates that P–T trajectories

for the exhumation of high-pressure rocks in sub-

duction channel fall into a P–T field of stability of

antigorite in the mantle wedge (Fig. 2.6c).

• An array of diverse, though interrelated, P–T paths

(Fig. 2.6c) rather than a single P–T trajectory is

expected to be characteristic for subduction-related

metamorphic complexes. The characteristic size

and shape of the units with an individual history

depend on the effective viscosity of the material in

the subduction channel. Lower viscosities result in

smaller characteristic length scales for coherent

units and a marked contrasts between adjacent

slices, a structure commonly termed melange,

while higher viscosities favour the formation of

extensive coherent nappe-like slices.

These conclusions based on relatively simple low-

viscosity serpentinized subduction channel model

(Figs. 2.5 and 2.6a) were recently supported by petro-

logical studies (e.g. Federico et al. 2007; Krebs et al.

2008) of subduction-related serpentinite mélanges.

For example, Federico et al. (2007) tested the serpen-

tinized channel hypothesis by investigating a serpen-

tinite mélange in the Western Alps, which contains

exotic mafic and metasedimentary tectonic blocks,

recording heterogeneous metamorphic evolutions and

variable high-pressure ages. The peak metamorphic

conditions range from eclogite- to garnet-blueschist-

facies. The structural evidence and the pressure–tem-

perature paths of the different blocks suggest coupling

between blocks and matrix, at least in the blueschist

facies. 39Ar-40Ar dating indicates eclogite-facies peak

at ca. 43 Ma and blueschist-facies peak at ca. 43 and

40 Ma in different blocks, respectively. These data

point to diachronous metamorphic paths resulting

from independent tectonic evolutions of the different

slices (compare with Figs. 2.5 and 2.6).

Krebs et al. (2008) presented coupled petrological

and geochronological evidence from serpentinite

melanges of the Rio San Juan Complex, Dominican

Republic (Hispaniola) formed by intra-oceanic Carib-

bean subduction. It has been demonstrated that dis-

persed blocks of various types of metamorphic rocks

in the mélanges provide fossil evidence for the dynam-

ics of the subduction zone channel between 120 and

55 Ma. Based on three exemplary samples of eclogite

and blueschist, a series of different but interrelated

P–T–time paths was delineated. Eclogites indicate a

low P/T gradient during subduction and record condi-

tions in the nascent stages of the subduction zone with

an anticlockwise P–T path (compare with Fig. 2.5,

6.4–15.3 Myr). Other blocks record the continuous

cooling of the evolving subduction zone and show

typical clockwise P–T-paths (compare with Fig. 2.5,

15.3–25.3 Myr). Omphacite blueschists correspond

to the mature subduction zone recording very high

(“cold”) P/T gradients. Cooling rates and exhumation

rates of the metamorphic blocks were estimated to be

9–20�C/Ma and 5–6 mm/a, respectively. The derived

P–T–time array is compared with the serpentinized

channel models (Gerya et al. 2002) with convergence

rates of 10–40 mm/a resulting in an increasingly more

funnel-shaped subduction channel system with time

(Fig. 2.5). The numerically derived array of simulated

P–T–time paths as well as the calculated rates of

exhumation and cooling agree well with the P–T–time

data derived from the metamorphic blocks of the Rio

San Juan serpentinite mélanges when convergence

rates of 15–25 mm/a are chosen (Krebs et al. 2008).

This value is also in accord with available paleogeo-

graphic reconstructions calling for a long-term aver-

age of 22 mm/a of orthogonal convergence. On the

basis of the comparison, the onset of subduction in the

Rio San Juan segment of the Caribbean Great Arc can

be constrained to approximately 120 Ma. This seg-

ment was thus obviously active for more than 65 Ma.

An orthogonal convergence rate of 15–25 mm/a

requires that a minimum amount of 975–1,625 km

of oceanic crust must have been subducted. Both

petrological/geochronological data and numerical
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simulation underscore the broad spectrum of different

P–T–time paths and peak conditions recorded by

material subducted at different periods of time as the

subduction zone evolved and matured.

It has also been shown recently that not only high-

pressure eclogites but also ultrahigh-pressure mantle

rocks (garnet-bearing peridotites) can be present in

intra-oceanic subduction melanges (e.g. in Greater

Antilles in Hispaniola, Abbott et al. 2006). Gorczyk

et al. (2007a) modelled this phenomenon numerically

(Fig. 2.7) and concluded that exhumation of such

garnet-bearing peridotites can be related to fore-arc

Fig. 2.6 Serpentinite melange (a) forming in the spontaneously

evolving subduction channel (Fig. 2.6) and characteristic spatial

trajectories (b) and P–T paths (c) of crustal rocks composing

the melange. Results from 2D numerical modelling by Gerya

et al. (2002).
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Fig. 2.7 Exhumation of high- and ultrahigh-pressure rocks

during retreating intra-oceanic subduction of an oceanic plate

originated at slow spreading ridge (left columns) and character-

istic P–T paths of crustal and mantle rocks (right column).

