
Time Series Analysis

Richard C. Aster and Brian Borchers1

July 30, 2021

1 c©2002-2020, Richard C. Aster and Brian Borchers

Preface

This online textbook arose out of a general time series and data processing
course for physical scientists and engineers that was taught, variablly, either
jointly and individually by us at New Mexico Tech beginning in the early 1990s.
The aim of this work is to provide a concise and fundamental background in
time series (and on occasion, spatial data) along with some associated analysis
concepts and linear methods. The level at which the subjects are addressed
assumes a basic facility with complex numbers, calculus, and trigonometry, and
is thus particularly suitable for mid-level to advanced undergraduates through
early graduate students. The (certainly highly incomplete) set of topics from
the enormous general field of series analysis that we cover here includes linear
processes, Fourier methods, characterizaton and analysis of random processes,
Kalman filtering, and autoregressive moving average (ARMA) modeling. Some
of these topics necessarily overlap with those covered in our textbook written
with Cliff Thurber, Parameter Estimation and Inverse Problems [2], and we
refer readers to that reference for a complementary treatment of estimation and
inverse topics presented at a similar level.

We sincerely hope that students studying and colleagues working with these
topics across many disciplines will find this textbook to be useful in a variety of
educational and reference settings.

Rick Aster

Department of Geosciences, Warner College of Natural Resources, Colorado
State University, Fort Collins, CO USA

Brian Borchers

Department of Mathematics, New Mexico Institute of Mining and Techonol-
ogy, Socorro, NM USA

August 2020

i

Contents

Preface i

1 Linear Time Invariant Systems 1

2 Linear Time Invariant Systems in the Frequency Domain 10

3 Sampled Time Series And The Discrete Fourier Transform 39

4 Spectral Analysis 58

5 Digital Filtering 77

6 Deconvolution 120

7 Introduction to Multidimensional and Multichannel Processing135

8 Notes on Random Processes 157

9 Kalman Filtering 171

10 ARMA Modeling 184

A Discrete Approximation of a Convolution 200

B Primer on Complex Numbers and Arithmetic 207

C Finding an Impulse Response via Contour Integration 212

D Plotting Spectra Using Decibels 215

E Plotting Spectra Using the FFT 219

F Summary of Fourier Transform Properties 226

Bibliography 231

ii

Chapter 1

Linear Time Invariant
Systems

Introduction to Linear Systems, Part 1: The Time
Domain

Our primary goal is to understand methods of analyzing temporal and spatial
series, especially as applied to linear systems, both in continuous and sampled
(discrete) time, and to demonstrate applications to important problems in geo-
physics and other physical sciences. Most of the examples worked here were
done using MATLAB, and we will refer to this software from time to time.

We will be mostly concerned with an important class of physical situations
that can be adequately characterized by linear systems. A linear system is a
functional transformation, φ, which converts an input signal, x(t) to an output
signal, y(t)

y(t) = φ[x(t)] (1.1)

and which follows the principles of superposition

φ[x(t) + y(t)] = φ[x(t)] + φ[y(t)] (1.2)

and amplitude scaling
φ[αx(t)] = αφ[x(t)] (1.3)

where α is a scalar. Note that for positive integer values of α (1.3) is equivalent
to (1.2). (1.3) also implies that the output of the system is zero when there is
no input

φ[0] = 0 . (1.4)

Many of the phenomena which we wish to study in geophysics and other
areas of science are linear. Sometimes we study very weak perturbations to a
physical system (e.g., small gravity variations, seismic disturbances far away
from the source; effects due to small fluctuations in the magnetic field) and the

1

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 2

linear approximation is valid because the system is not tweaked very far from
equilibrium. Common situations where linearity does not hold up are generally
instances of large amplitude (e.g., high strain elastic waves near an underground
nuclear explosion or earthquake; ocean waves breaking at a shoreline). In these
cases the physics of the problem depends strongly on the amplitude of the
perturbation, so that superposition (1.2) and scaling (1.3) do not hold (and are
not even acceptable approximations).

Many interesting systems are also time-invariant, i.e., the functionality of φ
is not time dependent. In some situations, of course we intentionally look for
gradual time variations in a system response, but these usually take place on
time scales greater than the duration of our signals of interest. For example,
earthquake prediction researchers hope that this is not the case for some aspect
of evolving earth response in an incipient main shock region.

A linear system is said to be causal if the output at time t0 depends only
on values of the input for t ≤ t0. Note that all physical processes are causal
(as acausal systems propagate information backwards in time!). It is very easy
mathematically, to construct non-causal mathematical systems, and these for-
mulations may be useful in processing stored information. Also keep in mind
that physical spatial phenomena (e.g. spatial filters) need not obey “causality”
constraints.

A linear system is said to be stable if every non-infinite input produces a
non-infinite output. While obvious for systems in the physical world (which
will become non-linear in some manner rather than produce an infinite output)
stability is important consideration in mathematical models of active systems
(i.e., systems that have feedback between output and input).

The simple rules defining linear systems provide far-ranging and very useful
constraints on the mathematical characterization of the system. Most impor-
tantly, linear systems are especially tractable, and very useful analysis tools,
embodied in Fourier Theory describes their behavior complementary domains
of time and frequency.

It may at first appear remarkable that the input to output transformation
of any linear, time-invariant system can be characterized by a general integral
relation (a convolution). To derive this result, we must first define the Dirac
delta or impulse function. The delta function is discontinuous; it is nonzero only
exactly where its argument is zero, where it is infinite. One way of conceptual-
izing the delta function (and to make it mathematically rigorous) is to define it
as a limiting set of functions. One definition (e.g., Bracewell) is:

δ(t) = lim
τ→0

τ−1Π(t/τ) (1.5)

where τ−1Π(t/τ) is the unit-area rectangle or boxcar function of height τ−1

and width τ . The limit of 1.5 as τ approaches zero is an infinitesimally narrow
pulse of infinite amplitude centered on t = 0, and having unit area. It can be
shown that one need not start with the rectangle function to obtain the same
functional limit, we could just as easily have considered a limit of any set of
unit-area functions (e.g., an appropriately scaled set of Gaussians). Although

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 3

the delta function may seem outrageously artificial, it actually has a plethora
of analytical uses in the theory of physical and theoretical system behavior.

The usefulness of δ(t) in our present context arises from its sifting property,
whereby it can retrieve a functional value at a particular argument from within
an integral ∫ b

a

f(t)δ(t− t0)dt = f(t0) (1.6)

= f(t0) a ≤ t0 ≤ b (1.7)

= 0 elsewhere (1.8)

for any f(t) continuous at finite t = t0.
The delta function is one of several related discontinuous functions which

will be of use to us. Another is the step function

H(t− t0) ≡
∫ t

−∞
δ(τ − t0)dτ (1.9)

which is 0 for t < t0, 1 for t > t0, and takes a discontinuous step at t = t0. The
step function is a useful mathematical construction for “turning on” a system
at t = t0.

We can define the boxcar function, Π(t), and sign function, sgn(t), in terms
of H(t)

Π(t) = H(t+ 1/2)−H(t− 1/2) . (1.10)

sgn(t) =
|t|
t

= 2H(t)− 1 . (1.11)

sgn(t) is also sometimes referred to as the signum function.
The impulse response of a system is the output produced by an impulse

function input
h(t) ≡ φ[δ(t)] . (1.12)

We will now show the important result that the response of a linear, time-
invariant system to an arbitrary input is characterizable as a convolution. First,
note that any input signal, f(t), can be written as a summation of impulse
functions because of the sifting property (1.8) of the delta function

f(t) =

∫ ∞
−∞

f(τ)δ(t− τ) dτ . (1.13)

Thus, for a general linear system characterized by an operator, φ, the response,
g(t), to an arbitrary input, f(t), is just that operator acting on (1.13)

g(t) = φ[f(t)] = φ

[∫ ∞
−∞

f(τ)δ(t− τ)dτ

]
(1.14)

or, from the definition of the integral,

g(t) = φ

[
lim

∆τ→0

∞∑
n=−∞

f(τn)δ(t− τn)∆τ

]
. (1.15)

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 4

If φ characterizes a linear process, we can move it inside of the summation using
the scaling relation (1.3), where the f(τn) are now weights

g(t) = lim
∆τ→0

∞∑
n=−∞

f(τn)φ[δ(t− τn)]∆τ . (1.16)

