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[1] Spatially averaged, absolute deviatoric stress tensors
along the faults ruptured during the 2002 Denali fault
earthquake, both before and after the event, are derived,
using a new method, from estimates of the orientations of
the principal stresses and the stress change associated with
the earthquake. Stresses are estimated in three regions along
the Denali fault, one of which also includes the Susitna
Glacier fault, and one region along the Totschunda fault.
Estimates of the spatially averaged shear stress before the
earthquake resolved onto the faults that ruptured during the
event range from near 1 MPa to near 4 MPa. Shear stresses
estimated along the faults in all these regions after the event
are near zero (0 = 1 MPa). These results suggest that
deviatoric stresses averaged over a few tens of km along
strike are low, and that the stress drop during the earthquake
was complete or nearly so. Citation: Wesson, R. L., and O. S.
Boyd (2007), Stress before and after the 2002 Denali fault
earthquake, Geophys. Res. Lett., 34, 107303, doi:10.1029/
2007GL029189.

1. Introduction

[2] While analysis of earthquake focal mechanisms per-
mits the determination of the orientation of the principal
stresses at seismogenic depths in the Earth’s crust, estima-
tion of the magnitude of the shear stress acting on faults at
these depths prior to earthquake rupture remains the subject
of controversy. Issues include laboratory measurements of
the static frictional strength of rocks and fault zone materials
that suggest strengths (at about 5 km depth and in the
absence of abnormal fluid pressures) of about 50 MPa,
seismological and geodetic observations that suggest typical
stress drops observed during moderate to large earthquakes
of about 0.1 to 10 MPa, and the constraint indicated by the
lack of an observed heat flow anomaly that indicates an
upper bound on the shear stress of about 20 MPa. See
d’Alessio et al. [2006] and Scholz and Hanks [2004] for
recent reviews.

[3] In this paper we present a new method that enables
estimates of the spatially averaged, absolute deviatoric
stress resolved on the Denali, Susitna Glacier and Tot-
schunda faults both before and after the 2002 Denali fault
earthquake (Mw 7.9). The Denali fault earthquake began
with thrust and right lateral slip on the Susitna Glacier fault
(a thrust fault dipping northward and intersecting the Denali
fault at a depth of about 6 km), then continued as a primarily
right lateral strike-slip event for a total distance of about
300 km along the Denali and Totschunda faults [Haeussler
et al., 2004]. Average slip was about 4 m [Haeussler et al.,
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2004; Hreinsdottir et al., 2006]. Maximum slip is estimated
in the range 8—10 m.

[4] We combine the results from seismologic studies
indicating the orientation of the principal stresses before
and after the earthquake (inferred from the focal mecha-
nisms of small earthquakes within about 30 km of the
Denali fault), together with the stress change in the Earth’s
crust inferred from the slip models determined through
the inversion of geodetic and geologic data, to estimate
the deviatoric stresses acting on the fault before and after the
event. The resulting estimates are not of peak stresses along
the fault, but rather estimates of the stress averaged or
smoothed over length scales of a few tens of kilometers
parallel to the fault and a few km perpendicular to the fault.

2. Observations: The Denali Fault Earthquake

[5] In four regions along the rupture of the Denali fault
earthquake we consider the stress orientations before and
after the event, together with an estimate of the average
stress change derived from a slip model of the earthquake
(Figure 1). Region O1 includes the hypocenter of the
mainshock and the Susitna Glacier fault. Region O2 includes
the central part of the rupture, the Richardson Highway and
TransAlaska Pipeline fault crossing. Region O3 includes the
eastern portion of the fault rupture along the Denali fault
with the largest values of displacement. Region O4 includes
the portion of the rupture along the Totschunda fault.