Results from 2D numerical modelling by Gorczyk et al. (2007a).
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extension during subduction of an oceanic plate

formed at a slow spreading ridge and characterized

by serpentinite-rich crust. In this case subduction

channel contains both serpentinites accreted from the

subducting plate crust and progressively serpentinized

fore-arc mantle. Intense rheological weakening of the

mantle wedge takes place due to its strong hydration

during subduction of water-rich crust formed at slow

spreading ridge. This weakening triggers upwelling of

the hydrated peridotites and partially molten perido-

tites followed by upwelling of hot asthenosphere and

subsequent retreat of the subducting slab. According

to numerical modelling of P–T paths this process can

explain exhumation of UHP rocks in an intra-oceanic

setting from depths of up to 120 km (4 GPa).

2.5 Magmatic Crust Growth and
Thermal-Chemical Convection
in the Mantle Wedge

Reymer and Schubert (1984) estimated rates of

crustal generation during intra-oceanic subduction as

20–40 km3/km/Myr for the western Pacific region

based on the total arc crust volume divided by the oldest

known igneous age. More recent estimates for the same

area by Taira et al. (Izu-Bonin island arc, 1998), Hol-

brook et al. (Aleutian island arc, 1999) and Dimalanta

et al. (Tonga, New Hebrides, Marianas, Southern and

Northern Izu-Bonin, Aleutian island arcs, 2002) are

somewhat higher, 40–95 km3/km/Myr and are much

higher, 120–180 km3/km/Myr, according to the work

of Stern and Bloomer (early stage of IBM development,

1992). In particular, the arc magmatic addition rate

of the arc of the New Hebrides varies between 87 and

95 km3/km/Myr as determined by Dimalanta et al.

(2002). They also give values for addition rates of

other island arcs, all of which vary between 30 and

70 km3/km/Myr. These values are average rates of

crust production, calculated by dividing the estimated

total volume of produced crust by the time in which it

was produced and by the length of the arc.

It is commonly accepted that dehydration of sub-

ducting slabs and hydration of the overlying mantle

wedges are key processes controlling magmatic activ-

ity and consequently crustal growth above subduction

zones (e.g., Stern 2002; van Keken et al. 2002; van

Keken and King 2005). Mantle wedge processes have

been investigated from geophysical (e.g. Zhao et al.

2002; Tamura et al. 2002), numerical (e.g. Davies and

Stevenson 1992; Iwamori 1998; Kelemen et al. 2004a;

Arcay et al. 2005; Gerya et al. 2006; Nikolaeva et al.

2008), experimental (e.g., Poli and Schmidt 2002;

Schmidt and Poli 1998), and geochemical (e.g., Ito

and Stern 1986; Sajona et al. 2000; Kelley et al.

2006) perspectives. Indeed, detailed thermal structure

and melt production patterns above slabs are still

puzzling. Particularly, the relative importance of slab

melting (e.g. Kelemen et al. 2004a; Nikolaeva et al.

2008) versus melting induced by simple thermal con-

vection (Honda et al. 2002, 2007; Honda and Saito

2003) and/or thermal-chemical plumes (diapirs) (e.g.

Tamura 1994; Hall and Kincaid 2001; Obata and

Takazawa 2004; Gerya and Yuen 2003; Manea et al.

2005; Gerya et al. 2006; Gorczyk et al. 2007b; Zhu

et al. 2009) to melt production in volcanic arcs is not

fully understood.

Several authors (e.g., Tamura et al. 2002; Honda

et al. 2007; Zhu et al. 2009) analyzed the spatial

distribution of volcanism in Japan and concluded that

several clusters of volcanism can be distinguished in

space and time (Fig. 2.8). The typical spatial periodic-

ity of such volcanic clusters is 50–100 km (see the

spacing between “cigars” in Fig. 2.8b) while their life

extent corresponds to 2–7 Myr (see the lengths of

“cigars” in time in Fig. 2.8b). Two trench-parallel

lines of volcanic density maxima can also be distin-

guished for some periods of intra-oceanic arc evolu-

tion (Fig. 2.8a). Spatial and temporal clustering of

volcanic activity also associates with strongly variable

(Fig. 4.4 in Calvert 2011) distribution of crustal thick-

ness along intra-oceanic arcs (e.g. Fig. 4.4 in Calvert

2011; Kodaira et al. 2006, 2007) and distribution of

seismic velocity anomalies in the mantle wedges

under the arcs (e.g. Zhao et al. 1992, 2002; Zhao

2001; Tamura et al. 2002). This further points toward

the relations between the mantle wedge processes

and crustal growth in intra-oceanic arcs.

