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Seismic Attenuation in Partially Saturated Dime-shaped Cracks

HARTMUT SCHÜTT,1 JENS KÖHLER,2 OLIVER BOYD3 and HARTMUT SPETZLER1,4

Abstract—We have examined the effect of surface contamination on the attenuation and stiffness
of compressional seismic waves in artificial cylindrical glass cracks that are partially saturated with
water. The compression of the gap perpendicularly to its plane reduces the gap volume and forces the
water to redistribute within the gap (conservation of volume of an incompressible liquid). On clean
surfaces, the water can flow without significant resistance across the glass. This leads to a very low and
almost constant attenuation over a wide frequency range (approx. 3 mHz to 10 Hz), while the sample
stiffness is constant. In the case of propanol contaminated surfaces, both the attenuation and the
stiffness are considerably higher than in the clean case, and display a considerable frequency dependence.
Both effects can be explained with the Restricted Meniscus Motion Model. In this model, the
redistribution of the liquid in the gap first leads to a change (increase) of the contact angle. The change
of the meniscus curvature results in an increase of the pressure in the liquid and thus to a stiffening of
the sample. When the resistive force, that prevents the contact line from sliding along the surface, is
finally overcome, the contact line starts moving across the contaminated surface. The motion against the
resistive force dissipates energy and increases the attenuation. The calculated data are in good agreement
for both the clean and the contaminated case; the model parameters fall in the range that was established
by independent experiments (e.g. WAITE et al., 1997).
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Introduction

The attenuation of seismic waves in fluid-containing rocks is dominated by
processes involving the pore fluid. Interpretation of attenuation data requires an
understanding of the underlying processes. Experiments on partially saturated
cracks have already shown a qualitative agreement between local fluid flow models
(MURPHY et al., 1986) and measured data (MÖRIG et al., 1997). However, this
agreement in attenuation and stiffening is only valid for frequencies higher than the
relaxation frequency of the local fluid flow mechanism. The experimental results of
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MÖRIG et al. (1997) showed that stiffening and attenuation do not vanish below the
relaxation frequency of the local fluid flow mechanism. No such stiffening and
attenuation below the relaxation frequency are predicted by local fluid flow models.
WAITE et al. (1997) have shown that the stiffening and the attenuation below the
relaxation frequency of the local fluid flow mechanism are due to the deformation
and the motion of the meniscus. This can be described by a numerical model that
is in good agreement with the data obtained with rectangular artificial cracks. Grain
to grain contacts in sandstones may resemble penny-shaped cracks (MURPHY et al.,
1986) or Hertzian contacts. PALMER and TRAVIOLA (1980) have shown that the
viscous attenuation is strongly dependent on the aspect ratio, i.e., the ratio
thickness/diameter, of the intergranular fluid disk: The larger the aspect ratio, the
smaller is the attenuation.

In this paper we extend the restricted contact line motion model of WAITE et al.
(1997) to cylindrical symmetry. The calculations for the cylindrically shaped fluid
droplets are compared with attenuation and stiffness measurements on artificial
glass cracks with axis-symmetric shape for two different surface conditions: A
chemically cleaned and baked sample (in the following referred to as clean sample),
and a sample that was contaminated with propanol after cleaning (contaminated
sample). The measurements are performed with a wideband spectrometer that is
described in detail in CHERRY et al. (1996). The aim of these experiments is to
investigate the relative contribution of different absorption mechanisms (local fluid
flow, contact line motion) to the total absorption of seismic waves in fluid-filled
cracks under different contamination conditions. These results are vital for the
understanding of the results of seismic measurements in fluid-filled porous rocks
and for the development of seismic methods for the detection of subsurface
contaminants.

Figure 1
Basic schematic of the sample design. The curvature of the upper lens is greatly exaggerated.
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Experimental Procedure

Attenuation and stiffness measurements are made using a broad band (1
mHz–100 Hz) seismic attenuation spectrometer (CHERRY et al., 1996). The instru-
ment employs an optical interferometer to measure the magnitude and the phase of
the deformation of the sample and a reference. The elastic reference consists of
three rectangular soda-lime glass slides separated by stainless steel wires. The
sample and the reference are deformed in series. Because the reference has a
stiffness near that of the sample and no measurable attenuation, the reference can
be used as a stress gauge to calculate the sample’s complex modulus (MÖRIG et al.,
1997).

The sample consists of two nearly parallel, circular glass surfaces (lenses)
separated by an elastic spring (cf. Fig. 1). The upper lens is not exactly flat but
slightly curved. As a result, the gap is narrowest in the center and widens towards
the edges of the plates. The fluid is held in place in the center by capillary forces.
The curvature of the upper lens is so low that we neglect it for the interpretation
of the data, i.e., we replace the lenses by a parallel plate model. During assembly,
great care is taken to achieve a reproducible stiffness of the assembly at a given gap
separation. Then the gap is partially saturated with a fluid, usually water. The fluid
forms a disk with cylindrical symmetry around the vertical symmetry axis of the
crack (cf. Fig. 1). This configuration corresponds to the partially saturated inter-
granular gaps of the Murphy model (MURPHY et al., 1986).

The measurements can be performed with a dry sample or with a partially
saturated sample with clean or with contaminated surfaces. The clean state is
achieved by heating the lenses in an oven at 420°C for 2 hours. This procedure
leads to a condition which is reproducible. The clean condition is reflected in a
relatively mobile fluid front when the partially saturated crack is compressed, i.e.,
only a small resistive force is acting against the advancing fluid. To contaminate the
surfaces, the upper and lower surfaces of the gap are covered with a thin film of a
fluid contaminant and are allowed to dry under room conditions. A detailed
description of the experimental procedure, including the cleaning of the sample, can
be found in BOYD (1997).

Restricted Meniscus Motion Model

The observation of an everyday phenomenon like sliding water drops on a
vertical window can reveal much about the physics that underlie those phenomena
where the contacts of different phases—solid, water, and air—play an important
role. Many drops are stuck to the surface and start sliding when they grow to a
critical size. The speed of the sliding drop depends on the ability of the fluid to wet
the surface and on its viscous properties. The maximum size of a stuck drop is
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Figure 2
Schematic of the liquid disk. U is the contact angle, r1 and r2 are the radii of curvature of the meniscus

(r1�r2).

indicative of the maximum static forces on the line of contact. On the basis of
similar observations and measurements we developed a model to explain the
attenuation and dispersion of seismic waves in partially saturated media due to the
existence of phase boundaries (liquid/gaseous/solid). This attenuation and disper-
sion occurs in addition to the effects caused by local fluid flow (MURPHY et al.,
1986).

The model was described in detail by WAITE et al. (1997). We will review here
only the essentials and apply the model for the interpretation of the experimental
results obtained with the cylindrical samples.

The harmonic, uniaxial compression of the sample (see Fig. 1) changes the gap
volume. The fluid is assumed to be incompressible, i.e., the change in the gap height
will result in a fluid redistribution. This redistribution can occur in two ways: the
meniscus can change its shape and thus its contact angle and the contact lines can
move across the solid surface. We assume that the meniscus retains the shape of a
circular arc and that the cross section of the liquid disk between the plates is always
a circle (i.e., the displacement of the contact line is independent of the azimuth).

The attenuation in this model is due to the contact line motion against a
resistive force. It occurs only while the contact lines are moving. The change in the
surface area of the meniscus while stuck does not contribute to the attenuation in
this model. The resistive force can be found by balancing the forces (per unit
length) at a stationary contact line. This balance is given by Young’s equation
(WAITE et al., 1997):

lsg=lsl+llg · cos U0 (1)

l is the surface tension at the different interfaces; the indices s, l, and g refer to the
phases solid, liquid, and gas, respectively; U is the contact angle (cf. Fig. 3).

