# NetOps VIII

# **Transient Suppression and Attenuation**

Jim Bollwerk

CERI/The University of Memphis







# Primary transients which keep us up at night are surges caused by LIGHTNING!



**World Lightning Map:** The map shows the average yearly counts of lightning flashes per square kilometer based on data collected by NASA's Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission satellite between 1995 and 2002.

About 2,000 thunderstorms at any given time produce about 100 Lightning flashes per second



# In the continental US there is on average 1.3 Lightning flashes per second

#### VAISALA

#### Number of Cloud-To-Ground Flashes by State from 2006 to 2015

| State         | Flashes<br>In 2015 | Average Flashes<br>2006 to 2015 | State          | Flashes<br>In 2015 | Average Flashes<br>2006 to 2015 |
|---------------|--------------------|---------------------------------|----------------|--------------------|---------------------------------|
| Alabama       | 730,828            | 747,187                         | Nebraska       | 979,186            | 747,311                         |
| Arizona       | 704,526            | 606,742                         | Nevada         | 187,587            | 141,229                         |
| Arkansas      | 654,797            | 853,135                         | New Hampshire  | 16,487             | 24,721                          |
| California    | 162,935            | 84,772                          | New Jersey     | 20,425             | 48.688                          |
| Colorado      | 629,581            | 523,788                         | New Mexico     | 1.033,658          | 792,932                         |
| Connecticut   | 8,833              | 20,059                          | New York       | 103,018            | 194,497                         |
| Delaware      | 8,249              | 13,922                          | North Carolina | 415,306            | 469,062                         |
| D.C.          | 795                | 683                             | North Dakota   | 335,265            | 296,727                         |
| Florida       | 1,412,565          | 1,192,724                       | Ohio           | 268,215            | 412,702                         |
| Georgia       | 735,153            | 691,449                         | Oklahoma       | 1,181,718          | 1,088,240                       |
| Idaho         | 122,876            | 82,194                          | Oregon         | 58,623             | 53,420                          |
| Illinois      | 663,685            | 792,479                         | Pennsylvania   | 185,682            | 293,286                         |
| Indiana       | 395,847            | 451,499                         | Rhode Island   | 2.728              | 2,516                           |
| lowa          | 591,417            | 674,486                         | South Carolina | 291,590            | 378,270                         |
| Kansas        | 1,179,272          | 1,022,120                       | South Dakota   | 690,465            | 474,145                         |
| Kentucky      | 527,869            | 533,960                         | Tennessee      | 451,210            | 537,786                         |
| Louisiana     | 864,949            | 813,234                         | Texas          | 4,071,174          | 2,878,063                       |
| Maine         | 42,733             | 53,378                          | Utah           | 240,682            | 215,298                         |
| Maryland      | 71,391             | 81,506                          | Vermont        | 15,175             | 29,958                          |
| Massachusetts | 15,182             | 24,823                          | Virginia       | 256,350            | 309,273                         |
| Michigan      | 166,378            | 260,915                         | Washington     | 24,789             | 25,592                          |
| Minnesota     | 448,363            | 361,808                         | West Virginia  | 118,212            | 185,192                         |
| Mississippi   | 649,035            | 787,768                         | Wisconsin      | 190,593            | 276,142                         |
| Missouri      | 1,054,081          | 1,066,703                       | Wyoming        | 347,035            | 279,632                         |
| Montana       | 307,545            | 318,628                         | TOTALS         | 27 674 059         | 22 214 647                      |

These cloud-to-ground lightning flashes were measured by the National Lightning Detection Network<sup>\*</sup> (NLDN<sup>\*</sup>) over the land area inside state borders. The NLDN does not cover Alaska or Hawaii. The NLDN is owned and operated by Vaisala.