Based on 3D numerical models Honda and

co-workers (Honda et al. 2002, 2007; Honda and

Saito 2003; Honda and Yoshida 2005) proposed the

development of small-scale thermally driven convec-

tion in the uppermost corner of the mantle wedge with

lowered viscosity (low viscosity wedge, LVW, Billen

and Gurnis 2001; Conder and Wiens 2007; Honda and

Saito 2003; Honda et al. 2002; Honda and Yoshida

2005; Arcay et al. 2005). These authors suggested that
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a roll (finger)-like pattern of hot (upwellings) and cold

(downwellings) thermal anomalies emerges in the

mantle wedge above the subducting slab contributing

to clustering of magmatic activity at the arc surface.

These purely thermal mantle wedge convection mod-

els, however, neglected chemical buoyancy effects

coming from hydration and melting atop the subduct-

ing slab and leading to thermal-chemical convection

and diapirism phenomena (e.g. Tamura 1994; Hall

and Kincaid 2001; Gerya and Yuen 2003). These

aspects have been recently studied numerically based

on petrological-thermomechanical models including

water transport and melting. These models predict

1. Spontaneous formation of a low viscosity wedge by

hydration of the mantle atop the slab (Arcay et al.

2005; Zhu et al. 2009)

2. Growth of diapiric structures (“cold plumes”,

Figs. 2.9 and 2.10) above the subducting slab (e.g.,

Gerya and Yuen 2003; Gorczyk et al. 2007b; Zhu

et al. 2009)

3. Broad variation in seismic velocity beneath intrao-

ceanic arcs due to hydration and melting (Gerya

et al. 2006; Nakajima and Hasegawa 2003a, b;

Gorczyk et al. 2006; Nikolaeva et al. 2008)

4. Variations in melt production and crustal growth

processes caused by propagation of hydrated

plumes in the mantle wedge (Gorczyk et al.

2007b; Nikolaeva et al. 2008; Zhu et al. 2009)

Nikolaeva et al. (2008) investigated crustal growth

processes on the basis of a 2D coupled petrologi-

cal–thermomechanical numerical model of retreating

intraoceanic subduction (Figs. 2.11 and 2.12). The

model included spontaneous slab retreat and bending,

subducted crust dehydration, aqueous fluid transport,

mantle wedge melting, and melt extraction resulting in

crustal growth. As follows from the numerical experi-

ments the rate of crust formation is strongly variable

with time and positively correlates with subduction

rate (Fig. 2.11, bottom diagram). Modelled average

rates of crustal growth (30–50 km3/km/Ma, without

effects of dry decompression melting) are close to the

lower edge of the observed range of rates for real intra-

oceanic arcs (40–180 km3/km/Ma). The composition

of new crust depends strongly on the evolution of sub-

duction. Four major magmatic sources can contribute

to the formation of the crust: (1) hydrated partially

molten peridotite of the mantle wedge, (2) melted

subducted sediments, (3) melted subducted basalts,

(4) melted subducted gabbro. Crust produced from

the first source is always predominant and typically

comprise more than 95% of the growing arc crust

Fig. 2.8 Variations in volcanic activity in NE Japan (Honda

and Yoshida 2005; Honda et al. 2007; Zhu et al. 2009). (a)
variations in the spatial density of volcanoes with their age

during the past 10 Myr. (b) the isosurface of 0.0003 volcano/

km2/Myr for the observed density of volcanoes in space and

time. The density of volcanoes notably evolves showing forma-

tion of spatially confined clusters that remain active within

certain period of time that could be possibly related to the

activity of mantle wedge plumes (cf. Fig. 2.10).
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(Nikolaeva et al. 2008). In all studied cases, it appears

shortly after beginning of subduction and is a persis-

tent component so long as subduction remains active.

Significant amount of crust produced from other three

sources appear (1) in the beginning of subduction due

to the melting of the slab “nose” and (2) at later stages

when subduction velocity is low(<1 cm/a), which

leads to the thermal relaxation of the slab. Both the

intensity of melt extraction, and the age of subducted

plate affect the volume of new crust. On a long time

scale the greatest volume of magmatic arc crust is

formed with an intermediate melt extraction threshold

(2–6%) and medium subducted plate ages (70–100 Ma)

(Nikolaeva et al. 2008).

Recently thermal-chemical mantle wedge convec-

tion and related melt production dynamics (Fig. 2.10)

were also examined numerically in 3D (Zhu et al.

2009; Honda et al. 2010). Honda et al. (2010) analysed

simple subduction model including moderately buoy-

ant chemical agent (water) and found that the hydrated

region tends to stay in the corner of the mantle wedge

because of its low density and this results in the low

temperature zone (“cold nose”) there. Moderate chem-

ical buoyancy present in the mantle wedge may either

suppress or shift toward the back arc the thermally

driven small-scale convection under the arc and

make the dominant mantle flow velocity to be normal

to the plate boundary. Zhu et al. (2009) examined

more complex 3-D petrological-thermomechanical

model of intra-oceanic subduction focussing on geo-

metries and patterns of hydrous thermal-chemical

upwellings (“cold plumes”) formed above the slab

(Figs. 2.9 and 2.10). These numerical simulations

showed that three types of plumes occur above the

slab: (a) finger-like plumes that form sheet-like struc-

ture parallel to the trench (Fig. 2.10a, b); (b) ridge-like

structures perpendicular to the trench; (c) flattened

wave-like instabilities propagating upwards along the

upper surface of the slab and forming zig-zag patterns

subparallel to the trench.