Optical measurements of the contact angle on oscillating plates indicate that for
stationary contact lines the contact angle can vary over a range of values (WAITE

et al., 1997). This behavior is referred to as contact angle hysteresis. To allow for a
range of possible contact angles, the classical Young’s equation (1) must be
modified:

lsg=lsl+llg · cos U+llg · (cos U0−cos U) (2)
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Figure 3
Contact angle U at a three-phase boundary, and the surface tensions between the phases (GUÉGUEN and

PALCIAUSKAS, 1994).

(WAITE et al., 1997).
The last term is the resistive force per unit length, and U0 is the equilibrium contact

angle.
Experimental data are such that the relationship between the contact angle, U,

and the contact line velocity, 6, may be represented by an equation such as

U(6)=U0+m · 6+arctan
� 6
6ref

�
(3)

(WAITE et al., 1997).
An example of the U vs. 6 relationship is shown in Figure 4. Equation (3) is a

convenient representation of a function which is very steep around 6=0 but, unlike
a step function, is continuous everywhere. Here m scales the slope of the curve for
velocities which are large compared with the reference velocity 6ref, which itself scales
the steepness of the curve around 6=0. The parameter b scales the magnitude of the
hysteresis, i.e., the range of contact angle where the meniscus is stuck (cf. Fig. 4).

To calculate the behavior of the system under sinusoidal compression normal to
the gap, we use an iterative approach. For every time step, the position and shape
(i.e., contact angle) of the meniscus are determined using equation (3) together with
the conservation of the fluid volume. As long as the meniscus can deform, the
displaced liquid is accommodated in the increasing volume that is created by the
bending meniscus. In this case the meniscus is stuck and the pressure in the fluid is
increasing. When the meniscus can no longer deform at a rate that allows for complete
accommodation of the displaced liquid, the contact line starts moving. The change
of capillary pressure within the liquid is directly related to the change of the contact
angle [cf. eq. (7)].
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Figure 4
Contact angle as function of the contact line velocity. The hysteresis, i.e., the change of the contact angle

around zero velocity, determines the nearly frequency independent portion of the total attenuation.

The force required for the deformation of the gap is due to
(a) changes of the capillary pressure (the product of the change in capillary

pressure times the wetted surface area of the gap);
(b) the force due to the stiffness of the dry crack, i.e., a simple spring.

Energy Lost

When the force acting on the contact line exceeds the opposing resistive force
Fres, the contact line starts sliding. The dissipated energy is simply given by force
times distance, where the force is the resistive force of the sliding contact line [i.e.,
surface tension times total length of the two (top and bottom) contact lines 2 · 2pr2

(Fig. 2)], and the distance is Dr2:

Elost= %
cycle

4pr2FresDr=4pr2 %
cycle

llg [cos U0−cos U(6)]Dr. (4)
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Energy Stored

The stored energy consists of two parts:
(a) In dry crack. In a dry crack, the energy is stored only in the deformation of

the crack as a spring (i.e., F=k · Dh, where k is the spring constant and Dh is the
displacement):

Edry=
1
2

kdryDhmax
2 (5)

where kdry is the stiffness of the dry crack and Dhmax is the amplitude of the gap
deformation.

(b) In changes of the fluid pressure. While the contact line is stuck, the pressure
change in the liquid during deformation adds another term to the stored energy.

The capillary pressure in the liquid depends on the mean radius of the meniscus
(GUÉGUEN and PALCIAUSKAS, 1994), which is given as

1
rm

=
1
r1

+
1
r2

. (6)

The radii r1 and r2 are defined in Figure 2. (The radius of the fluid disk, r2, in the
experiment is approximately 2 orders of magnitude larger than the radius of the
meniscus, r1, i.e., the mean radius of the fluid-gas interface equals the meniscus
radius to a good approximation.)

The increase of the capillary pressure can be calculated from Laplace’s equation
(e.g., GUÉGUEN and PALCIAUSKAS, 1994):

Dpc=2llg ·
�cos U0

h0

−
cos U

h
�

, (7)

where the index 0 denotes the equilibrium values of the contact angle, U, and of the
gap height, h, respectively. The restoring force on the crack is given by the product
of the capillary pressure times the wetted surface area. With the known dry stiffness
of the crack, we can calculate the plate displacement, Dhliq that would be caused by
the capillary pressure of the liquid. Thus, the energy stored in the pressurized liquid
is equivalent to the energy required to change the dry crack height by Dhliq (WAITE

et al., 1997):

Eliq=
1
2

kdryDh liq
2 . (8)

The total energy stored, Estored, is the sum of the energy stored in the dry gap [eq.
(5)] and in the liquid [eq. (8)], i.e., Estored+1

2kdry(Dhmax
2 +Dh liq

2 ). The attenuation is
then

1
Q

=
1

2p
·

Elost

Estored

. (9)
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The crack stiffness is calculated from the stored energy. The restoring force is
assumed to be proportional to the change of the gap separation, Dh, from the initial
gap separation, h0; kdry, is the stiffness of the dry gap, kwet is the stiffness of the gap
with partial fluid saturation, A is the wetted gap area.

Estored=
1
2

kdryDhmax
2 +

1
2

kdry
�DpcA

kdry

�2

=
1
2
�

kdryDhmax
2 +

(DpcA)2

kdry

n
=

! 1
2

kwetDhmax
2 (10)

[
kwet

kdry

=1+
� DpcA

kdryDhmax

�2

. (11)

Equation (11) shows that the stiffness of the partially saturated gap is higher than
the stiffness of the dry gap.

Figure 5
Fluid disk radius and contact angle for the 3rd cycle of a harmonic uniaxial compression of the fluid
filled gap with 0.01 Hz. The time intervals with sliding and stuck meniscus can clearly be distinguished.
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Figure 6
Hysteresis loop for the 3rd cycle of the compression at 0.01 Hz. The labels indicate the time in seconds.
The parts of the curve which correspond to a stuck meniscus can be distinguished by their steeper slope.
The effective stiffness of the gap over the entire cycle equals the slope of the long axis of the loop. The

nonelliptical shape of the loop indicates a nonlinear behavior of the sample.

The behavior of the meniscus during one cycle of the sinusoidal deformation is
shown in Figure 5. The radius of the liquid disk and the contact angle are plotted
versus time. The frequency in this example is 0.01 Hz. The results are shown for the
3rd cycle, i.e., for a time interval from 200 to 300 seconds, because the modeling
program requires a couple of cycles to reach a stable solution.

The sliding meniscus (changing radius) can clearly be distinguished from the
stuck meniscus (constant radius) in Figure 5. In the first case, the contact angle is
constant. In the latter case it is changing to accommodate the displaced liquid.
From the radius vs. time graph we can easily calculate the contact line velocity. In
Figure 6, the force vs. gap height relationship for a complete cycle is shown. The
force is the product of the change of the fluid pressure due to the change of the
contact angle [eq. (7)] and the wetted gap area. This curve can be regarded as a
representation of the classical hysteresis loop, i.e., the stress-strain-behavior for a
complete cycle. Unlike the classical elliptical hysteresis loop for linear systems, we
obtain a loop which indicates a highly nonlinear system. This nonlinearity is a
consequence of the strong amplitude dependence and is in stark contrast to other
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Figure 7
Frequency dependence of the attenuation in water-filled gaps for clean and propanol contaminated

surfaces. Symbols are measured values, lines are results of model calculations.

models, e.g., the Murphy model (MURPHY et al., 1986), that do not depend on the
deformation amplitudes. The stuck meniscus (between 225 and 240 sec, and
between 275 and 290 sec) can be clearly distinguished (cf. Fig. 5) from the sliding
meniscus by the change of the local slopes of the curves. The area within the loop
corresponds to the dissipated energy per cycle.

Results

Figures 7 and 8 illustrate the measured attenuation and stiffness as a function
of frequency for both a clean sample (triangles) and a sample that was contami-
nated with propanol (diamonds). The saturant was distilled water in both cases.
The lines are the results of numerical calculations using the restricted meniscus
motion model. The model parameters are summarized in Tables 1 and 2.

The modeled attenuation data fit the measured data generally very well, only the
steep increase for the contaminated sample could not be reproduced with reason-
able model parameters. The modeled stiffness data that correspond to the modeled
attenuation data reproduce the measured stiffnesses well for frequencies below 10
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Figure 8
Frequency dependence of the stiffness corresponding to the attenuation shown in Figure 7. The increase

of the stiffness at the highest frequencies might be due to resonance effects within the samples.

Hz in the case of the clean sample and for frequencies below 1 Hz in the case of the
contaminated sample (the stiffness is somewhat overestimated for this sample at
very low frequencies). Above these frequency thresholds the measured data mani-
fest a pronounced increase that does not correspond to the model output. The
measured stiffness of a dry sample exhibits the same behavior. Local fluid flow
effects (MURPHY et al., 1986) can thus be excluded. They contribute significantly
only at frequencies which are at least one order of magnitude higher than those
used in the experiment. We attribute the increasing stiffness at the high frequency
end of the spectrum, at least in part, to apparatus resonance. The resonance
frequency and peak width are themselves functions of the stiffness and attenuation.
We have not included apparatus resonance in our present model.

Table 1

Constant model parameters

Gap separation 123.0 mm
1.0 mmAmplitude of compression
1.0 cmRadius of fluid disk

72.0 mN/mSurface tension of water
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Table 2

Physico-chemical parameters

u0 [°] b [°] m [°/(m/sec)] 6ref [m/sec]Surface condition

28.65 11.46 28.65 2 · 10−9Clean
57.30 14 · 10−919.19Contaminated 28.65

Three model parameters are particularly important to describe the attenuation
and stiffness of the artificial crack in our model. The hysteresis b (see Fig. 4), which
describes the change of the contact angle from its equilibrium value to the value
when the meniscus finally starts moving, scales the ‘‘background’’ of the attenua-
tion and stiffness. It is a problem to fit the measured data by varying b alone, since
a variation of the hysteresis has two opposite effects: A large value of b means a
large change of the contact angle and a large increase of the stiffness. On the other
hand, a large change of the contact angle means that a large amount of the
displaced fluid volume can be accommodated by the deforming meniscus. In this
case, the contact line is forced to move only a very short distance or even stays at
its initial position. Therefore the attenuation, which depends on the product of
force (given by the change in contact angle) and contact line displacement, reacts
very sensitively to a change of the geometrical parameters of the system (initial gap
height, fluid disk radius, deformation amplitude): Even in the case of a high force
acting on the contact line, i.e., large contact line hysteresis, the attenuation may be
very small, since the contact line displacement may be very small (or zero). As a
consequence, there is no simple relationship between attenuation and stiffening of
the system: A very large increase of the stiffness relative to its quasistatic value is
not necessarily accompanied by a high attenuation. This raises the question of
causality of the model. One way to couple a high stiffening with a higher
attenuation is to make the deformation of the meniscus dissipative. In our present
model, energy is consumed only in the case of a moving contact line, and no energy
is consumed due to the deformation of the meniscus itself. We have not yet
examined whether the deformation of the meniscus with stuck contact lines
dissipates energy.

