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Abstract

We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions

and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic

seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation

in the 1–0.1Hz frequency range but is of general utility and can be used at all scales of space and time. This program

was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources

and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a

better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination,

and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the

user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield,

absorption and two types of reflection are available.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The advent of affordable personal computing systems

has made the calculation of three-dimensional finite-

difference synthetic seismograms a reasonable endeavor.

Analytic solutions to the elastic wave equation are

confined to simple problems, usually a set of flat layers

(Frederiksen and Bostock, 1999). Finite-difference solu-

tions, however, allow a fully arbitrary model to be

specified (Bohlen, 2002; Igel et al., 1995; Juhlin, 1995;
e front matter r 2005 Elsevier Ltd. All rights reserve
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Kelly et al., 1976; Levander, 1988). This advantage

provides for a full set of surface multiples, focusing and

defocusing of seismic waves, wave front healing, and

complex frequency-dependent effects to be observed.

One disadvantage of the numerical finite-difference

approach is the production of artifacts resulting from

numerical instability and imperfect boundary condi-

tions.

We have produced a second-order finite-difference

solution to the anisotropic elastic wave equation. This

solution is implemented as a Matlab script, which has

the advantage of enabling the user to interrogate and

change variables during runtime. For example, the

wavefield as a function of time can be observed allowing

the seismologist to determine how a particular arrival

was produced. We have verified our solution by

comparison with analytic methods.
d.
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2. Method

The seismic wave equation is derived from setting the

acceleration of a given mass with density r, the second

derivative of its position, u, with respect to time, t, equal

to the forces acting on that mass (Shearer, 1999). These

forces include body forces, fi, such as gravity as well as

normal and tangential stresses that act on the surface of

the mass:

r
@2mi

@t2
¼
X

j¼1;3

@tij

@xj

þ f i. (1)

The subscripts i and j refer to the coordinate directions,

e.g. x, y, and z, u is displacement, t is time, and x is a

spatial dimension. The stress, t, must be expressed in

terms of the displacement. The anisotropic stress–dis-

placement relationship is (Babuska and Cara, 1991)

tij ¼ cijkl
1

2
qluk þ qkulð Þ, (2)

where cijkl is the fourth-order stiffness tensor having 21

independent elastic coefficients for an arbitrary aniso-

tropic medium.

Upon substitution of (2) into (1), a set of first- and

second-order derivatives are produced. The second-

order finite-difference solution for the first and second

spatial derivatives of displacement are

qu

qx
¼

uiþ1 � ui�1

2 dx
, (3)

q2u

qx2
¼

uiþ1 � 2ui þ ui�1

dx2
. (4)

Spatial derivatives of cijkl are obtained in the same

fashion. The second-order temporal derivative is analo-

gous to Eq. (4) where x is replaced by t and i by a

temporal index, n. We then solve for un+1, which results

in the second order finite-difference solution to the

anisotropic wave equation for displacement.

To maintain numerical stability, the temporal spacing

should adhere to the following formula:

dt �
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=rþ lþ 2mð Þ=r
p , (5)

where m and l are the Lamé parameters (Kelly et al.,

1976). The first (second) term in the denominator is the

square of the isotropic S-wave (P-wave) velocity. These

terms should reflect the largest seismic velocities allow-

able by the stiffness tensors used in the model. To

minimize dispersion, the grid spacing should be less than

one-tenth of the wavelength at the upper half-power

frequency (Kelly et al., 1976), this time considering

the minimum seismic velocity. Dispersion can also

be reduced by using a higher-order spatial derivative

(Levander, 1988), but that method is not imple-

mented here.
Additional problems can result from artifacts gener-

ated by the boundary conditions. This is mitigated by

increasing the width of the model domain or using some

type of absorbing boundary. We employ the absorbing

boundary developed by Higdon (1991). The displace-

ment on the boundary is expressed as a function of

neighboring displacements, time, and seismic velocities,

utþ1 ¼ �qxutþ1;2 � qtut;1 � qtxut;2, (6)

where

qx ¼
b Bþ Vð Þ � V

Bþ Vð Þ 1� bð Þ
,

qt ¼
b Bþ Vð Þ � B

Bþ Vð Þ 1� bð Þ
,

qtx ¼
b

b� 1
,

b ¼ 0:4,

B ¼ 1,

V ¼ v
dt

dx
. ð7Þ

The absorbing velocity is v and is the velocity of the

wavefront normal to the boundary. B and b are

arbitrary constants. Values of 1 and 0.4, respectively,

are suggested by Higdon (1991) and work well in many

cases, but they may be modified to provide better

absorption.

Two other types of boundaries include a reflecting

boundary, where the displacement is set equal to zero,

and a simple yet unconventional surface-perpendicular

stress-free boundary, which we consider the free surface.