Zhu et al. (2009) also computed spatial and tempo-

ral pattern of melt generation (i.e. crust production)

intensity above the slab, which appeared to be strongly

controlled by the hydrous plume activities (Fig. 2.10c,

d). Peaks of the melt production projected to the arc

surface at different moments of time (Fig. 2.10c)

always indicate individual thermal-chemical plumes

growing at that time. Such peaks often form the linear

Fig. 2.9 Development of unmixed and mixed plumes due to

hydration of the mantle wedge by fluids released from the slab.

Plumes rising from the slab are colder then the surrounding

mantle wedge (see Fig. 2.10a for 3D thermal structures around

such plumes). The corrugations along the hydration front reflect

dynamics of slab dehydration controlled by metamorphic reac-

tions. Zoomed area shows lithological structures of mixed and

unmixed plumes. Results from 2D numerical modelling by

Gerya et al. (2006).

2 Intra-oceanic Subduction Zones 37



structure close to the trench, and another line of peaks

in linear pattern, which is approximate 200 km away

from the trench. The former ones are mainly from the

depth of 50–70 km; the latter ones are mainly from

the depth of 140–170 km. Figure 2.10d shows the

melt productivity in time by visualizing the isosur-

face (0.6 km3/km2/Myr) of melt production intensity.

The plume-like structures are reflected by distinct

“cigar-like” features that are bounded in both time

and space (Fig. 2.10d). Each “cigar” corresponds to

the activity of a distinct plume that (1) increases the

melt productivity during the early stage when the

growing melt production is related to decompressing

and heating of the rising plume material and (2)

Fig. 2.10 (continued)

Fig. 2.10 Thermal-chemical plumes (a, b) growing in the

mantle wedge during intra-oceanic subduction and corresponding

variations of melt production (c, d). (a) the 1,350 K isosurface of

temperature at 2.64Myr, note that plumes rising from the slab are

colder than the surrounding mantle wedge. (b) same temperature

isosurface (yellow) with partially molten rocks, which are respon-

sible for plume buoyancy, shown in red. (c) variations in the

spatial intensity of melt production beneath the surface, peaks in

the melt production correspond to individual thermal-chemical

plumes shown in (a). (d) the isosurface of 0.6 km3/km2/Myr

for melt production, which implies crustal growth intensity of

600 m/Myr. Results from 3D numerical modelling by Zhu et al.

(2009).
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Fig. 2.11 Dynamics of a pure retreating intra-oceanic subduc-

tion (left column) and associated magmatic crust growth (right

column). Spontaneous changes in subduction rate (for this

model subduction rate and trench retreat rate are equal) and

crust accumulation rate with time are depicted below. Time is

dated from the beginning of subduction. Subduction results in

a hydration and partial melting of mantle wedge rocks, which

leads to the formation of volcanic arc rocks (yellow) above

the area of melting. Results from 2D numerical modelling by

Nikolaeva et al. (2008).
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decreases the melt productivity during the later stage

when the temperature, the pressure and the degree of

melting stabilize inside the horizontally spreading and

thermally relaxing plume.

The modelled wavelength (25–100 km) and the

growth time (2–7 Myr, see the lengths of “cigars” in

time in Fig. 2.10d) of the thermal-chemical plumes are

comparable to spatial periodicity (50–100 km) and the

life extent (2–7 Myr, see the lengths of “cigars” in time

in Fig. 2.8b) of volcanic clusters and to spatial period-

icity (50–100 km, Fig. 4.4b in Calvert 2011) of crustal

thickness variations in intra-oceanic arcs. The exis-

tence of two contemporaneous trench-parallel lines

of melt productivity (Fig. 2.10b) is also similar to the

natural observations (see two trench-parallel lines of

Quaternary volcanic density maxima in Fig. 2.8a, at

6 Ma). To explain such phenomena, Wyss et al. (2001)

have proposed an additional source of fluids to be

located at the top of the slab (at about 150 km depth).

Their proposition is based on the velocity tomography

Fig. 2.12 Evolution of degree of melt extraction (left column)

and water content (right column) in the mantle wedge and

subducting oceanic crust. Corresponding lithological field is

depicted on the Fig. 2.11. Results from 2D numerical modelling

by Nikolaeva et al. (2008).
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in the mantle wedge above the slab, and on the map-

ping of earthquake size distribution within the mantle

wedge. Geochemical evidence (Kimura and Yoshida

2006) for Quaternary lavas from the NE Japan arc

also shows the deeper mantle-derived rear-arc lava

coming from 100–150 km depth.

2.6 Geochemistry of Intra-oceanic Arcs

The role of subduction zones in global geochemical

dynamics is generally twofold: first, crustal materials

are recycled back into the deep mantle, and second,

new crust is produced in magmatic arcs above subduc-

tion zones (e.g. Bourdon et al. 2003). Because the

physical and chemical changes within the subducting

plate and mantle wedge are largely inaccessible to a

direct observation, geochemical investigations con-

centrate on the input (rocks subducted atop the slabs)

and output (magmatic products of island arcs) signals

of subduction zones (e.g., Plank and Langmuir 1993;

Hauff et al. 2003). For example, as discussed by

Kimura and Yoshida (2006), Quaternary lavas from

NE Japan arc show geochemical evidence of mixing

between mantle-derived basalts and crustal melts at

the magmatic front, whereas significant crustal signals

are not detected in the rear-arc lavas.

Analyses of comprehensive geochemical data sets

for the input and output rock-members (Hauff et al.

2003) from several arc systems such as Aleutian

(Yogodzinski et al. 2001), Izu-Bonin-Mariana (Tatsumi

et al. 2008), New Britain, Vanuatu (Arai and Ishimaru

2008), Kamchatka (Churikova et al. 2001; Dosseto

et al. 2003; Yogodzinski et al. 2001) and Tonga-

Kermadec arcs (Turner and Hawkesworth 1997) lead

to the conclusion that subduction-related arc basalts

(output signal) characteristically have elevated con-

tents of large-ion lithophile element (LILEs) and

light rare earth element (LREEs) with depleted

heavy REE (HREE) and high field strength elements

(HFSEs) compared to subducted crust (input signal)

(McCulloch and Gamble 1991; Elliott et al. 1997;

Elliott 2003; Plank and Langmuir 1993; Kimura

et al. 2009). In relation to that, the following processes

are believed to be responsible for the element parti-

tioning in intra-oceanic arc magmas (e.g. Kimura et al.

2009 and reference therein):

• Extraction of fluids and/or melts from the sub-

ducted slab; combined slab fluid and melt fluxes

may be responsible for geochemical variations

along or across magmatic arcs (Eiler et al. 2005;

Ishizuka et al. 2006); separate deep and shallow

slab components have also been proposed (Kimura

and Yoshida 2006; Pearce and Peate 1995; Pearce

et al. 2005)

• Fluid fluxed melting of the mantle wedge responsi-

ble for generation of high-MgO primitive arc

basalts (Arculus and Johnson 1981; Davidson

1996; Elliott et al. 1997; Hawkesworth et al.

1993; Kelemen et al. 1998; Kimura and Yoshida

2006; Plank and Langmuir 1993; Poli and Schmidt

1995; Stern 2002; Stolper and Newman 1994;

Tatsumi and Eggins 1995; Turner et al. 1997)

• Slab melt–mantle reaction generating high-MgO

primitive arc andesites (Kelemen et al. 2004b;

Tatsumi and Hanyu 2003; Tsuchiya et al. 2005;

Yogodzinski et al. 1994; Zack et al. 2002)

• Melting of mantle wedge metasomatized by slab-

derived fluid or melt (Eiler et al. 2007; Sajona et al.

1996)

• Direct supply of felsic melt from eclogitic slab

melting (Defant and Drummond 1990; Martin

1999; Martin et al. 2005)

• Melting of hydrated mantle and subducted tectonic

melanges in respectively unmixed and mixed ther-

mal-chemical plumes (Fig. 2.9) rising from the top

of the slab (Tamura 1994; Gerya et al. 2006; Castro

and Gerya 2008; Castro et al. 2010)

Despite the broad variability of involved geochem-

ical mechanisms currently there is a consensus (e.g.

Kimura et al. 2009) about the relative significance of

various processes and it is widely believed that slab

dehydration or melting combined with the interaction

of this slab-derived flux with variously depleted man-

tle generates primary arc magmas with the observed

geochemical characteristics. These primary magmas

typically have radiogenic Sr and Pb isotopic composi-

tion, with less radiogenic Nd in lavas erupted from

the volcanic front compared to rear-arc magmas

apparently derived from more depleted upper mantle

sources (Elliott et al. 1997; Ishizuka et al. 2003;

Kelemen et al. 2004b; Kimura and Yoshida 2006;

Manning 2004; Rapp and Watson 1995; Stolper and

Newman 1994; Tatsumi and Eggins 1995).
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Elliott (2003) and other authors (Hawkesworth

et al. 1993; Leat and Larter 2003; McCulloch and

Gamble 1991; Stern 2002) describe two distinct

major slab components present in arc rocks with dif-

ferent sources and transport mechanisms: (1) melt of

the down-going sediments, and (2) aqueous fluid

derived from altered oceanic crust. Direct melting of

the slab is also suggested as a possible mechanism for

melts generation (e.g. Defant and Drummond 1990;

Martin 1999; Martin et al. 2005; Kelemen et al. 2004a;

Nikolaeva et al. 2008). Fluids and melts liberated from

subducting oceanic crust produce melting above slabs

and finally lead to efficient subduction-zone arc volca-

nism (Fig. 2.4). The exact composition of the mobile

phases generated in the subducting slab have however,

remained incompletely known (e.g. Kessel et al.