[6] Ratchkovski [2003] and Ratchkovski et al. [2004]
reported large rotations of the principal stresses at the time
of the Denali fault earthquake, with clockwise rotation
ranging from about 14° in the western part of the rupture
to as much as 38° in the eastern part. Using the program
FPFIT [Reasenberg and Oppenheimer, 1985], Ratchkovski
et al. [2004] determined focal mechanisms for earthquakes
before and after the Denali fault earthquake, then estimated
the orientations of the principal stresses using the ZMAP
implementation [Weimer, 2001] of the stress-tensor inver-
sion method of Michael [1984, 1987]. Also following the
event, there was an increased tendency for thrust mecha-
nisms along portions of the rupture, as contrasted with
strike-slip prior to the event, indicating that the least
compression had changed from horizontal to vertical.

[71 We use the focal mechanisms determined by
Ratchkovski et al. [2004], subdivided into slightly different
regions. Before the Denali fault earthquake (and after the
M6.4 Nenana Mountain earthquake in October of 2002 for
region O1), we have 10, 26, 6, and 6 focal mechanisms for
regions O1, 02, O3 and O4. The corresponding numbers
after the earthquake are 53, 45, 41, and 19. The pressure and
tension axes as well as the orientations of the principal axes
determined by Michael’s [1987] method are shown in
Figure 2. The rotations of the principal compression, S1,
are about 9°, 15°, 35°, and 32° clockwise for the regions O1
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Figure 1. Denali fault and surrounding area showing
surface ruptures associated with the 2002 earthquake and
outlines of subregions. The three panels show the calculated
change in the S,,, S,,, S,, components of the stress tensor
from the resampled dislocation model of Hreinsdottir et al.
[2006]. The stress changes were averaged at the locations of
the aftershocks shown by the open squares. Locations of
earthquakes occurring before the Denali rupture appear as
open diamonds. All six components of the stress tensor
were considered in the analysis but are not shown here.
White circle shows location of Richardson Highway and
TransAlaska Pipeline crossing of the fault. Inset in bottom
panel shows location of surface ruptures of Denali fault
during the earthquake (red line).

through O4 respectively, in close agreement with Ratchkovski
et al. [2004]. In regions O2, O3 and O4, the intermediate
stress, S2, is near vertical prior to the earthquake, while the
least compression, S3, is near vertical after.

[8] From the observed displacement of GPS sites in
Alaska and Canada, and the observed geologic surface
offsets, Hreinsdottir et al. [2006] estimated coseismic fault
displacements in a detailed dislocation model of the rupture
along the Susitna Glacier, Denali and Totschunda faults,
predominately right-lateral along the Denali and Totschunda
faults with a significant component of north-side up dis-
placement along the Denali and Susitna Glacier faults.
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Inferred slips locally reached 8 m or more along the eastern
two-thirds of the rupture. Slip on the Susitna Glacier fault
also reached a maximum of about 8 m.

[o] Hreinsdottir et al. [2006] specified their slip model on
a set of rectangular dislocations each 3 km x 3 km, vertical
along the Denali and Totschunda faults, and dipping north-
ward along the Susitna Glacier fault. The model extends
303 km horizontally and to a depth of 18 km.

[10] From this slip model, we estimate the stress change
associated with the earthquake at a depth of 5 km using the
computer code 3D-DEF [Gomberg and Ellis, 1993, 1994]
based on the equations of Okada [1992]. We assume a
Poisson’s ratio of 0.28 and Young’s modulus of 70 GPa as
appropriate for this depth. To minimize numerical artifacts,
we resampled the Hreinsdottir model, interpolating (and
extrapolating at the edges) to yield a dislocation model
composed of dislocation tiles 0.3 km wide by 0.21 km high.
The resampled model should be nearly identical to the
original model from the point of view of the predicted
displacements of GPS monuments and geologic surface
displacements, and while it does not eliminate artifacts
introduced by the assumption of constant slip on each
dislocation tile, it significantly moderates their influence.
Three components of the calculated stress change are shown
in Figure 1.