Vaisala Inc. 2705 E. Medina Road Tucson, Arizona 85756 www.vaisala.com

#### Rank of Cloud-To-Ground Flash Densities by State from 2006 TO 2015

| State              | Ave. Flashes<br>Per Year | Flashes<br>Per Square Mile | State             | Ave. Flashes<br>Per Year | Flashes<br>Per Square Mile |
|--------------------|--------------------------|----------------------------|-------------------|--------------------------|----------------------------|
| 1. Florida         | 1,192,724                | 20,8                       | 26. Pennsylvania  | 293,286                  | 6.5                        |
| 2. Louisiana       | 813,234                  | 17.6                       | 27. New Jersey    | 48,688                   | 6.4                        |
| 3. Mississippi     | 787,768                  | 16.5                       | 28. South Dakota  | 474,145                  | 6.2                        |
| 4. Arkansas        | 853,135                  | 16.O                       | 29. Arizona       | 606,742                  | 5.3                        |
| 5, Oklahoma        | 1,088,240                | 15.6                       | 30. Colorado      | 523,788                  | 5.0                        |
| 6. Missouri        | 1,066,703                | 15.3                       | 31. Wisconsin     | 276,142                  | 4.9                        |
| 7. Alabama         | 747,187                  | 14.4                       | 32. Michigan      | 260,915                  | 4.5                        |
| 8. Illinois        | 792,479                  | 14.1                       | 33. Minnesota     | 361,808                  | 4.3                        |
| 9. Kentucky        | 533,960                  | 13.3                       | 34. North Dakota  | 296,727                  | 4.2                        |
| 10. Tennessee      | 537,786                  | 12.8                       | 35. Connecticut   | 20,059                   | 4.1                        |
| 11. Indiana        | 451,499                  | 12.5                       | 36. New York      | 194,497                  | 4.0                        |
| 12. Kansas         | 1,022,120                | 12.4                       | 37. Vermont       | 29,958                   | 3.2                        |
| 13. South Carolina | 378,270                  | 12.2                       | 38. Massachusetts | 24,823                   | 3.1                        |
| 14. Iowa           | 674,486                  | 12.0                       | 39. Wyoming       | 279,632                  | 2.9                        |
| 15. Georgia        | 691,449                  | 11.7                       | 40. New Hampshire | 24,721                   | 2.7                        |
| 16. Texas          | 2,878,063                | 10.9                       | 41. Utah          | 215,298                  | 2.5                        |
| 17. D.C.           | 683                      | 10.1                       | 42. Rhode Island  | 2,516                    | 2.3                        |
| 18. Ohio           | 412,702                  | 10.0                       | 43, Montana       | 318,628                  | 2.2                        |
| 19. Nebraska       | 747,311                  | 9.7                        | 44. Maine         | 53,378                   | 1.6                        |
| 20. North Carolina | 469,062                  | 9.5                        | 45. Nevada        | 141,229                  | 1.3                        |
| 21. Maryland       | 81,506                   | 8.2                        | 46. Idaho         | 82,194                   | 1.0                        |
| 22. Virginia       | 309,273                  | 7.7                        | 47. Oregon        | 53,420                   | 0.6                        |
| 23. West Virginia  | 185,192                  | 7.6                        | 48. California    | 84,772                   | 0.5                        |
| 24. Delaware       | 13,922                   | 7.0                        | 49. Washington    | 25,592                   | 0.4                        |
| 25 Now Movico      | 702 072                  | 65                         |                   |                          |                            |

These cloud-to-ground lightning flashes were measured by the National Lightning Detection Network<sup>\*</sup> (NLDN<sup>\*</sup>) over the land area inside state borders. The NLDN does not cover Alaska or Hawaii. The NLDN is owned and operated by Vaisala.

VAISALA

Vaisala Inc. 2705 E. Medina Road Tucson, Arizona 85756 www.vaisala.com

Updated February 2016





#### The Formation of Lightning

As hot air rises in a thunderhead ice particles are formed and these cold air columns then fall. These rising and falling air columns cause constant collisions between the ice particles and static charges builds up

Eventually the static charge becomes large enough to cause the air to break down

An initial small charge breaks out

cloup to cloup to

seeking and ideal path, primarily either cloud-to-cloud or cloud-to earth

Once the path is established a series of *strokes* which comprise a *flash* follows



How Lightning is Formed What the component manufactures and site protection designers look at

Research data compiled during the past 40 years characterizes a typical lightning event as a *flash* composed of multiple *strokes* with the possibility of many lower-current return strokes which can be a significant source of damage due to poor grounding

The total *flash* lasts less than 0.2 seconds and each *flash* is composed multiple *strokes* (4+) which are separated by about 40 micro-seconds The lapse between *strokes* is what causes the lightning to seem to flicker

#### The Power of Lightning

The typical rise time to peak current per stroke is about 1-10 micro-seconds

The typical event will carry currents in the 10-50 kilo ampere (kA) range

Fourier analysis characterizes a typical event as having energy in the DC-1 MHz range

About 75% of the energy from a *flash* is dissipated as heat and can raise the temperature of the typical 3 km long lightning channel by 15,000 to 30,000 °C

But there's still plenty of energy to wreak havoc!