The second parameter that is essential for the numerical results is the reference
velocity 6ref which scales the slope of the contact angle vs. contact line velocity
curve at very low velocities (see Fig. 4). This parameter is responsible for the
attenuation and dispersion at the lower frequencies. The magnitude of both
quantities depends very sensitively on 6ref. The significance of this result is not yet
clear. The reference velocity was introduced to scale the steepness of the contact
angle vs. contact line velocity curve for very low velocities, i.e., while the contact
line is stuck. We model this curve as an arc tangent [eq. (3)] for its mathematical
simplicity. To approach a steplike function, we had to introduce 6ref as a scaling
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parameter with very low values. Even in the case of the contaminated sample, the
curve is still very steep, although considerably less steep compared to the clean case.
The most characteristic feature of the measured attenuation for the contaminated
sample, the strong attenuation and dispersion at very low frequencies, can be
explained only with a significant increase of 6ref relative to the clean case.

The modeling results also depend rather sensitively on m, the slope of the U(6)
curve for higher velocities, but to a lesser extent than on the other two parameters.
The slope m has an effect on the attenuation and stiffening at higher frequencies,
but with reasonable values it is not possible to obtain a stiffening comparable to the
measured increase of the stiffness. That is why we think that this stiffening is—at
least in part—due to resonance effects in the samples.

The results depend only slightly on the equilibrium contact angle U0. This might
be surprising because one may expect a change of the surface conditions from the
clean to the contaminated sample, which should lead to different equilibrium
contact angles. However, this result is consistent with the findings of WAITE et al.
(1997). They measured angles of 22.0° for clean surfaces and 21.5° for propanol
contaminated surfaces. In summary, the results of the attenuation and stiffness
measurements with an artificial cylindrical model crack show distinct differences for
clean and a propanol contaminated samples. In order to explain these experimental
findings with a restricted meniscus motion model we must assume a larger hys-
teresis of the contact angle for the contaminated sample, compared to the clean case
and a less steep contact angle vs. contact line velocity curve for very low velocities.
Frequency dependent effects above 1 Hz are attributed to the mechanical resonance
of the apparatus. Local fluid flow effects seem to be insignificant in the frequency
range under consideration (3 mHz to 20 Hz).

Summary and Conclusions

In this paper we present a restricted contact line motion model to explain the
measured attenuation and stiffness data from artificial circular cracks partially filled
with water. Such cracks serve as a model for typical pores in natural rocks. The
results from laboratory measurements on cracks with different surface contamina-
tion conditions (clean and contaminated with propanol) can be quantitatively
understood when our model is applied. The model parameters fall within the range
of values for meniscus behavior that have been measured independently. The clean
sample displays an almost constant attenuation and stiffness for frequencies below
10 Hz. The stiffening above this threshold cannot be explained by fluid flow effects,
neither contact line effects nor local fluid flow effects. It is related to the resonance
when the frequency approaches the natural resonance frequency of the system.
Note that the increase in stiffness is also present for the case of the dry sample,
where no fluid is involved. In the case of propanol contaminated surfaces, both the
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attenuation and stiffness increase considerably with increasing frequency. This
increase, starting at a lower frequency for the contaminated crack, is at least
qualitatively expected from the broadening of the resonance peak, which accompa-
nies the higher attenuation.

The very high attenuation at low frequencies for the contaminated sample,
which is accompanied by an increasing stiffness, is the most striking feature of the
measured data. This attenuation and dispersion can be explained by the restricted
meniscus motion model only by a modification of the contact angle vs. contact line
velocity curve (Fig. 4) relative to the clean case. For the contaminated sample, this
curve must be considerably less steep around zero velocity. The overall increase of
the attenuation and stiffness from the clean to the contaminated sample can be
attributed to an increase of the contact line hysteresis near zero velocity. This is in
agreement with hysteresis measurements by WAITE et al. (1997). The model results
depend very sensitively on the geometry of the crack and the fluid disk and on the
deformation amplitude. The relation of the modeled attenuation and stiffness raises
the question of causality, which cannot yet be answered.
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