2005). In this respect the fundamental control appears

to be (e.g. Kimura et al. 2009) the P–T paths of rocks

in the subducting slab, which can be approximated by

geodynamic modelling (e.g., Peacock andWang 1999;

Gerya and Yuen 2003; Castro and Gerya 2008). For

example in the model of Peacock and Wang (1999),

subduction of old and cold oceanic plate leads to low

slab surface temperature. In contrast, subduction of

young and hot oceanic crust typically results in higher

slab surface temperatures (Stern et al. 2003).

Such contrasting thermomechanical behaviour can

presumably be observed in the arcs of Japan (Peacock

andWang 1999), where the old Pacific Plate (>120Ma,

NE Japan) and the young Shikoku Basin (15–27 Ma,

SW Japan) are subducting beneath the Eurasia plate

(Kimura and Stern 2009; Kimura et al. 2005; Kimura

and Yoshida 2006). Consequently, in NE Japan slab

dehydration seems to dominate geochemical signal in

the primary arc basalts (Kimura and Yoshida 2006;

Moriguti et al. 2004; Shibata and Nakamura 1997),

whereas in SW Japan slab melting is proposed to be

responsible for generation of high-MgO andesites or

adakitic dacites (Kimura and Stern 2009; Kimura et al.

2005; Shimoda and Nohda 1995; Tatsumi and Hanyu

2003). Recently Kimura et al. (2009) obtained similar

results from simulations of geochemical variability of

primitive magmas across an intra-oceanic arc based on

partitioning of incompatible element and Sr-Nd-Pb

isotopic composition in a slab-derived fluid and in

arc basalt magma generated by an open system fluid-

fluxed melting of mantle wedge peridotite (Fig. 2.4).

Similar contrasting geochemical behaviour has been

also shown (e.g. Kimura et al. 2009 and reference

therein) between arcs along the western and eastern

Pacific rims. Arc magmatism due to slab-derived

fluids is proposed for the western Pacific arcs, includ-

ing the Kurile, NE Japan, and the Izu-Bonin-Mariana

arcs (Ishikawa and Nakamura 1994; Ishikawa and

Tera 1999; Ishizuka et al. 2003; Kimura and Yoshida

2006; Moriguti et al. 2004; Pearce et al. 2005; Ryan

et al. 1995; Straub and Layne 2003). High-MgO

primary mafic magmas from these relatively cold

subduction zones show geochemical signatures of

extremely fluid mobile elements such as B, Li, or U

(Ishikawa and Nakamura 1994; Ishikawa and Tera

1999; Moriguti et al. 2004; Ryan et al. 1995; Turner

and Foden 2001). In contrast, slab melting better

explains the origin of high-MgO intermediate lavas

in the eastern Pacific (Kelemen et al. 2004b; Straub

et al. 2008) although the role of slab fluid remains an

important factor in some of the arcs (Grove et al.

2006).

Alternative ideas that explain broad variability of

slab fluid and slab melt geochemical components in

arc magmas were proposed recently based on petrolo-

gical-thermomechanical numerical modeling of sub-

duction zones (Gerya et al. 2006; Castro and Gerya

2008; Castro et al. 2010). Gerya et al. (2006) sug-

gested that one possibility for transporting two distinct

geochemical signatures through the mantle wedge can

be related to generation and propagation of partially

molten compositionally buoyant diapiric structures

(cold plumes, Tamura 1994; Hall and Kincaid 2001;

Gerya and Yuen 2003) forming atop the slab. Numeri-

cal experiments of Gerya et al. (2006) show that two

distinct types of plumes can form in the mantle wedge

(Fig. 2.9):

1. Mixed plumes form atop the slab and consist of

partially molten mantle and recycled sediments

mixed on length-scales of 1–100 m (i.e. subducted

tectonic melange). Magma production from such

compositionally heterogeneous plumes may pro-

duce a strong crustal melt signature in resulting

magmas.

2. Unmixed plumes form above the slab and consist

of hydrated partially molten mantle located at

a distance from the slab, which is therefore not

mechanically mixed with subducted crustal rocks.

Magma production from such hydrated but compo-

sitionally homogeneous plumes may produce a

pronounced slab fluid signature.
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These distinct plume types can explain the presence

of different magmas in volcanic arcs (e.g., Stern

2002): magmas with distinct crustal signatures (e.g.,

adakites) and primitive magmas from peridotitic

source (e.g., arc tholeiites). Thermal zoning inside

rapidly rising unmixed cold plumes can result in tran-

sient bimodal magmatism because of both the compo-

sitional and the thermal zoning of these structures

(Fig. 2.10a, b), which would generate basalts from

its water-depleted, hot rinds, and boninites from

its water-enriched, cooler interiors (Tamura 1994).