The stress-free boundary has no surface-perpendicular

displacement gradient. The displacement on the bound-

ary is set equal to the displacement on the interior

resulting in stress-free surface-perpendicular compo-

nents. It is more common to set the normal and

tangential stresses, containing both surface-parallel

and surface-perpendicular components, to zero and

solve the resulting equations. Whereas our method is

stable for ratios of S- to P-wave velocity greater than

0.25, Vidale and Clayton (1986) present a method

for applying a free surface boundary condition that

achieves stability for ratios of S- to P-wave velocity

greater than 0.02.

The final boundary condition, though not necessarily

implemented on a boundary, is a specified condition and

is usually used to specify the initial displacements on the

boundary that are propagated into the model. This

condition could be effectively used to minimize artifacts

which commonly appear from the vertical sides of the

model domain. For a non-vertically incident teleseismic

wavefield, the bottom edge of the model toward the

source will typically generate an additional wavefield

that can interfere with interpretation, hence the need to



ARTICLE IN PRESS
O.S. Boyd / Computers & Geosciences 32 (2006) 259–264 261
increase the width of the model domain. Application of

this boundary on the vertical sides toward the source

would eliminate this artifact. But due to the added

complexity of having to determine reflectivity series and

the resulting time series for each point along the vertical

boundaries, this modification is not currently included.

These equations are implemented efficiently in Matlab

in that the use of ‘for’ loops are minimized. Indexes to

matrices are vectorized. This technique can lead to a

significant reduction in processing time. For calculations

involving ‘for’ loops and vectors with less than about

545 elements, processing time roughly doubles when the

number of elements increases by a factor of 2 (Fig. 1A).

For greater numbers of elements, calculation time

increases more rapidly. Vectorized calculations however,

show a very different trend. If the number of elements is

doubled, processing time increases but by an amount far

less than a factor of 2 (Fig. 1B), indicating that the

actual calculation is not what requires much of the
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Fig. 1. Processing time of ‘for’ loops (A) and vectorized

calculations (B) for varying vector sizes.
processing time. At about 545 elements, the processing

time for vectorized calculations jumps by 30%, likely

indicating the use of a different subroutine. For a vector

with 100–1000 elements, the processing time required for

looped calculations is 30–300 times greater than for

vectorized calculations.

As an example of how the vectorized calculation is

implemented in FDWaveAni.m, consider the second

derivative of x-displacement, u, with respect to first, the

y-direction and then to the z-direction,

@2u

@y@z
:; J;Kð Þ ¼

u :; J4;K4ð Þ � u :; J4;Koð Þ � u :; Jo;K4ð Þ þ u :; Jo;Koð Þ

4dydz
,

ð8Þ

where the colon, :, represents all indices along that

dimension, J and K represent vectors of grid indices in

the y- and z-direction, respectively, and the greater than

and less than subscripts indicate a shift of those vectors

to either side of the points in question. For example, if y

varied from 1 to 5, e.g. 1, 2, 3, 4, 5, then the colon symbol

would take on the values 1, 2, 3, 4, 5, J would be 2, 3, 4,

Jo would be 1, 2, 3, and J4 would be 3, 4, 5.
3. Verification and discussion

We have verified the implementation of this solution

by comparison with analytical solutions for simple cases.

In the first test case, an isotropic structure is modeled for

which is observed a primary arrival and various multi-

ples (Fig. 2). In the second case, the structure has an

anisotropic layer (Fig. 3).

For both cases, the model consists of 2 layers, a 90 km

thick isotropic layer overlain by either an isotropic or

anisotropic 30 km thick surface layer. Free surface

boundaries are implemented on the top and sides and

a gaussian source pulse with a dominant period of 5 s is

propagated from the bottom. The grid spacing is 1 km

and the sample interval is 0.1 s. A model that has

50� 50� 50 nodes requires 509MB of Ram and takes

2.08 s per time step on a Pentium 3.4GHz under Matlab

7.0.1 and Windows XP.

Fig. 2 presents results for an isotropic medium with an

impinging P-wave (A) and S-wave (B). The finite-

difference results are given by the dashed lines, and the

analytical results are given by the solid lines. In (A), the

first two multiples can be seen within the time window

shown, while in (B) only the first multiple is observed.

The finite-difference and analytical solutions agree well.