3. Estimating the Magnitudes of the Deviatoric
Stresses

[11] Sonder [1990], Zoback [1992] and Hardebeck and
Hauksson [2001] have given expressions in two dimensions
relating the change in orientation of the principal stresses to
a change in shear stress. We show here a method that can be
used in three dimensions to estimate the deviatoric stress
tensor before and after a large earthquake. To begin, the
difference in the stress tensor before and after the earth-
quake is equal to the change in stress associated with the
earthquake,

AS = saﬁer _ Sbejﬂ)re (1)

where the stress change, AS, is found by averaging the
stress tensors resulting from the slip model at the locations
of the aftershocks. Each of these tensors can be split into its
deviatoric and isotropic parts, which must satisfy equation
(1) independently. Therefore for notational simplicity in the
following, let all stresses be considered deviatoric unless
explicitly stated otherwise. Although the stress tensor inversion
method of Michael [1984, 1987] is commonly used to give the
orientations of the principal stresses (the eigenvectors of the
stress tensor), and the ratio of the differences of the principal
stresses, ¢, equivalently the method yields a normalized version
of the deviatoric stress tensor. If we let the normalized deviatoric
stress tensor from Michael’s [1984] method be s, and the
absolute deviatoric stress tensor be S, then we can write

Shefnre _ asbefore

and (2)

Saﬁer — 6Sq}‘ier
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Figure 2. (a) P (black diamonds) and T (green circles) axes of focal mechanisms of Ratchkovski et al. [2004] used in this
study. Their size is proportional to earthquake magnitude. Focal mechanisms were aggregated to estimate the average
orientation of the principal stresses in subregions O1—-04 before and after the earthquake. (b) Stress orientations determined
by the method of Michael [1984, 1987] and the program ZMAP for the three principal directions of the stress tensor, S1 (the
greatest compression, in the diamonds and black contours), S2 (the intermediate stress, in the squares and red contours), and
S3 (the least compression, in the circles and green contours). The contours show the 66% and 95% confidence limits as
determined by the bootstrap analysis. Notice in all regions the clockwise rotation of S1, and in regions O1, O2 and O3 the

swapping of the orientations of S2 and S3.

where the superscripts before and afier signify stresses before
and after the Denali earthquake, and o and 3 are the unknown
scale factors that relate the normalized and absolute deviatoric
stress tensors. Thus (1) can be rewritten as

AS = 3s — qsP?re, (3

~

[12] Since we are dealing with deviatoric stresses (imply-
ing that s.. = —(s\ + 5,,)), there are only five independent
components. Considering the stresses in (3) as column
vectors of the five independent components, we can then
rewrite (3) as

after  __  before
AS. Sex Syx

- i bef
after efore
ASXY SXIY_ _SJWI ) ﬂ
A sz _ Sa/ter _ Sbe/ore |: :| ( 4)
Xz Xz .
. . o
AS Sajler Sbe/ore
y W Yy
AS., Sqfter _ Sbf.{fore
vz V2 =

We can find a linear least squares solution for « and [ that
minimizes the norm of the difference vector between the
right- and left-hand sides. Since to consider negative values
of o and 3 would be equivalent to reversing the sign of the

stress difference and thus violating the observations of stress
orientation, we constrain « and (3 to be positive and use the
non-negative least squares method of Lawson and Hanson
[1974]. Inserting « and [ back into (2), we produce
estimates of the absolute deviatoric stress tensors before and
after the event. Resolved shear stresses on the faults
calculated using all the focal mechanisms within each
region are shown in Table 1 in the columns marked “All
data.” The right-lateral shear stresses range from 0.9 to
3.8 MPa prior to the earthquake, and from 0.0 to 0.4 MPa after.