Rates of plume propagation vary between several cen-

timeters to meters per year (Gerya and Yuen 2003;

Gerya et al. 2004) corresponding to 0.1–3 Myr transfer

time through the asthenospheric portion of the mantle

wedge. This is consistent with U–Th isotope measure-

ments from island arc magmas that suggest short

transfer times for fluids (0.03–0.12 Myr) and slab-

derived melts (several Myr) (Hawkesworth et al.

1997). It is noteworthy that the diapiric transport

(e.g. Tamura 1994; Hall and Kincaid 2001) of various

geochemical components in the mantle wedge does

not require melting of subducted crust immediately

at the slab surface (e.g. Kelemen et al. 2004a). Intense

melting of subducted sediments and oceanic crust in

the mixed plumes occurs in the temperature range of

900–1,400�C (Gerya and Yuen 2003; Gerya et al.

2006; Castro and Gerya 2008; Castro et al. 2010)

after penetration of these structures into the hot portion

of the mantle wedge. This behaviour agrees well with

geochemical models suggesting notable sediment

melting beneath the arc, behaviour which is otherwise

not trivial to reconcile (e.g. Kelemen et al. 2004a) with

low slab surface temperature inferred from thermal

models for subduction zones as discussed by George

et al. (2003).

Mixed cold plumes composed of tectonic melanges

derived from subduction channels can transport the

fertile subducted crustal materials towards hotter

zones of the suprasubduction mantle wedge leading

to the formation of silicic melts. Recently magmatic

consequences of this plausible geodynamic scenario

were evaluated by using an experimental approach

(Castro and Gerya 2008; Castro et al. 2009, 2010).

Melt compositions, fertility and reaction between

silicic melts and the peridotite mantle (both hydrous

and dry) were tested by means of piston–cylinder

experiments at conditions of 1,000�C and pressures

of 2.0 and 2.5GPa. The results indicate that silicic

melts of trondhjemite and granodiorite compositions

may be produced in the ascending mixed plume mega-

structures. Experiments show that the formation of an

Opx-rich reaction band, developed at the contact

between the silicic melts and the peridotite, protect

silicic melts from further reaction in contrast to the

classical view that silicic melts are completely con-

sumed in the mantle. It has also been demonstrated

experimentally (Castro et al. 2010) that the composi-

tion of melts formed after partial melting of sediment-

MORB mélanges is buffered for broad range of

sediment-to-MORB ratios (from 3:1 to 1:3), producing

liquids along a cotectic of granodiorite to tonalite

composition in lower-variance phase assemblage

Melt+Grt+Cpx+Pl. The laboratory experiments, there-

fore, predict decoupling between major element and

isotopic compositions: large variations in isotopic

ratios can be inherited from a compositionally hetero-

geneous source but major element compositions can

be dependent on the temperature of melting rather than

on the composition of the source (Castro et al. 2010).

Important geochemical constrains concerns distri-

bution and amount of water above subduction zones

that impose strong controls on chemistry of magmatic

arc rocks forming at the surface (e.g., Kelley et al.

2006 and references therein). Flux of water originating

from the dehydrating, subducting slab lowers the man-

tle solidus (e.g., Kushiro et al. 1968) triggering melt-

ing of the mantle wedge beneath arcs and back-arc

basins (Fig. 2.4). This is supported by a range of

various widespread observations on subduction zone

lavas (e.g., Kelley et al. 2006 and references therein),

seismological data (e.g. Tamura et al. 2002; Jung

and Karato 2001; Iwamori 2007) and numerical mod-

elling constrains (Iwamori 1998; Arcay et al. 2005;

Nikolaeva et al. 2008; Hebert et al. 2009).

Back-arc basins related to intra-oceanic subduction

(Fig. 2.4) are natural places to investigate water-related

processes in the mantle wedge because these settings

can be treated, in many ways, like mid-ocean ridges

(Kelley et al. 2006). Particularly, the driest back-arc

basin melts (Fig. 2.13) are compositionally equivalent

to mid-ocean ridge melts and can be interpreted

as melts generated by decompression melting of

ascending mantle (Fig. 2.4). Geochemical studies of

back arcs related to intra-oceanic subduction (e.g.

Stolper, and Newman 1994; Taylor and Martinez

2003; Kelley et al. 2006) demonstrated the hybrid

nature of the back-arc basin melting process:
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MORB-like geochemistry found in relatively dry

back-arc melts is systematically perturbed in wetter

samples affected by the addition of H2O-rich material

from the subducted slab (Fig. 2.13).

Recently Kelley et al. (2006) examined data com-

piled from six back-arc basins and three mid-ocean

ridge regions and evaluated concentration of H2O in

the mantle source based on measured H2O concentra-

tions of submarine basalts collected at different dis-

tances from the trench (Fig. 2.13). This study clearly

demonstrated that water concentrations in back-arc

mantle sources increase toward the trench, and back-

arc spreading segments with the highest water content

are at anomalously shallow water depths, consistent

with increases in crustal thickness and total melt

production resulting from high H2O. In contrast

to mid ocean ridges, back-arc basin spreading com-

bines ridge-like adiabatic decompression melting with

nonadiabatic mantle melting paths that may be inde-

pendent of the solid flow field and depend on the H2O

supply from the subducting plate (Kelley et al. 2006).

This conclusion is also consistent with numerical

modelling results (e.g. Iwamori 1998; Arcay et al.

2005; Nikolaeva et al. 2008; Honda et al. 2010) pre-

dicting that water-rich mantle sources should mainly

concentrate at 100–250 km distances from the trench

in proximity of water-rich, depleted and chemically

buoyant “cold nose” of the mantle wedge (Figs. 2.11

and 2.12).

2.7 Conclusions

The following messages are “to take home” from this

chapter:

• Modern intra-oceanic subduction zones comprise

around 40%, of the convergent margins of the

Earth and most of them are not accreting sediments

and have back-arc extension.

• It is not yet entirely clear where and how intra-

oceanic subduction initiates although two major

types of subduction zone nucleation scenarios are

proposed: induced and spontaneous.

Fig. 2.13 Mean water content in the mantle source (H2Oo)
versus distance to the trench at back-arc basins (Kelley et al.

2006). The back-arc basin data are regional averages of the

Manus basin Eastern Rifts (MB ER) and the Manus spreading

center/eastern transform zone (MB MSC), the Lau basin central

Lau spreading center (CLSC), the intermediate Lau spreading

center (ILSC), the Mangatolu triple junction (MTJ), the eastern

Lau spreading center (ELSC) and the Valu Fa ridge (VFR), the

East Scotia ridge segments (ESR E2–E4, ESR E5–E8, ESR E9),

and the Mariana trough northern third (NMT), central third

(CMT) and southern third (SMT). The shaded field is the

range of H2Oo for MORB from the same study. The black

arrow indicates the direction that volcanic arcs are predicted to

plot (Kelley et al. 2006).
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• Internal structure and compositions of intra-oceanic

arcs is strongly variable. Both along- and across-arc

variation of crustal thickness and lithological struc-

ture are inferred based on seismological data and

numerical modeling.

• Base of the arc includes crust–mantle transitional

layer of partly enigmatic origin (cumulates?, repla-

cive rocks?, intercalation of various rocks and

melts?) and imprecisely known thickness.

• Major element composition of magmas feeding

arcs from the mantle is debatable, particularly

regarding the MgO content of erupted basaltic

magmas which are too MgO-poor to represent

the parental high-MgO mantle-derived magma.

Magma fractionation and reactive flow models are

suggested to explain this MgO-paradox.

• Exhumation of high- and ultrahigh-pressure crustal

and mantle rocks during intra-oceanic subduction

are strongly controlled by serpentinized subduction

channels forming by hydration of the overriding

plate and incorporation of subducted upper oceanic

crust. Newly formed volcanic rocks and depleted

mantle from the base of the arc lithosphere can be

included into subduction channels at a mature stage

of subduction.

• An array of diverse both clockwise and counter

clockwise P–T–time paths rather than a single P–T

trajectory is characteristic for high-pressure rock

melanges forming in the serpentinized channels.

• Crustal growth intensity in intra-oceanic arcs

(40–180 km3/km/Myr) is variable in both space

and time and should strongly depend on subduction

rate as well as on intensity and character of

thermal-chemical convection in the mantle wedge

driven by slab dehydration and mantle melting.

This convection can possibly include hydrated

diapiric structures (cold plumes) rising from the

slab and producing silicic magmatic rocks by melt-

ing of subducted rock melanges.

• Subduction-related arc basalts (output signal) char-

acteristically have elevated contents of large-ion

lithophile element (LILEs) and light rare earth ele-

ment (LREEs) with depleted heavy REE (HREE)

and high field strength elements (HFSEs) compared

to subducted oceanic crust (input signal).

• The exact origin of geochemical variations in arc

basalts is debatable and may involve a range of

processes such as (a) extraction of fluids and/or

melts from the subducted slab, (b) fluid fluxed and

decompression melting of the mantle wedge, (c)

slab melt–mantle reactions, (d) melting of mantle

wedge metasomatized by slab-derived fluid or melt,

(e) direct supply of felsic melt from eclogitic slab

melting, (f) melting of hydrated mantle and sub-

ducted tectonic melanges in thermal-chemical

plumes.

• Water concentrations in back-arc mantle sources

increase toward the trench. Back-arc basin spread-

ing combines mid-ocean-ridge-like adiabatic

decompression melting with nonadiabatic fluid-

fluxed mantle melting depending on the H2O sup-

ply from the subducting plate. Numerical modeling

results predict that water-rich mantle sources

should mainly concentrate at 100–250 km distances

from the trench in proximity of water-rich, depleted

and chemically buoyant „cold nose„ of the mantle

wedge.

In conclusion, despite recent progress in both

observation and modelling many of the first-order

features of intra-oceanic subduction remain only

partly known and require further cross-disciplinary

efforts.
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