The finite-difference solution produces a slight asym-

metry in the source pulse, which is due to grid

dispersion. Reducing the grid spacing will result in less

distortion but will require a shorter sampling interval to

insure numerical stability. Fig. 3 presents results for an
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Fig. 2. Comparison of finite-difference solution (dashed) and

analytical solution (solid) for a vertically incident P-wave (A)

and S-wave (B) impinging on an isotropic layer. Arrival with

negative polarity is first multiple.
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Fig. 3. Comparison of finite-difference solution (dashed) and

analytical solution (solid) for a vertically incident S-wave

impinging on an anisotropic layer. Negative arrivals are first S-

wave multiples.
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anisotropic medium with an impinging S-wave. Our

finite-difference solution also agrees well with the

analytical prediction, but again suffers slight grid

dispersion leading to the asymmetry in the seismic pulse.

This program has been used successfully to discrimi-

nate among possible isotropic structures in receiver

function modeling (Boyd et al., 2005; Boyd and

Sheehan, 2005b; Wilson et al., 2004; Zandt et al.,

2004). For receiver functions, the vertical component

seismogram is deconvolved from the radial component

to remove complex source time series and reveal, ideally,

the P- to S-wave conversions from subsurface impe-

dance contrasts. This deconvolution is not necessary for

our synthetics since the source time series is initially a
simple Gaussian. Standard receiver function techniques

can be carried out however, to investigate the unwanted

effects of deconvolving P-wave multiples from the radial

component seismogram. The authors of the following

examples use our code to calculate their synthetics and

do not perform deconvolution to create their receiver

functions.

Fig. 4 shows the synthetics generated by Wilson et al.

(2004) to discriminate between a step or gradual ramp in

the Moho beneath the northern South Island of New

Zealand. The model is 500 km wide and 250 km deep

with a node spacing of 500m. This model requires

1.4GB of memory and when run for 2600 time steps,

takes on the order of 12 h to complete on a Sun Ultra 30

or 2 hours on a 3.2GHz P4. Their receiver function

stack strongly resembles the synthetics, which incorpo-

rate the same source-receiver geometry, having the

Moho ramp and even includes the same significant

artifacts due to non-uniform spatial sampling. Fig. 5

presents the modeling done by Zandt et al. (2004) to

discriminate among candidate structures for the Moho

beneath the southern Sierra Nevada. Based on their

receiver function stack, they determined that a cusp on

the Moho was more likely than either a series of steps or

constant dip. In Fig. 6, synthetics were generated for a

subduction zone structure to attempt to explain arrivals

seen in both a common conversion point receiver stack

(Boyd et al., 2005) and migrated receiver function stack

(Boyd and Sheehan, 2005b) beneath the northern South

Island of New Zealand. In both cases, the synthetic

stacks strongly resemble the corresponding stacks made

with real data.
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Fig. 4. Synthetic results using code developed in this paper for

receiver functions in New Zealand (Wilson et al., 2004).

Source–receiver geometry for real dataset was used as input

to finite difference calculations. Top figure depicts a step in

Moho at subsurface location of Wiarau fault whereas bottom

depicts a constant dip across fault.

Fig. 5. Synthetic results using code developed in this paper for

receiver functions beneath Sierra Nevada (Zandt et al., 2004).

Source–receiver geometry for real dataset was used as input to

finite difference calculations. Top figure depicts a cusp in

Moho, middle, a step, and bottom, a constant dip.
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The program has also been used to investigate the

effects of frequency-dependent focusing and defocusing

on the ability to measure seismic wave attenuation

(Boyd and Sheehan, 2005a). Allen et al. (1999) noted

that large seismic velocity gradients extending to several

hundred kilometers depth can sufficiently bend low-

frequency seismic rays to generate significant errors in

estimates of attenuation. With this in mind, Boyd and

Sheehan (2005a) used synthetics and the expected

seismic velocity structure beneath the Colorado Rocky

Mountains to find that, for their experiment, errors in

attenuation due to ray bending would be negligible.
4. Conclusions

We have created a program to calculate second-order

finite-difference synthetic displacement seismograms for
heterogeneous anisotropic media in three dimensions.

The solution is implemented in a Matlab script allowing

greater interaction of the user with the temporally and

spatially evolving wavefield. Matlab scripts are notor-

iously slow, especially when loops are introduced. We

have minimized the use of loops and the resulting

solution is efficient. Companion scripts are included

which provide a framework for input to the finite

difference solution as well as a routine to rotate the

anisotropic tensors.

Our solution has been verified by comparison with

simple analytical models. Computation time is reason-

able allowing approximately 60 000 nodes to be com-

puted per second in each time step on a 3.4GHz

Pentium CPU. Multiple applications of this program

have been reported in which the authors were success-
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Fig. 6. Synthetic results from Boyd et al. (2005) (top figure) and

Boyd and Sheehan (2005b) (bottom figure) using code

presented in this paper. Both figures show effects of a

subducting slab on common conversion point (CCP) and

migrated receiver function stacks.
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fully able to use the resulting synthetic seismograms to

better interpret teleseismic data.
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