4. Analysis of Uncertainties

[13] Obviously there are a number of uncertainties in the
above analysis. The sources of uncertainty include 1)
uncertainty in the principal stress directions inferred from
the focal mechanisms, 2) uncertainty in the change in stress
(related to the uncertainty in the slip model and the
sampling and smoothing of the change in stress), and 3)
uncertainty related to the less than perfect fit of a and 3
during the least squares inversion. We will examine the
effect of uncertainties in the slip model more formally in
future work, but we examine here the influence of the other
factors on the final result. We anticipate that the large
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Table 1. Shear Stresses (MPa) Resolved on Principal Faults and Scale Factors, o and (3, Before and After the Event®

Before After
Strike-Slip Dip-Slip Alpha Strike-Slip Dip-Slip Beta
Bootstrap Bootstrap Bootstrap Bootstrap Bootstrap Bootstrap
Fault All Data Mean S.D. All Data Mean S.D. Mean S.D. All Data Mean S.D. All Data Mean S.D. Mean S.D.
Western Denali 0.9 1.5 1.0 0.8 0.9 0.6 22 1.1 0.3 0.8 0.7 0.3 0.9 0.7 1.2 1.0
Susitna Glacier 1.0 1.3 0.8 1.4 1.9 1.0 22 1.1 0.2 0.4 0.4 —0.2 0.4 0.4 1.2 1.0
Central Denali 2.7 2.1 1.0 0.9 0.6 0.6 42 1.9 0.3 0.2 0.6 0.2 0.3 0.7 4.5 23
Eastern Denali 3.8 3.0 1.1 2.3 1.5 1.2 3.1 1.0 0.0 0.0 0.4 0.9 0.7 0.5 2.5 1.2
Totschunda 2.3 2.3 0.6 0.3 0.3 0.6 2.3 0.6 0.4 0.5 0.5 0.1 0.0 0.1 0.6 0.5

“Right-lateral and north-side up stresses are positive. “All data indicates solutions obtained using all focal mechanisms. “Mean” and “S. D.” are results
only from combinations of bootstrap samples giving positive values of the constants « and /.

amount of spatial smoothing inherent in our approach will of « and 3, we find these solutions to be physically unreason-
tend to moderate the influence of short-scale roughness and able. Since we are considering only a subset of possible
uncertainties in the slip model, as well as the impact of uncertainties it can be argued that our histograms are too
differences among various slip models inferred for the narrow and standard deviations too small. The means and
Denali fault earthquake. standard deviations derived from this analysis are presented in
[14] The ZMAP implementation of Michael’s [1984, Table 1. The mean values are all within 0.8 MPa of the values
1987] algorithm provides a bootstrap analysis of the uncer- calculated with all the data. The standard deviations range
tainty in the orientation of the principal stresses. More specif-  from 0.6 to 1.2 MPa before, and 0.1 to 0.7 MPa after.
ically, 2000 random subsets of the focal mechanisms are used [15] It should also be noted that as the misfit between the
to derive 2000 realizations of the orientation of the principal observed and predicted stress change, the left and right hand
stresses, producing a measure of uncertainty. It is straightfor-  side of equation 4, respectively, increases, o and (3 tend
ward to propagate this uncertainty through the solution of toward smaller values. If instead of requiring all « and [ to
equations (4) above. We save each of 2000 bootstrap solutions  be positive, we reject solutions with relative residuals
for the stress orientations before and 2000 bootstrap solutions ~ greater than 0.5, which effectively removes negative values
for the stress orientations after the earthquake. We take all of a and (3, the curves in Figure 3 better approximate
possible pairs of ‘before’ and ‘after’ principal stress orienta- normal distributions. The means before the Denali earth-
tions and associated stress change averages and solve for the —quake increase by roughly 50% and the standard deviations
principal stresses and the stresses on the faults. This procedure  are left unchanged.
results in a histogram (approximating a probability density [16] We prefer the mean estimates of stress from the boot
function) for the derived stresses (Figure 3). We reject strap analysis (“Mean” in Table 1), although the large
solutions where o and (3 are identically zero because, like standard deviations (lower bounds as discussed above)
the linear least squares solutions that result in negative values and the differences between the results for “All data” and

Region O1 (Susitna Glacier)

>
9
2 |
o
1
g |
i I
o \
= l
5
e n
UANS
5 0 5 10
Region O1 (Denali) Region O2 (Denali) Region O3 (Denali) Region O4 (Totschunda)
1 T
) i b
c I
5] )\\ |
= N
2 Ji|
[y fit' A
o Y
2 i
3 |
] [
i n /N \
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
Shear stress, MPa (Right-lateral and north side-up, positive)
Region O1 Region 02 Region O3 Region 04
N 7
g N \ ,\
S I\ |
% [
o
w
o
=
5
[
[

10 5
Scale factors determined from least-squares solution

Figure 3. Histograms from bootstrap analysis for the parameters « and 5 and the shear stresses on the indicated faults.
The solutions for v and (3 are required to be non-negative. Identically zero solutions for either «v or 3 are also rejected. The
number of rejected solutions depends on data quality and varies among regions.
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the mean values emphasize the relatively large underlying
uncertainties.

5. Discussion

[17] Results of the application of our method to the
Denali fault earthquake indicate that the shear stresses
resolved on the faults at a depth of 5 km, averaged over
regions with dimensions 10—20 km perpendicular to the
fault and of order 30—40 km parallel to the fault, are on the
order of 1 -4 MPa = 1 MPa prior to the earthquake and were
reduced to about 0 MPa + 1 MPa after the earthquake. The
near-complete stress drop is in agreement with the obser-
vations of Michael et al. [1990] and Zoback and Beroza
[1993] following the 1989 Loma Prieta earthquake along
the San Andreas fault, and Castillo and Zoback [1995] for
the White Wolf fault following the 1953 Kern County
earthquake. The region of highest average stress prior to
the earthquake was located near the region of highest slip,
just west of the junction of the Denali and Totschunda
faults. Significant variability and peaks of higher stresses
within these regions are evident, and further analysis is
required to deduce how the absolute deviatoric stresses vary
with spatial scale.

[18] The estimated uncertainties are a large fraction of the
estimated magnitudes of the stress components. The prin-
cipal contributor to this uncertainty is the relatively small
number of focal mechanisms available before the event.

[19] These results seem to favor a fault that is, averaged
over spatial scales of tens of kilometers, relatively weak.
Assuming a normal hydrostatic gradient, coefficients of
sliding friction (the ratio of shear stress to effective normal
stress) at a depth of 5 km prior to the earthquake are on the
order of 0.05 to 0.1.

[20] Application of the results of Hardebeck and Hauksson
[2001, Figure 2] for two-dimensions to the geometry of
the Denali fault earthquake and the stress rotations observed
by Ratchkovski et al. [2004] confirms that the deviatoric
stresses before the event should be expected to be of
the same order as the stress change, as observed here.
Hardebeck and Hauksson [2001] inferred a pre-existing
deviatoric stress on the order of 10 MPa for the 1992
Landers earthquake, about two or more times the values
inferred here, but also well below the values required to
sustain slip if the average coefficient of friction were about
0.6.

6. Conclusions

[21] We have developed a method for estimating the
magnitudes of the averaged shear and normal stresses
resolved onto faults at depth in three dimensions before
and after significant earthquakes together with their uncer-
tainties. Using this method, we have derived the deviatoric
stress tensors along the Denali fault before and after the
2002 Denali fault earthquake. Although the uncertainties are
relatively large compared to the magnitudes of the average
shear stress, the results argue strongly against average shear
stresses as high as those predicted by static rock mechanics
experiments assuming a normal hydrostatic gradient. In
contrast, these results argue that the Denali fault is weak.
The lack of appreciable shear stress on the fault subsequent
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to the earthquake encourages time-dependent probabilistic
seismic hazard analyses.
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