Because φ[δ(t− τn)] is just the time-lagged impulse response, h(t− τn) (1.12),
(1.16) defines the integral

g(t) =

∫ ∞
−∞

f(τ)h(t− τ)dτ (1.17)

which is the convolution of f(t) and h(t), often written in shorthand as

g(t) = f(t) ∗ h(t) . (1.18)

Thus, convolution of a general input signal with an appropriate impulse
response exactly describes the corresponding output signal for any linear system.
An important observation regarding (1.17) in the context of a measuring device
is that convolution describes the smearing action of a linear measurement tool of
limited resolving power. A measurement apparatus which records signals from
the outside world exactly would have a delta function impulse response (so that
its output, given by the convolution of an impulse and the real world signal
would exactly match the desired observable). To see this, note that (1.13) is
itself a convolution; convolution with a delta function simply returns the input
signal, shifted in time (delayed or advanced) by the delta function’s origin time

f(t) ∗ δ(t− t0) =

∫ ∞
−∞

f(τ)δ(t− t0 − τ) dτ = f(t− t0) . (1.19)

As all functions can be thought of as continuous integral superpositions of
delta functions (1.13) it is clear that a necessary and sufficient condition for
system stability is that the impulse response be bounded for all t.

Convolution with a step function∫ ∞
−∞

f(τ)H(t− τ) dτ =

∫ ∞
−∞

f(τ)

∫ t

−∞
δ(ξ − τ)dξ dτ (1.20)

=

∫ ∞
−∞

∫ t

−∞
f(τ)δ(ξ − τ)dξ dτ (1.21)

=

∫ t

−∞

∫ ∞
−∞

f(τ)δ(ξ − τ) dτdξ =

∫ t

−∞
f(τ) dτ (1.22)

is the definite integral of f from t = −∞ up to time t. Thus, while convolution
with a delta function returns the system impulse response, convolution with a
step function performs the definite integration operation.

δ(t) can usefully be regarded as the time derivative of H(t). The significance
of convolution with the time derivative of δ(t) is left as an exercise.

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 5

Another useful function for the analysis of linear systems is the sampling
function (Bracewell’s shah function)

rΠΠ(rt) =

∞∑
n=−∞

rδ(rt− n) . (1.23)

Multiplication by ΠΠ(rt) produces a continuous time representation of a sampled
time series, with nonzero weighted impulses at t = (..., −2/r, −1/r, 0, 1/r, 2/r, ...),
where the weights are the values of the original function at those points. r is
referred to as the sampling rate (the additional factor of r in (1.23) is required
to maintain unit-area delta functions). Sampled time series (not necessarily in
one dimension, but frequently in 2 or more dimensions, and usually uniformly
sampled in time or space) make up the vast majority of geophysical and other
types of scientific data.

Time domain interpretation of convolution. A way to develop further insight
into convolution is to graphically examine the operation of the convolution in-
tegral

c(t) = f1(t) ∗ f2(t) =

∫ ∞
−∞

f1(τ)f2(t− τ) dτ . (1.24)

The procedure is as follows:

1. Plot both f1(τ) and f2(t− τ) on the τ -axis. Note that this operation flips
the function f2(τ) about the τ -axis and shifts it by an amount t (which is
the independent variable of the output function c(t)).

2. Visualize that as t advances, f2(t− τ) slides along the τ -axis.

3. For each t, the convolution integral (1.24) gives the area of the product
f1(τ) · f2(t− τ).

As an example, consider the convolution of Π(t) (1.10) and a truncated
exponential, e−tH(t).

c(t) =

∫ ∞
−∞

Π(τ)H(t− τ)e−(t−τ) dτ . (1.25)

Because of the discontinuities in Π(t), the solution is found by examining
three cases:

• Case (a) t ≤ − 1/2

The nonzero portions of the functions do not overlap, and c(t) = 0.

• Case (b) −1/2 ≤ t ≤ 1/2

The sliding exponential partially overlaps the boxcar function. The ap-
propriate integral is

c(t) =

∫ t

−1/2

1 · e−(t−τ) dτ = 1− e−(t+1/2) . (1.26)

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 6

Figure 1.1: Convolution Example

• Case (c) t ≥ 1/2

The sliding exponential completely overlaps the boxcar function. The
integral is

c(t) =

∫ 1/2

−1/2

1 · e−(t−τ) dτ = e−(t−1/2) − e−(t+1/2) . (1.27)

The result of this convolution is plotted in Figure 1.1. Note that we could
have equivalently written the convolution as

c(t) =

∫ ∞
−∞

Π(t− τ)H(τ)e−τ dτ . (1.28)

This produces the same answer with somewhat different integrals. A more
efficient and elegant way of evaluating convolutions will become apparent after

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 7

we learn how to examine functions in the frequency domain, rather than the
time domain.

Autocorrelation and cross-correlation. Several other integral operations,
commonly used in time and spatial series analysis are closely related to con-
volution.

Autocorrelation is similar to autoconvolution

f(t) ∗ f(t) =

∫ ∞
−∞

f(τ)f(t− τ) dτ (1.29)

except that one of the functional components in the τ -domain is not reversed.
The autocorrelation of a real function, f(t), is

A(t) =

∫ ∞
−∞

f(ξ)f(ξ − t) dξ =

∫ −∞
∞

f(ξ − t)f(ξ) (−dξ) (1.30)

which is, if we let ξ − t = −τ ,

=

∫ ∞
−∞

f(−τ)f(t− τ) dτ = f(−t) ∗ f(t) = f(t) ∗ f(−t) . (1.31)

If f(t) is symmetric in time (an even function; f(t) = f(−t)), then the auto-
convolution and autocorrelation are equal. Also, because the autocorrelation
integral (1.31) is unchanged when we interchange ±t, we see that autocorrela-
tion always produces an even function.

It is often convenient to divide (1.31) by the signal energy to obtain a nor-
malized autocorrelation form

a(t) =
A(t)∫∞

−∞ f2(τ) dτ
. (1.32)

(1.32) is bounded on the interval [−1, 1]. Note that for (1.32) and (1.31) to
converge, the signal energy

E = A(0) =

∫ ∞
−∞

f2(τ) dτ (1.33)

must be finite. It is thus necessary for f2(t) to have finite area (zero mean alone
is not sufficient).

The cross-correlation of two functions, f1(t) and f2(t) (often referred to
simply as the correlation) is

C(t) =

∫ ∞
−∞

f1(τ)f2(τ − t)dτ =

∫ ∞
−∞

f1(τ + t)f2(τ)dτ ≡ f1(t) ? f2(t) (1.34)

If (1.34) is divided by the cross-signal energy we have a normalized version of
the cross-correlation corresponding to (1.31)

c(t) =
C(t)√∫∞

−∞ f2
1 (τ)dτ ·

∫∞
−∞ f2

2 (τ)dτ
(1.35)

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 8

produces a value of one at zero time lag when the two functions are identical.
Autocorrelation and correlation have important applications in power spectra,
coherency, signal detection and timing, and array processing.

Correlations and Cross-Correlations in MATLAB. MATLAB has built in
convolution conv, and cross-correlation (xcorr) time domain functions. The nu-
merical part of MATLAB, of course, only operates on finite time series (or sam-
pled) representations of functions stored as vectors or arrays of numbers which
hopefully adequately represent a continuous function in nature (we will examine
the issues associated with sampled functions in detail later in the course.). The
conv function thus calculates a sample-by-sample moving dot-product rather
than an integral. Note that, because these operations in MATLAB are simply
vector products, you will have to scale the results by the sampling interval to
get results that agree with continuous integral values. You are encouraged to
experiment with these and other MATLAB functions. Note that if you have
two MATLAB time series, a1 and a2, which are of length n1 and n2 samples,
respectively, then the convolution output from conv, a1 ∗ a2 will be of length
(n1 + n2 + 1).

Here is the MATLAB code that performs the above convolution example
(Figure 1.1):

%MATLAB demonstration of example convolution in notes, part 1

%clear any old variables

clear

%total length of f1, f2 time series in seconds

N=10;

%time step size in seconds

dt=0.02;

%length of vectors to create

M=N/dt;

%zero time reference point

ztime=M/4;

%here is the boxcar function

%initialize f1

f1=zeros(M,1);

%insert ones into the correct elements

f1((ztime-0.5/dt):ztime+(0.5/dt))=ones(1+1/dt,1);

%here is the decaying exponential function (starting at zero time);

%initialize f2

f2=zeros(M,1);

CHAPTER 1. LINEAR TIME INVARIANT SYSTEMS 9

%insert a decaying exponential into the correct elements

f2(ztime:M)=exp(-dt*(0:M-ztime));

%create the time axis vector for plotting f1 and f2

taxis = ((1:M)-ztime)*dt;

%plot f1

figure(1)

plot(taxis,f1)

grid

title(’f_1(t)’)

xlabel(’time’)

%plot f2

figure(2)

plot(taxis,f2)

grid

title(’f_2(t)’)

xlabel(’time’)

%do the convolution (normalized by dt to make the sum scale like the integral)

c=conv(f1,f2)*dt;

%create the time axis vector for the convolution (which has length(c)=2*M-1)

taxisc=((1:length(c))-2*ztime)*dt;

%plot the convolution

figure(3)

plot(taxisc,c)

grid

title(’c(t)=f_1(t)*f_2(t)’)

xlabel(’time’)

Chapter 2

Linear Time Invariant
Systems in the Frequency
Domain

Introduction to Linear Systems: The Frequency
Domain

In Chapter 1, we examined signals in linear systems using time as the indepen-
dent variable. We now address the fundamentals of Fourier theory, where the
independent variable is the frequency of a continuum or discrete set of sinusoidal
(or, equivalently, complex exponential) basis functions. The basic insight that
leads to Fourier Theory is that linear systems, being subject to superposition
and scaling, can be analyzed in terms of their frequency response, that is, in
terms of their response to pure sinusoidal or exponential inputs.

Consider the response, g(t) of a linear system with impulse response φ(t)
to a unit-amplitude, complex input of frequency f , eı2πft. The time domain
response of any such system is given by the convolution of the input function
and the impulse response

g(t) =

∫ ∞
−∞

φ(τ)eı2πf(t−τ) dτ . (2.1)

Because a time shift in the argument of an exponential is mathematically equiv-
alent to multiplication by another exponential

g(t) = eı2πft
∫ ∞
−∞

φ(τ)e−ı2πfτ dτ ≡ eı2πft · Φ(f) . (2.2)

(2.2) shows that the response of any linear system to a complex sinusoidal
input is unchanged in functional form (a complex sinusoidal signal of the same

10

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN11

frequency) and is only modified in amplitude and phase (by the complex factor
Φ(f)). The frequency, f , in (2.2) is arbitrary. Thus, if an arbitrary input ψ(t)
is decomposed into a sum of sinusoidal components, then, because of superpo-
sition, the relationship between ψ(t) and g(t) = ψ(t) ∗ φ(t) can be completely
characterized by Φ(f), the transfer function of the system. Φ(f) is the Fourier
transform (or spectrum) of the impulse response of the system, φ(t).

There are several conventions that are variously used in defining the Fourier
transform. The definitions that we will use are those most commonly encoun-
tered in geophysics

Φ(f) = F [φ(t)] ≡
∫ ∞
−∞

φ(t)e−ı2πftdt (2.3)

φ(t) = F−1[Φ(f)] ≡
∫ ∞
−∞

Φ(f)eı2πftdf (2.4)

where F denotes the Fourier transform operation, and F−1 denotes the inverse
Fourier transform operation. Be aware that in some other areas of physics and
in exploration geophysics the sign convention on the complex exponentials of
(2.3) and (2.4) is reversed, so that the forward transform has a plus sign in the
exponent and the inverse transform has a minus sign in the exponent. This
will of course not affect any fundamentals of the analysis, only the convention
by which phase is measured. Other formulations use ω = 2πf rather than f
to characterize the frequency. This introduces factors of 2π into the transform
pair.

Differential equations and Fourier theory. A particularly tractable and not
uncommon situation in the physical sciences occurs when a system relating two
time functions, x(t) and y(t), is characterizable by a linear differential equation
with constant coefficients. For functions of a single variable, t, the general form
of such a differential equation is

an
dny

dtn
+an−1

dn−1y

dtn−1
+· · ·+a1

dy

dt
+a0y = bm

dmx

dtm
+bm−1

dm−1x

dtm−1
+· · ·+b1

dx

dt
+b0x .

(2.5)
As none of the coefficients (the ai and bi) depend on t, (2.5) describes a time-
invariant system. Because all of the terms are linear (there are no powers or
other nonlinear functions of x, y, or their derivatives), it is also a linear system,
obeying superposition and scaling (note that differentiation itself is a linear oper-
ation). To obtain an expression for the transfer function corresponding to (2.5),
substitute an exponential unit amplitude exponential of arbitrary frequency for
the input, x(t), and output, y(t), so that

x(t) = eı2πft (2.6)

and, as must be the case for any linear, time-invariant system (2.2),

y(t) = Φ(f)eı2πft . (2.7)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN12

Substituting (2.6) and (2.7) into (2.5), dividing both sides by eı2πft, and solving
for Φ(f) produces the system transfer function, which is a ratio of two complex
polynomials in f .

Φ(f) =

∑m
j=0 bj(2πıf)j∑n
k=0 ak(2πıf)k

(2.8)

The values of f where the numerator is zero are referred to as zeros of Φ(f), as
the response is zero at this frequency, regardless of the amplitude of the input
signal. Conversely, frequencies for which the denominator is zero are called
poles, as the response becomes very large at these frequencies. Note that we
don’t have to worry too much about any mysteries regarding eı2πft being a
complex number, as

eı2πft = cos(2πft) + ı sin(2πft) (2.9)

and we could almost have just as easily chosen to propagate the real or the imag-
inary part of the input signal alone through the system to reach an equivalent
conclusion; in this case an input (cosine, sine) signal simply produces a scaled
output (cosine, sin) with a phase shift. Note that frequencies for which we have
zero or infinite response may be imaginary or complex, in which case the corre-
sponding input function, (2.6) may be an increasing or decreasing exponential,
or an increasing or decreasing exponentially damped sinusoid, respectively.

Example: Response of a seismometer. As an important example of such a
linear system from geophysical instrumentation, consider (Figure 2.1) a damped
vertical harmonic oscillator with a rigid case that is fixed to the Earth. A mass,
M , is supported by a spring, in parallel with a damping or dashpot component
that produces Newtonian damping (i.e., a retarding force that is proportional
to velocity). Intuitively, it you may see that the motion of the mass relative to
the Earth will provide some sort of representation of the true vertical ground
motion. For example, if the mass were completely decoupled, so that it remained
stationary in its inertial reference frame while the Earth moved, then the motion
of the mass relative to its case (which is, recall, rigidly attached to the Earth)
would be exactly the negative of the ground motion).

The differential equation of motion for the mass in such a seismometer can
be obtained using Netwon’s second law by equating the (upward) forces of the
spring and damper acting on the mass with the (upward) acceleration times the
mass.

Fup = Maup (2.10)

or

−Ddξ(t)
dt

+K[ξ0 − ξ(t)] = M
d2

dt2
[ξ(t) + u(t)] (2.11)

which gives rise to a homogeneous differential equation:

M
d2

dt2
[ξ(t) + u(t)] +D

dξ(t)

dt
+K[ξ(t)− ξ0] = 0 . (2.12)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN13

Figure 2.1: A Mechanical Seismometer

Here, u is the motion of the Earth (up positive), ξ is the position of the mass,
which has an equilibrium position in the Earth’s gravity field of ξ0 (both mea-
sured up positive relative to the surface of the Earth), M is the mass of the
inertial component, D is the dashpot constant (units of force per velocity), and
K is the spring constant (units of force per distance).

We can simplify (2.12) somewhat by writing the equation of motion for the
mass in an upward positive coordinate system (z) where z = 0 is the equilibrium
position in the Earth’s gravitational field, so that z(t) = ξ(t)− ξ0. This gives

z̈ + 2ζż + ω2
sz = −ü (2.13)

where the damping coefficient is

2ζ ≡ D/M (2.14)

and
ωs ≡ (K/M)1/2 (2.15)

is the angular undamped or natural frequency of the system. (2.13) is a linear
homogeneous equation where the input, u, is the displacement of the Earth, and
the output, z, is the deviation of the mass from its equilibrium position, relative
to the seismometer frame.

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN14

Using (2.8), we now write the transfer function of the seismometer system
(seismometer displacement response to a displacement of the Earth)

Φ(ω) =
z(ω)

u(ω)
=

−(ıω)2

(ıω)2 + 2ζ(ıω) + ω2
s

=
−ω2

ω2 − 2ıζω − ω2
s

(2.16)

or, in terms of amplitude and phase

|Φ(ω)| = ω2

[(ω2 − ω2
s)2 + 4ζ2ω2]1/2

(2.17)

θ = arg[Φ(ω)] = π − tan−1 −2ζω

ω2 − ω2
s

. (2.18)

At high frequencies (ω � ωs), |Φ(ω)| ≈ 1, and θ ≈ π, so the seismometer
displacement from equilibrium is the negative of the Earth displacement, z ≈
−u. In this case, the Earth moves so rapidly that the mass cannot follow the
motion at all, and the position of the mass relative to the frame is thus just −u.

At low frequencies (ω � ωs), |φ(ω)| ≈ ω2/ω2
s , so that response amplitude

falls off quadratically with decreased frequency. From the time domain repre-
sentation (2.13), we see that this response is proportional to the negative of the
Earth’s acceleration, z ∝ −ü.

The mechanical seismometer, in displacement, thus acts like a displacement
sensor at high frequencies and as an accelerometer at low frequencies. Around
ω = ωs, the system undergoes a transition between these two end-member
behaviors. One can already see why very low frequency natural frequencies
are desirable for seismometers; if ωs is very small, the true displacement of the
Earth is recoverable directly from the instrument response.

The frequency response for displacement input and displacement output
[(2.17) and (2.18)] is plotted in Figure 2.2 for various damping factors, where
the complex response is plotted in terms of its amplitude and phase.

In examining Figure 2.2, first consider the amplitude response when the
damping, ζ, is small relative to ωs In this case the system exhibits a large
amplitude response for input frequencies near ωs. This occurs because the
system is excited near its natural resonant frequency and there is little energy
loss via the dashpot. When ζ becomes larger than ωs, the resonance peak in
the amplitude response disappears, and the system no longer oscillates freely.

Next consider the phase response. At the undamped resonance period, the
phase is −90◦, implying that the output is phase-shifted by that amount (by
-π/2 radians) relative to the input. A cosine Earth motion of frequency ωs
would be phase shifted into a sine mass displacement. Regardless of damping,
the phase shift approaches zero at low frequencies and approaches π (a factor
of -1) at high frequencies.

Purely mechanical seismometers such as that described above were among
the first such instruments used to record accurate ground motion from earth-
quakes or other sources (they were first widely deployed starting in the 1890’s).
In most modern seismometers mass motion is sensed as a voltage which is pro-
portional to the velocity of the mass using an inductive coil and magnetic field, a

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN15

Figure 2.2: Frequency Response of the Mechanical Seismometer

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN16

method pioneered by Prince Boris Galitzin of Russia around 1906. If the mass
motion is small, the induction circuit is linear and, as a bonus, the induced
current in the inductive coil produces an electromagnetic force that counteracts
the motion of the mass and thus provides predictable and stable damping. In
the electromagnetic seismometer the output is a voltage that is proportional to
the velocity, ż, of the mass relative to its frame (or case), and is thus the time
derivative of the displacement response. The system response of a differentiator,
which is characterized by the differential equation

y(t) = ẋ(t) , (2.19)

can be trivially seen (2.8) to be just iω, so that the transfer function of an
inductive seismometer system as voltage out versus Earth displacement is

Φinduction(ω) =
ż(ω)

u(ω)
=

−ıω3

ω2 − 2ıζω − ω2
s

. (2.20)

Note that if we consider the Earth velocity, u̇ instead of the Earth displacement,
u as the input signal the response of the inductive seismometer is

Φinduction(ω) =
ż(ω)

u̇(ω)
=

−ω2

ω2 − 2ıζω − ω2
s

(2.21)

which is identical to (2.16), and the same response discussion as above applies,
except that the output is in volts for a ground velocity input rather than output
displacement for ground displacement. For this reason, such seismometers are
sometimes referred to as velocimeters.

The inverse Fourier transform of a response function Φ(ω) will give the time
domain impulse response of the system. The following conditions are sufficient
for existence of a Fourier transform:

1. φ(t) has only a finite number of maxima and minima in any finite time
interval. This eliminates very wiggly functions (e.g., sin(1/x)).

2. φ(t) has only a finite number of finite discontinuities in any finite time
interval. Pathological functions such as 1 where the argument is rational
and 0 where the argument is irrational won’t work.

3. φ(t) is has finite “energy”, so that∫ ∞
−∞
|φ(t)|2 dt (2.22)

is bounded.

There are useful functions that do not satisfy (2.22), yet still have Fourier
transforms (such transforms will have delta or other discontinuous functional
components). Clearly, for example, (2.22) is not satisfied for the displacement
transfer function (2.16) in the seismometer system. It is a little easier to obtain

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN17

Figure 2.3: Response of the Mechanical Seismometer to an Acceleration Impulse

the displacement response to an impulsive Earth acceleration (ü = δ(t)) by the
inverse Fourier transform method by solving

ä+ 2ζȧ+ ω2
sa = −δ(t) (2.23)

which is shown in Figure 2.3 (we’ll do the detailed calculation, and solve for the
displacement response to Earth displacement later).

Energy in the Time and Frequency Domains; Parseval’s theorem. The in-
verse Fourier transform says that time domain signals can be expressed as an
infinite summation of complex exponentials. We might therefore expect a simple
relationship between signal energy expressed in the time and frequency domains.
Consider the total energy in a real (or complex) time domain signal, φ(t)

E =

∫ ∞
−∞

φ(t)φ∗(t) dt (2.24)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN18

where the asterisk denotes complex conjugation (which has no effect if φ(t) is
real). Invoking (2.4), this can be written as

E =

∫ ∞
−∞

φ(t)

(∫ ∞
−∞

Φ∗(f)e−ı2πftdf

)
dt . (2.25)

Interchanging the order of integration, we get

E =

∫ ∞
−∞

Φ∗(f)

(∫ ∞
−∞

φ(t)e−ı2πftdt

)
df (2.26)

which gives

E =

∫ ∞
−∞

Φ∗(f)Φ(f) df =

∫ ∞
−∞

φ(t)φ∗(t) dt . (2.27)

Equation (2.27) is variously referred to as Parseval’s, Rayleigh’s or Plancherel’s
theorem. It says that one can evaluate the energy in a signal as either an
integral of its amplitude squared time domain representation over all time, or
as an integral across all of its amplitude squared frequency components over all
frequencies. In a more general sense, Parseval’s theorem says that the Fourier
transform is length preserving, i.e., the “size” of the function (in the size-sense
of the integral of the amplitude squared) is the same in the time and frequency
domains.

Properties of the Fourier transform. We next consider the Fourier transforms
of some canonical functions and discuss general symmetries and other properties.
An important function in time series analysis which we saw in Chapter 1 is the
boxcar function, Π(t). The Fourier transform of the boxcar function is (Figure
2.4)

F [Π(t)] =

∫ ∞
−∞

Π(t)e−ı2πft dt (2.28)

=

∫ 1/2

−1/2

e−ı2πftdt =

∫ 1/2

−1/2

cos(2πft) dt (2.29)

=
sin(πf)

πf
≡ sinc(f) . (2.30)

The corresponding inverse transform is thus

F−1[sinc(f)] =

∫ ∞
−∞

sinc(f)eı2πftdf = Π(t) . (2.31)

Taking the complex conjugate and interchanging f and t, gives us the Fourier
transform of sinc(t)

Π(f) =

∫ ∞
−∞

sinc(t)e−ı2πftdt . (2.32)

Note that (2.30) and (2.31) show, perhaps surprisingly, that we can get discon-
tinuous functions by the integration smooth functions.

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN19

Figure 2.4: The Boxcar-Sinc Fourier Transform Pair

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN20

The Fourier transform of a delta function is easily seen to be

F [δ(t)] =

∫ ∞
−∞

δ(t)e−ı2πftdt = 1 . (2.33)

So a delta function can be thought of as consisting of an equal weighting of
e−ı2πft functions across all frequencies, with no relative phase shifts. Going the
other direction, from the frequency to the time domain, gives

F−1(1) =

∫ ∞
−∞

eı2πftdf = δ(t) . (2.34)

One way to grasp (2.34) is to imagine the oscillating terms of the integrand all
averaging out to zero, except exactly at t = 0, where they all have value one
and will reinforce each other, i.e.,

F−1(1) = lim
ε→0

∫ −ε
−∞

eı2πftdf +

∫ ∞
ε

eı2πft df = 2 lim
ε→0

∫ ∞
ε

cos(2πft) df . (2.35)

A very useful property of the Fourier transform is the shifting property ; a
simple time shift of a function only changes the phase (not the amplitude) of
its Fourier transform. Consider the Fourier transform of a general function

F [φ(t− t0)] =

∫ ∞
−∞

φ(t− t0)e−ı2πftdt . (2.36)

Substituting τ = t− t0 gives

=

∫ ∞
−∞

φ(τ)e−ı2πf(τ+t0) dτ = e−ı2πft0
∫ ∞
−∞

φ(τ)e−ı2πfτ dτ (2.37)

= e−ı2πft0Φ(f) (2.38)

so that time shifts in the time domain correspond to linear (with respect to
frequency) phase shifts in the frequency domain.

Another important relationship is time-frequency scaling or similarity, con-
sider

F [φ(αt)] =

∫ ∞
−∞

φ(αt)e−ı2πftdt . (2.39)

For α > 0, this gives

=
1

α

∫ ∞
−∞

φ(τ)e−ı2πfτ/αdτ =
1

α
Φ

(
f

α

)
, (2.40)

using the substitution τ = αt. For α < 0, the limits on the definite integral
become reversed with the change of variable, so we get

F [φ(αt)] = − 1

α
Φ

(
f

α

)
(2.41)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN21

so that, in general

F [φ(αt)] =
1

|α|
Φ

(
f

α

)
. (2.42)

Thus, when we “squeeze” a function in the time domain, its Fourier transform
“spreads out” in the frequency domain (and vice-versa). An extreme end mem-
ber showing this behavior is the delta function, which is an infinitely squeezed
function in the time domain with an infinitely spread out transform (the 1
function; (2.33)) in the frequency domain.

As you have probably already suspected, there is a duality between the time
and frequency domains, the precise relationship is

F [φ(t)] = Φ(f) (2.43)

F [Φ(t)] = φ(−f) . (2.44)

Any function can be decomposed into even and odd parts with respect to
the origin

φ(t) = φe(t) + φo(t) (2.45)

=
1

2
[φ(t) + φ(−t)] +

1

2
[φ(t)− φ(−t)] (2.46)

where φe(t) = φe(−t) and φo(t) = −φo(−t). This decomposition can be used
to show that the Fourier transform exhibits various symmetry relations.

Consider the transform of a general real and even function, φe.

F [φe(t)] =

∫ ∞
−∞

φe(t)e
−ı2πftdt (2.47)

=

∫ ∞
−∞

φe(t) cos(2πft) dt− ı
∫ ∞
−∞

φe(t) sin(2πft) dt (2.48)

= 2

∫ ∞
0

φe(t) cos(2πft)dt (2.49)

which is even and is purely real. Similarly, for an odd, real function, φo, the
Fourier transform

F [φo(t)] =

∫ ∞
−∞

φo(t)e
−ı2πftdt (2.50)

=

∫ ∞
−∞

φo(t) cos(2πft)dt− ı
∫ ∞
−∞

φo(t) sin(2πft) dt (2.51)

= −2ı

∫ ∞
0

φo(t) sin(2πft) dt (2.52)

is odd and purely imaginary. Thus, the Fourier transform of an arbitrary real
function containing both odd and even components may be evaluated as a su-
perposition of (2.49) and (2.52), frequently referred to as the cosine transform
and sine transform, respectively. Using superposition, one can derive a list of
basic symmetry relationships between the time and frequency domains:

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN22

φ(t) Φ(f)
even even
odd odd
real, even real, even
real, odd imaginary, odd
imaginary, even imaginary, even
imaginary, odd real, odd
complex, even complex, even
complex, odd complex, odd
real, asymmetrical complex, Hermitian
imaginary, asymmetrical complex, anti-Hermitian
Hermitian real
anti-Hermitian imaginary

where a Hermitian function has an even real part and an odd imaginary part
(Φ(f) = Φ∗(−f)) and an anti-Hermitian function has an odd real part and an
even imaginary part (Φ(f) = −Φ∗(−f)).

One of the most important conceptual and practical relationships between
the time and frequency domains is embodied in the convolution theorem. Con-
sider the Fourier transform of the convolution of two functions

F [φ1(t) ∗ φ2(t)] =

∫ ∞
−∞

(∫ ∞
−∞

φ1(τ)φ2(t− τ) dτ

)
e−ı2πftdt . (2.53)

Reversing the order of integration gives

F [φ1(t) ∗ φ2(t)] =

∫ ∞
−∞

φ1(τ)

(∫ ∞
−∞

φ2(t− τ)e−ı2πftdt

)
dτ . (2.54)

However, by the time shift property (2.38), this is just∫ ∞
−∞

φ1(τ)Φ2(f)e−ı2πfτ dτ = Φ1(f)Φ2(f) (2.55)

so that convolution in the time domain corresponds to multiplication in the fre-
quency domain! Similarly, we can show that multiplication in the time domain
corresponds to convolution in the frequency domain

F [φ1(t)φ2(t)] = Φ1(f) ∗ Φ2(f) . (2.56)

This can be understood intuitively based on what we know about the response
of linear systems, as the response of a linear system at each frequency is just
the complex amplitude of that frequency component in the input, times the
complex value of the response function of the system at that frequency.

Recall that time differentiation has a remarkably simple form in the fre-
quency domain

d

dt
φ(t) =

d

dt

∫ ∞
−∞

Φ(f)eı2πft df (2.57)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN23

=

∫ ∞
−∞

∂

∂t
[Φ(f)eı2πft] df =

∫ ∞
−∞

2πıfΦ(f)eı2πftdf = F−1[2πıfΦ(f)] (2.58)

taking the Fourier transform of both sides gives:

= F [
d

dt
φ(t)] = 2πıfΦ(f) . (2.59)

(2.59) clearly shows that differentiation amplifies high frequency signal compo-
nents relative to those at low frequency, and thus belongs to a class of operators
generally referred to as high-pass filters.

The situation for integration is somewhat more complex

F

(∫ t

−∞
φ(τ)dτ

)
=

Φ(f)

2πıf
+
δ(f)

2

∫ ∞
−∞

φ(t)dt (2.60)

where the delta function term accommodates the contribution of a possible
non-zero mean value in φ(t). A definite integrator is thus a low-pass filter, as it
reinforces low frequencies relative to high frequencies.

(2.59) and (2.60) are helpful in computing some otherwise nonstraightfor-
ward Fourier transforms, especially for discontinuous functions. Consider the
step function. Using (2.60) gives

F [H(t)] = F

(∫ t

−∞
δ(τ)dτ

)
(2.61)

=
1

2πıf
+
δ(f)

2
. (2.62)

The Fourier transform of the sign function is thus

F [2H(t)− 1] =
1

πıf
. (2.63)

Example: Equilibrium elastic response of a loaded, buoyantly supported crust.
The differentiation and integration properties of the Fourier transform provide
a useful method for obtaining solutions to ordinary linear integrodifferential
equations. An example of geophysical interest is the downward deflection of a
rigid plate (such as the Earth’s crust) buoyantly supported by an underlying
liquid (to first order, the mantle) to a distributed load (such as an ice cap,
volcano, or reservoir) (Figure 2.5.

The model for the small-deformation equilibrium of a deformed plate is a
linear differential equation [4, 14]

D54w(r) = p(r) (2.64)

where w(r) is the upward deflection of the plate and p(r) is the upward force
per unit area. The forcing term, p(r), arises from a topographic load, hl(r) and

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN24

Figure 2.5: A Buoyant, Rigid Plate with a Spatial Load

from a buoyancy term due to the displaced mantle. D is the flexural rigidity,
which depends on the thickness and elastic moduli of the plate

D ≡ Eτ3

12(1− ν2)
(2.65)

where τ is the plate thickness, E is Young’s Modulus, and ν is Poisson’s Ratio.
In one spatial dimension, x, (2.64) becomes

D
∂4w(x)

∂x4
= p(x) . (2.66)

The total forcing function for a load of homogeneous density, ρl is the sum
of the load and the opposite-directed buoyant compensation of the mantle

p(x) = −ρlghl(x) +B(x) (2.67)

where ρl is the density of the added material, g is the acceleration of gravity,
and B(x) is the buoyancy term due to mantle material of density ρm,

B(x) = −ρmgw(x) . (2.68)

We can thus write the forcing term in terms of the input load hl(x) as

p(x) = −g(ρlhl(x) + ρmw(x)) . (2.69)

Now we can solve for the resulting crustal deformation by separating w(x) and
hl(x) and taking a spatial Fourier transform

[(2πık)4D + gρm]W (k) = −ρlgHl(k) (2.70)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN25

where k is the spatial frequency (units of 1/length), the spatial counterpart of f .
Here, to keep our Fourier conventions unchanged from previous discussion, note
that k is just 1/λ, or the reciprocal wavelength (this is not to be confused with
the common use of k as the wavenumber, which is 2π/λ). Our k (a reciprocal
wavelength) and the wavenumber are thus analogues to f and ω.

Note that Hl(k) is the spatial Fourier transform of the input

Hl(k) =

∫ ∞
−∞

hl(x)e−ı2πkx dx (2.71)

(not the step function). The (spatial) frequency domain solution is thus

W (k) = −Hl(k)

ρl
ρm

1 + 16π4k4D
gρm

. (2.72)

Note that (2.72) depends strongly on the reciprocal wavelength, k. For k large,
the response of the system becomes becomes negligible. Conversely, for k small,
the response becomes increasingly significant, reaching a maximum value of

Wmax = W (0) = −Hl(0)ρl/ρm (2.73)

as k → 0. Thus, for long-wavelength (small k) spatial components of the land-
scape, we say that we have a large degree of buoyant compensation, as the
topographic load is primarily supported by mantle buoyancy. At short spatial
wavelengths, on the other hand (large k), the landscape is almost totally sup-
ported by the flexural rigidity of the crust. The degree of compensation for a
spatial component of wavelength λ = 1/k, is the deflection of the system relative
to Wmax

C =
W (k)

Wmax
. (2.74)

We can evaluate the impulse response in the x domain by taking the inverse
Fourier transform of W (k)/Hl(k) (preferably with the assistance of a table of
integral transforms), to obtain

q(x) = F−1[W (k)/Hl(k)] (2.75)

or

q(x) =
−2gρl
D

∫ ∞
0

cos(2πkx) dk

α4 + (2πk)4
(2.76)

where

α =
(gρm
D

)1/4

(2.77)

so that [10]

q(x) =
−
√

2gρl
4α3D

e
−α|x|√

2

(
sin

α|x|√
2

+ cos
α|x|√

2

)
. (2.78)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN26

Figure 2.6: Response of a Buoyant, Rigid Plate to an Spatial Impulse Load

This function is plotted in Figure 2.6 and consists a central depression and an
outboard peripheral upwarp. Note that (2.78) is the impulse response of this
system, as W (k) is the response for Hl(k) = 1 (2.72), or hl(x) = δ(x), so that
any 1-d deformation of a rigid plate to a load (assumed to be infinitely extending
in the out-of plane direction) can thus be calculated by convolving q(x) and the
specific linear load distribution.

Note also that the net topography for the system in equilibrium is given by
the sum of the input load topography and the system response

h(x) = hl(x) + w(x) . (2.79)

Example: Time domain seismometer response. We can use Fourier tools to
obtain a result for the displacement response of the vertical seismometer in the
time domain by noting, as above, that the time domain response to an impulsive

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN27

acceleration characterized by ü = δ(t) is characterized by

ä+ 2ζȧ+ ω2
s = −δ(t) . (2.80)

Taking the Fourier transform of both sides and solving for a(ω), the displacement
response to an acceleration impulse input, gives the frequency domain expression

a(ω) =
1

ω2 − 2ıζω − ω2
s

(2.81)

Note that this is just the response of the seismometer system to the displacement
impulse (2.16), divided by −ω2. This is appropriate, as the input function has
been twice differentiated in the time domain and the response of a differentiator
is ıω (2.59).

The time domain displacement response to an acceleration impulse input is
therefore

φ(t) = F−1 (a(ω)) = F−1

(
1

ω2 − 2ıζω − ω2
s

)
(2.82)

=
1

2π

∫ ∞
−∞

eıωt dω

ω2 − 2ıζω − ω2
s

=
1

2π

∫ ∞
−∞

eıωt dω

(ω − ω1 − ıζ)(ω + ω1 − ıζ)
(2.83)

where
ω1 =

√
ω2
s − ζ2 (2.84)

Solving this integral is relatively straightforward using the residue theorem from
complex analysis and separation into three cases. For ωs > ζ, the system ex-
hibits a distinct resonance near ω = ωs (as we have already seen from examining
the frequency response; Figure 2.2) and is referred to as underdamped. In this
case, the poles of the integrand in (2.83) lie at (ω1, ıζ) and (−ω1, ıζ). The time
domain solution is found from the residues of the two complex poles of the
integrand to be

a(t) =
−H(t)

ω1
e−ζt sin(ω1t) . (2.85)

When ωs < ζ, the system does not resonate, the complex poles of the inte-
grand lie on the positive imaginary axis, and the system is referred to as being
overdamped. ω2

1 is negative in this case, and the result is an impulse response
that is a sum of real exponentials

a(t) =
−H(t)

2(ζ2 − ω2
s)1/2

(
e−(ζ−(ζ2−ω2

s)1/2)t − e−(ζ+(ζ2+ω2
s)1/2)t

)
(2.86)

The case ωs = ζ is a transition between the underdamped and overdamped
case,s referred to as critically damped. Because there is a double pole, a special
case of the residue theorem must be applied to obtain the impulse response,
which is

a(t) = −H(t)te−ζt . (2.87)

These time domain responses are shown in Figure 2.3.

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN28

How do we evaluate the displacement impulse response of the system to
Earth displacement? One way is to reexpress the integrand in the inverse trans-
form of (2.16) to strip off a delta function

1

2π

∫ ∞
−∞

−ω2eıωt dω

ω2 − 2ıζω − ω2
s

= − 1

2π

∫ ∞
−∞

(
1 +

2ıζω + ζ2 + ω2
1

(ω − ω1 − ıζ)(ω + ω1 − ıζ)

)
eıωt dω

(2.88)

= −δ(t)− 1

2π

∫ ∞
−∞

(2ıζω + ζ2 + ω2
1)eıωt dω

(ω − ω1 − ıζ)(ω + ω1 − ıζ)
(2.89)

and then evaluate the remaining integral using the residue theorem. Another
way to solve (2.89) is to note that a(t) is the time domain solution for the system
response to an Earth acceleration of a0(t) = δ(t). Because the seismometer sys-
tem and the differentiation operation are linear, we can evaluate the seismometer
displacement response from a displacement impulse by twice differentiating a(t)
with respect to time. For the underdamped system, for example, this gives

d(t) =
d2a(t)

dt2
=

d2

dt2

(
−H(t)

ω1
e−ζt sin(ω1t)

)
(2.90)

= − 1

ω1

(
H′′(t)e−ζt sin(ω1t)−H′(t)ζe−ζt sin(ω1t)

+H′(t)e−ζtω1 cos(ω1t)−H′(t)ζe−ζt sin(ω1t)H(t)ζ2e−ζt sin(ω1t)−

+H(t)ζe−ζtω1 cos(ω1t) + H′(t)e−ζtω1 cos(ω1t)

−H(t)ζe−ζtω1 cos(ω1t)−H(t)e−ζtω2
1 sin(ω1t)

)
. (2.91)

Using H′(t) = δ(t) and H′′(t) = δ′(t), and noting that δ′(t) sin(ω1t)e
−ζt =

−δ(t)ω1, and δ(t)e−ζtω1 cos(ω1t) = δ(t)ω1 gives

d(t) = − 1

ω1

(
δ(t)ω1 − 2H(t)ω1ζe

−ζt cos(ω1t) + H(t)ζ2e−ζt) sin(ω1t)−H(t)ω2
1e
−ζt sin(ω1t)

)
.

(2.92)
In the limit as ωs → 0, and for an undamped (ζ = 0) seismometer, we obtain

d(t) = −δ(t) . (2.93)

Note that as the resonant frequency, ω1, becomes small (the resonant period
becomes large), (2.93) and Figure 2.7 approach the ideal instrument response
of a delta function (with a trivial minus sign). Because seismologists frequently
want to know the true ground displacement (its long-period asymptotic spectral
level is proportional to the seismic moment, among other reasons), seismometers
with very long natural periods are desirable and constitute the instrumental
backbone of much of modern seismology. In practice, most seismometers have an
output that is proportional to velocity, but if they have suitably low noise at long
periods the native output can be stably integrated to produce a displacement
seismogram.

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN29

Figure 2.7: Displacement Output/Displacement Input Response of an Under-
damped Seismometer (ζ = 0.3ωs; ωs = 2π Hz) to a Displacement Impulse

Moment-spectral relationships. As an additional perspective on the rich
mathematics of Fourier theory can be obtained by noting that all of the moments
of the time domain function, φ(t), can be expressed in terms of the behavior of
Φ(f) at the origin. Consider the nth moment

φn ≡
∫ ∞
−∞

tnφ(t)dt . (2.94)

The nth derivative of Φ(f) with respect to f is

∂nΦ(f)

∂fn
=

∫ ∞
−∞

(−2πıt)nφ(t)e−ı2πftdt (2.95)

so that
1

(−2πı)n

(
∂nΦ(f)

∂fn

)
=

∫ ∞
−∞

tnφ(t)e−ı2πftdt . (2.96)

Evaluating both sides gives

1

(−2πı)n

(
∂nΦ(0)

∂fn

)
=

∫ ∞
−∞

tnφ(t) dt = φn . (2.97)

Thus, we can now see that the 0th moment of φ(t), the total area under φ(t), is
just Φ(0). Similarly, the 1st moment of φ(t) is just∫ ∞

−∞
tφ(t)dt = − 1

2πı
(Φ′(f))f=0 (2.98)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN30

where

Φ′(f) ≡ ∂Φ(f)

∂f
(2.99)

so that the slope of Φ(f) at the origin is proportional to the expectation value
of t

< t >φ(t)=

∫∞
−∞ tφ(t) dt∫∞
−∞ φ(t) dt

. (2.100)

Time functions which which are symmetrical must therefore have Fourier trans-
forms with zero slope at f = 0 (we can also see this from the aforementioned
symmetry relations).

The 2nd moment is∫ ∞
−∞

t2φ(t)dt = − 1

4π2
(Φ′′(f))f=0 (2.101)

so that the curvature of Φ(f) at the origin is proportional to the second mo-
ment of φ(t). For functions which have an infinite second moment, the Fourier
transform has a cusp at the origin, for example,

F

(
1

α2 + t2

)
=
e−α|f |

2α
. (2.102)

Next, consider the variance of φ(t)

σ2[φ(t)] =< (t− < t >)2 >φ(t)=

∫∞
−∞(t2 − 2t < t > + < t >2)φ(t) dt∫∞

−∞ φ(t) dt
(2.103)

=
1

Φ(0)

(
Φ′′(0)

(−2πı)2
− 2

Φ′(0)

−2πı
· Φ′(0)

−2πıΦ(0)
+

[Φ′(0)]2

(−2πı)2
· Φ(0)

Φ(0)2

)
(2.104)

=
1

4π2Φ(0)

(
−Φ′′(0) +

[Φ′(0)]2

Φ(0)

)
. (2.105)

What is the variance, then, of φ1(t) ∗ φ2(t)? Using the convolution theorem
(2.55) makes this straightforward, as

σ2[φ1(t) ∗ φ2(t)] =
1

4π2Φ1(0)Φ2(0)

(
−(Φ1Φ2)′′(0) +

[(Φ1Φ2)′(0)]2

Φ1(0)Φ2(0)

)
(2.106)

=
1

4π2

[
−Φ′′1(0)

Φ1(0)
− Φ′′2(0)

Φ2(0)
+

(
Φ′1(0)

Φ1(0)

)2

+

(
Φ′2(0)

Φ2(0)

)2
]

= σ2[φ1(t)] + σ2[φ2(t)]

(2.107)
which gives the important result that the variance of a convolution result is just
the sum of the variances of the two constituent functions. This is a quantitative
measure of the amount of ”spreading” that occurs in the convolution operation.
Unless one or both of the constituent functions in the convolution has zero

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN31

variance, the convolution result will always have greater variance than either of
the two input functions.

Causal systems and the Hilbert transform. An important relationship exists
between the real and imaginary parts of the Fourier transform of a real causal
function, φc(t), that is, a real function that is zero for all t < 0. To see this, we
first decompose φc(t) into its even and odd parts

φc(t) = φe(t) + φo(t) = 1/2(φc(t) + φc(−t)) + 1/2(φc(t)− φc(−t)). (2.108)

For the causal function, we can express φo(t) in terms of φe(t), as:

φo(t) = φe(t) (t > 0) (2.109)

and
φo(t) = −φe(t) (t < 0) (2.110)

Thus
φc(t) = [1 + sgn(t)]φe(t) . (2.111)

By superposition, using the frequency domain convolution theorem (2.56),

Φc(f) = Φe(f) + F [sgn(t)] ∗ Φe(f) , (2.112)

and using the Fourier transform of the sign function (2.63), we obtain the Fourier
transform of φc(t) explicitly in terms of the Fourier transform of φe(t)

Φc(f) = Φe(f) +
−ı
πf
∗ Φe(f) . (2.113)

Note that because φe(t) is real and even, so is Φe(f). Thus, the real and imag-
inary parts of Φc(f) are related to each other by the real convolution operator
(−1/πf). This relationship can be summarized by

=[Φc(f)] =
1

π

∫ ∞
−∞

<[Φc(ξ)]

ξ − f
dξ = <[Φc(f)] ∗ −1

πf
≡ H[<[Φc(f)]] . (2.114)

and conversely,

<[Φc(f)] = − 1

π

∫ ∞
−∞

=[Φc(ξ)]

ξ − f
dξ = =[Φc(f)] ∗ 1

πf
≡ H−1[=[Φc(f)]] . (2.115)

One can confirm (2.115) by showing that

− 1

πf
∗ 1

πf
= δ(f) . (2.116)

(2.114) is the Hilbert transform and (2.115) is the inverse Hilbert transform
operator, acting on <[Φc(f)] and =[Φc(f)], respectively. This relationship puts
constraints on the frequency response of all physical (causal) transfer functions.

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN32

If we take the Hilbert transform of a time function, we get the associated quadra-
ture function.

H[φ(t)] = φ̂(t) . (2.117)

The Fourier transform of the quadrature function has the same amplitude in-
formation as the original function, but its phase is multiplied by ı sgn(f), so
that it is phase shifted by −π/2 for negative frequencies and by π/2 for positive
frequencies.

An analytic signal is one in which the real and imaginary parts are related
by the Hilbert transform (so that its Fourier transform is zero for all negative
frequencies)

A(t) = φ(t)− ıφ̂(t) . (2.118)

Among its other uses, the analytic time series formulation is useful in evaluating
the amplitude envelope, |A(t)|, of a function.

A example of a causal physical system is the attenuation which occurs when
a wave propagates through a lossy medium. In seismology, such media (which
of course include all real materials) are referred to as anelastic. The loss mech-
anisms need not concern us in detail here, but they include work done at grain
boundaries and other irreversible changes in the material. The observational
result of attenuation is that the energy arriving at the receiver is less than that
which one would expect from considering the effects of geometrical spreading
and other ray path effects alone.