#### A Few Grounding Principles

When your site takes a lightning strike proper grounding and bonding is critical for the transient suppression devices to work properly

The Grounding should provide a low resistance return path to the earth for transient surges

In some cases this requires a distributed grounding system to help dissipate the energy over a larger area



For distributed systems try and minimize the differential ground potential and isolate sensitive circuits so high current transients won't use them as a path to ground



#### What are we protecting?

- RF telemetry systems
- AC power systems
- DC power systems
- Analog data systems
- Digital data acquisition systems
- GPS systems

IS

The grounding and transient suppression systems primary function is to limit differential voltages across the Inputs and Outputs of these systems or devices while conducting as much event current as possible to earth ground

## RF inputs/outputs and radios



### Starr Mtn, TN Central Receive









## High Peak, NC Central Receive



# New Madrid, MO and Lenox, TN Central Receives











BCRT, Bacon Ridge, TN



CLTN Cedars of Lebanon SP, TN

#### AC power systems



ASTN, Avondale Springs, TN



#### AC power systems



### NMSZ and ETSZ CR Node Racks







### **DC Power and Analog Balanced Lines**

# Comparison of common surge suppression devices

| Device |                        | High Energy<br>High Current | Low<br>let-through<br>Voltage | No follow-on<br>current<br>(non crowbar) |
|--------|------------------------|-----------------------------|-------------------------------|------------------------------------------|
| **     | Silicon Devices        | XX                          | 11                            | 1                                        |
| 4      | MOVs                   | 1                           | 1                             | 1                                        |
| •      | Traditional Spark Gaps | 11                          | ×                             | XX                                       |



BAB, Bad Ass Balun



#### Heavy Duty TSP for DC power and 24 VDC Solar Systems





#### Two and Three Stage Suppressors

The first stage uses gas tubes which are extremely fast and have good bulk current capability

The second stage utilizes MOV's (metal oxide varistors) because of their good bulk surge capability. They are isolated from the first stage by inductors which cause a voltage drop and allow the gas tubes to fire even though the MOV's have a lower clamping voltage.

The final stage uses silicon avalanche type devices which have good clamping action. They are isolated from the second stage by resistors, inductors or a transformer. If the surge current is excessive they will fail safe by shorting out.



#### PWLA, Pickwick Lake, AL















## CMG-5TD Strong Motion Stations





#### Basalt/Obsidian Strong Motion Station Conversion









# A PNSN transient noise attenuation problem submitted Marc Biundo

We broke the issue down into two problems before heading to the site(Mt. Hebo EEW Station Oregon Coast.)

- 1. Periodic (every 10 minute) transients.
- 2. Random transients.

Toolkit for problem assessment:

Oscilloscope

Hand Held consumer grade 400Mhz walkie talkie.... (controllable source of transients) PC with access to real time data logger traces. RF Chokes, snap on, various sizes.... Camera

I had never been to the site, but found this when I arrived.... RF Towers





I had never been to the site, but found this when I arrived.... RF Towers



Heater, above....





While onsite confirmed problems and was able to recreate same signal and magnitude of transient with test equipment.

Top three traces are a base line of capturing the problem before any changes/ modifications are made.

Bottom two traces show how to control/stimulate the issue at the same magnitude....





Goal: Attenuate transients.

Approach:

Assess instrumentation cables, placement, layout...etc...

Add RF Chokes on any or all compromised Seismic system(digitizer) cables....

Assess any power cables; UPS, DC Supply, AC Heater and move them away from instruments.

#### Test:

Recreate problem and reduce/eliminate it! Confirm with different variations.... Make sure you did not inject new problems! Monitor and document process to keep a running history of the problem, potential fix and approach.

#### **Results:**

- 1. Periodic transients attenuated.
- 2. Random transients attenuated.

Success? Would like to observe for a week or so to confirm. AND Make sure we did not compromize seismic signal by injecting a filter into the analog signal chain....



Looking at spectrum of the periodic pulse, before/after.... Before attenuation:



#### after attenuation:



#### Snap on transient suppressing RF Chokes:



