

wsavran@unr.edu kbogolub@unr.edu

What are you using for Power Generation and Storage?

Montana

- Almost all solar panels with 12V LAB (AGM if possible)
- Rare AC power at stations/repeaters

TexNet

- 160W Sunrise Solar Panel
- SunSave MPPT Charge Controller
- Two 105Ahr Hr Gel

USGS - NCSN

- One 200W panel (formerly two 100W)
- MorningStar SunSaver 15A MPPT
- Four 12V Sun Extender AMG (fancy LAB) in parallel
- For solar boost: 350W panel, Morningstar ProStar 25A charger, same batteries

CERI (NM, ET, AG)

- Majority of stations are solar, strive for 25:1 power ratio
 - Meaning 5W load gets 130W solar
- Victron Energy MPPT SmartSolar
- Four GRP 27 100Ahr AGM batteries

What are you using for Power Generation and Storage?

Utah - Solar

- Misc panels 10-300W
- FlexCharge (NC12L12), VLF Designs (SR-2, SR-4, SR-5b, BC-4, BC-10), MorningStar (ProStar-15, SunSaver MPPT)
- 6-12V LABs (79/220Ahr) and 12 Air Cell (V/1200Ahr)

Utah - Urban

- Sola-HD SLS-12-017T L-Frame AC/DC
 Converters w/ 12V/92Ahr batteries (typically)
- AC Power Adapters

SCSN

- 211 solar powered and 167 AC-powered
- Deep cycle batteries for backup at all
- Generator backup at some
- Variety of different solar controllers, panels, and AC-chargers (Victron energy, MorningStar, ProMariner, etc.)

South Carolina

- One 330-390W solar panel
- Midnight Solar TheKid charge controller
- KiloVolt Li battery (with bluetooth)

A/C Seismic

NN_MOHS

NN_CF02

12V Seismic

24V Seismic Kit (New design)

Major Comm Site

24V Camera Site

48V Camera Site

CVO Power Systems

- CHARGE CONTROLLERS: MorningStar SunSaver MPPT 15-L
 - □ 12V and 24V systems (switches intelligently)
 - AC: Use in-line with Mean Well CLG-150-15C AC/DC Power Supply to charge backup battery
- Sun Xtender PVX-1040T batteries (12V, 104Ah AGM)
 - seem to perform well in varying temperatures; no history of defects
 - Addition of air cells in locations with deep snow
- Various solar panels, primarily 12V nominal monocrystalline
- Power levels are monitored using voltage outputs from digital radios

CVO Power Systems

- Diode steering for redundant solar charging systems
 - Backups in case of MPPT failures (common in dry environments, manufacturer has been unable to determine cause)
 - Multiple solar panels at different angles, sometimes exceeding current input of a single controller
- Pre-built "power distribution" panels simplify wiring in field

Power Generation - Solar

390W solar array – occasional triple panel setup when needed

Power Storage

Solar: 400-1000Ah in 24V (Mostly 400Ah)

Hosted: 100Ah back-up battery

Aircell back-up banks at 4 critical remote stations

Power Distribution

Standard panel at all PNSN sites

Power Conversion – Hosted

AC-to-DC conversion, with UPS for local devices if needed

Power Generation - Solar

810W solar array (2 panels in series, 2 in parallel)

Power Storage - Solar

Deka gel 265Ah batteries 4p2s (1060Ah total at 24V)

Power Distribution - Solar

Power Distribution - Comms Facility

Power over Ethernet supplies

UPS and Smart PDU

Surge suppression

Router

What are the biggest consumers of power at your stations?

USGS - NCSN

- Radios
- Cell modems

Utah

- Raspberry Pis
- Cell Modems
- Sensors
- Radios

CVO

- Radios
- GNSS Receivers

Montana

- At analog stations FM radios
- Data loggers (usually)

CERI (NM, ET, AG)

- Radios
 - 900 MHz Xetawave X9 draws 3-4W of a 5W station load

• VSAT

Nevada

- Radios
- Cell modems
- Fire cameras
- Routers

TexNet

- Modems
- Dataloggers

Biggest Power Consumers

Axis Q6075-E camera

- 14W typical
- 50W during manual operation
- 60W when running heater
- Relay-controlled low voltage disconnect (typically no fires to monitor in winter)

Ubiquiti Airfiber 5XHD radio

- 12W
- Commonly 2 radios per site

What are your biggest challenges relating to power systems?

South Carolina - Solar pathfinder (and tall trees!)

USGS - NCSN

- Sunshine!
- Trees blocking sunshine
- Some sites only accessible by helicopter in winter

CERI (NM, ET, AG)

- Deferred maintenance
 - Upgrading old solar systems for robustness

South Carolina

• Trees keep growing!

TexNet

Battery testing

Montana

- Weather in NW Montana very PNW
 - Foggy hard for VSTA
 - Low sunshine for power

What are your biggest challenges relating to power systems?

SCSN

- Using a low voltage disconnect (pros and cons)
 - Pros: Low voltage disconnect protects batteries from a deep discharge if there is a power supply issue at the station.
 - Cons: Often, equipment can run on low voltages. Interrupting load to conserve batteries may result in an earlier offline status for the site.
 - Exploring an optimal cut-off threshold for a programmable low voltage disconnect

Utah

- Backcountry access, strenuous approaches
- Weather
 - Temp impacts battery
 - Snow buries stuff, cover panels
 - Wind knocks stuff over
 - Lightening blow fuses
 - Rain flooding
- Animals snack on cables play with equipment

Nevada

- Backcountry access, strenuous approaches
- Weather (see Utah box)

CVO Power Systems

- Most issues are climate-related
 - Snow depths exceed 10ft for weeks to months in some areas
 - Rime Ice
 - High winds causing solar panel blowouts or abrasion
 - Temperatures too low for LiFePO battery charging
- Biggest consumers: radios, GNSS receivers

Power System Challenges

- PNSN

Seismic analysts observed diurnal power fluctuations in long period seismic data with Centaur loggers. Installed 9-36V-in/24V-out voltage converters to stabilize the voltage.

 The unintended consequences of this is that the VEC (voltage in) channel on the Centaur just records a (mostly) flat line. So we have no 1-sps record of system voltage. Cell modems, radios, etc

are used to monitor.

Host: BDGR_ENDPOINT_XETA9 Service: volts

Power System Challenges

After

Power-Related Challenges

- > Reconciling various site designs:
 - ShakeAlert sites utilize simplistic design for resilience.
 - Wildfire monitoring sites have higher wattage & varied voltage needs.
- > Evolving site designs:
 - More sensors & new tech for multi-hazard monitoring.
- Future challenge will be calibrating "service technician" type position and R&D engineer type position (currently in early stages).

How do you monitor the SOH of your power systems?

Utah

- Doesn't stream SOH
- But can check SOH remotely through loggers

Montana

 Watch battery voltage via datalogger when comms are functional

South Carolina

 Reverse engineered the Bluetooth protocol on the KiloVault batter to get percent charge every 15min

TexNet

- Remote: Continuous voltage monitoring and storage
- Local 30 day review of MPPT (Maximum Power Point Tracking) data

SCSN

- System SOH channels from catalogers
- Interfaces like AirVantage for Sierra Wireless (cell modems)
- Victron for Victron Energy products (charge controllers, AC-chargers)

How do you monitor the SOH of your power systems?

USGS - NCSN

- SeisNetWatch
 - Power on Radios and Dataloggers
- Also monitors:
 - Radio signal health
 - Mass positions
 - Data logger temp
 - Packet loss
 - Latency

Nevada

- Nagios real time with alerts
 - Battery temps
 - Battery voltages
 - Latency
 - Packet loss
 - Total data return
- Remote access to data loggers

CERI (NM, ET, AG)

- Can monitor power SOH with Victron Cerbo GX
- Victron SmartSolar regulators have Bluetooth you can monitor, configure and save the system status when at the site but not remotely

Are you trying anything new or unique for power systems?

USGS - NCSN

- Thermoelectric Power
 Generators (TEG) as continuous
 power source for backup
 batteries
- Ordering the solar hybrid model to use TEG as backup generators
 - Can switch from solar to TEG on low sun days

Utah

 Backup Air Cell batteries at very remote sites in Yellowstone

Montana

 Experimenting with TCp/IP voltmeter via TingSpeak to monitor VSTA batter bank

Nevada

- GenStar 100 amp charge controller
- CBW Control by web
 - Allows us to turn of components on the site remotely to have less power usage

South Carolina

- KiloVault hack
 - manufacturer wont provide spec on packets, but we found the percent charge value

Are you trying anything new or unique for power systems?

TexNet

 Using the - 30 day review of MPPT (Maximum Power Point Tracking) data

SCSN

- Most recent installations, have the Victron remote management system to track power generation and use.
 - Features: userfriendly graphical interface and configurable alarms.

CERI (NM, ET, AG)

- Added a solar/battery/inverter backup system to an AC powered telemetry NM repeater site.
 - Had solar and battery backup several extended outages recently due to ice, wind and tree fall damage to the power lines
 - 167 ft tower site is a microwave and analog telemetry repeater with links to multiple data collection nodes.
 - Now have a 3000 W inverter system with 1080 W of solar and 600 AHr of battery backup for an approx. 200 W of load
 - Should be good 24/7/365!!!

New Power System - Efoy

- Appears to provide about 70W in real application
- Enough to carry the load and save batteries from overly deep discharge