For the idealized case of a one-dimensional plane wave propagating through
a lossless medium (e.g., an electromagnetic wave propagating through a perfect
vacuum, or a seismic wave propagating through a perfectly elastic medium) the
signal, β, at position x and time t is simply the signal at the source delayed by
the propagation time x/v

a(x, t) = a(t− x/v) (2.119)

where v is the phase velocity. If the time function at the source is a(t), then we
can express the signal at an arbitrary time and place as

a(x, t) = a0(t) ∗ δ(t− t0) (2.120)

where t0 = x/v and a0(t) is the signal at x = 0. We are assuming here that
all frequency components propagate at a single velocity, v. Such a medium is
referred to as nondispersive. The transfer function of a lossless, nondispersive
system is therefore that of a time delay. Consider an exponential input at some
frequency, f , the output of the delay system is

a(x, f) =

∫ ∞
−∞

δ(t− t0)e−i2πft dt = e−ı2πft0 = e−ı2πfx/v . (2.121)

The quality factor, Q, of an oscillating system is given by

1

Q(f)
=

δE

2πE
(2.122)

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN33

where E is the peak energy of the system and δE is the energy lost in each
cycle, assuming Q� 1. For a propagating sinusoidal disturbance, then, the loss
relationship as a function of x is

δE =
dE

dx
λ (2.123)

as the field goes through one oscillation in a wavelength, λ = v/f . Combining
(2.123) and (2.122), we have

2πE

Q
=
dE

dx
λ (2.124)

which has a solution for propagating energy of

E(x, f) = E0(t)e−2πfx/Qv (2.125)

or for propagating amplitude of

b(x, f) = b0(t)e−πfx/Qv . (2.126)

The combined transfer function for the system is thus, by the convolution the-
orem (2.55)

c(x, f) = F

(
1

a0(t)
a(x, t) ∗ 1

b0(t)
b(x, t)

)
(2.127)

1

a0
a(x, f) · 1

b0
b(x, f) = e−ı2πfx/v · e−πfx/Qv . (2.128)

Taking the inverse Fourier transform of c(x, f) to obtain the impulse response
of the system, we have (taking the absolute value of f so that negative and
positive frequencies are treated equally)

c(x, t) =

∫ ∞
−∞

e2π(−|f |t0/2Q+ıf(t−t0)) df (2.129)

=

∫ ∞
0

e2π(−ft0/2Q+ıf(t−t0)) df +

∫ 0

−∞
e2π(ft0/2Q+ıf(t−t0)) df (2.130)

= − 1

2π

[
1

(ıt− (ı+ 1/2Q)t0
− 1

(ıt− (ı− 1/2Q)t0

]
(2.131)

=
1

π

(
(t0/2Q)

(t− t0)2 + (t0/2Q)2

)
(2.132)

which is plotted in Figure 2.8
(2.132) is a symmetrical pulse with a maximum at t = t0. Note, however,

that c(x, t) is not zero for t < t0. This solution is therefore acausal and cannot
correspond to the behavior of the real world. Reexamining our assumptions, we
find that we must reassess both the nondispersiveness of the medium and the
constancy of Q across all frequencies. A moment’s reflection reveals that we

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN34

Figure 2.8: Attenuated Pulses, Constant Q

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN35

cannot get an asymmetrical, causal pulse by simply allowing Q to vary as an
even function of frequency, as the Q operator will affect positive and negative
frequencies equally and hence will not alter the symmetry of the pulse. Thus,
we are led to the conclusion that all lossy media must be dispersive!

The general transfer function for a wave propagating towards positive x is
thus a generalization of (2.128)

c(x, f) = e−π|f |x/Q(f)v(f) · e−ı2πfx/v(f) (2.133)

where v and Q are now functions of f . We can write this as

c(x, f) = e−2πıKx (2.134)

if we define the complex wavenumber, K as

K =
−ı|f |

2Q(f)v(f)
+

f

v(f)
≡ f

v(f)
+ ıα(f) (2.135)

where α(f) is the attenuation factor. The impulse response is thus the inverse
Fourier transform of this

c(x, t) =

∫ ∞
−∞

eı2π(−Kx+ft) df (2.136)

It can be shown (e.g., Aki and Richards, v. I, 1980) that constraining c(x, t) to
be causal, i.e., equal to zero for t < t1 = x/v∞ places the following constraint
on the dispersive velocity function

f

v(f)
=

f

v∞
+ H[α(f)] (2.137)

where v∞ is the phase velocity at infinite frequency and H is the Hilbert trans-
form. Finding solutions to (2.137) is non-trivial, and there is no solution for
constant Q. If we take Q to be constant over the seismic frequency range, how-
ever, we can arrive at the useful solution proposed by Azimi [3], where the phase
velocity is approximately given by

1

v(f)
=

1

v∞
+

2α0

π
ln

(
1

2πfα1

)
(2.138)

where α0 and α1 are constants. Using

α0 ≈ (2v∞Q)−1. (2.139)

and
α1 = 0.01 s (2.140)

Figure 2.9 showns the results of numerically integrating (2.138) for various values
of Q to obtain attenuation pulses which are asymmetrical and exhibit a much

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN36

Figure 2.9: Attenuated Pulses, Quasi-Causal Q

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN37

Figure 2.10: A linear system with feedback

better approximation to causal behavior than the nondispersive pulses of Figure
2.8.

The effect of feedback on the transfer function. An important engineering
concept is the effect of feedback on the transfer function of a system. Figure
2.10 shows the situation where a filtered portion of an output signal, modified by
the feedback transfer function Φ2 is subtracted from the input signal (negative
feedback). The effect of feedback can alter the system response significantly and,
in the case of engineering applications, can do so in several highly desirable ways.
The net transfer function for the system of Figure 2.10 is

Y (ω) = (X(ω)− Φ2(ω)Y (ω))Φ1(ω) (2.141)

which gives

Φfb(ω) =
Y (ω)

X(ω)
=

Φ1(ω)

1 + Φ1(ω)Φ2(ω)
. (2.142)

For example, consider Φ1 to be the displacement transfer function for a
seismometer (2.16) with damping ζ and natural frequency ωs, and the feedback
component transfer function being a constant Φ2 = k. In this case the transfer
function of the fed back system is

Φfb(ω) =

−ω2

ω2−2ıζω−ω2
s

1− kω2

ω2−2ıζω−ω2
s

=
−ω2

(1− k)ω2 − 2ıζω − ω2
s

(2.143)

which has poles at

ωfb =
ıζ ±

√
(1− k)ω2

s − ζ2

1− k
(2.144)

instead of the original poles at

ω = ıζ ±
√
ω2
s − ζ2 ≡ ıζ ± ω1 . (2.145)

A plot of the poles of the function in z = ıωfb complex plane (Figure 2.11);
see the ancillary Poles and Zeros notes), shows the system behavior as k is
increased from zero for an initially ωs = 2π rad/s underdamped seismometer
with ζ = 0.1ωs. The damping increases as k increases (the ratio (real(z)/imag(z)
increases), and the system response approaches critical damping. As the amount

CHAPTER 2. LINEAR TIME INVARIANT SYSTEMS IN THE FREQUENCYDOMAIN38

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−8

−6

−4

−2

0

2

4

6

8
Poles of a Fedback 1 Hz Seismometer

σ, rad/s

 i
ω

, r
ad

/s

Figure 2.11: Poles for a seismometer with simple feedback (0.01 ≤ k ≤ 0.99).

of feedback is increased, the system response approaches that of a very-long
period seismometer.

Feedback is the essence of modern broadband seismometer design; the feed-
back makes it possible to build portable stable, low noise instruments with
periods T = 2π/ωfb as long as several hundred seconds. An added technical
advantage associate with feedback is, if there is enough gain in the system so
that |Φ1(ω)Φ2(ω)|/gg1, (2.142) becomes

Φfb(ω) =
y(ω)

x(ω)
≈ 1

Φ2(ω)
, (2.146)

and the system response can be made effectively completely dependent on prop-
erties of the feedback elements, Φ2(ω) (which are typically electronic), rather
than on less predictable and/or stable mechanical seismometer components.

Chapter 3

Sampled Time Series And
The Discrete Fourier
Transform

Sampled Time Series

Numerical scientific data are commonly organized into series or matrices, i.e.,
sets of spatially or temporally ordered numbers that approximate a continuous
time function (e.g., seismic signals, magnetic observatory data, temperature
variations). In spatial applications, the data commonly consists of a two- or
three-dimensional array of samples (e.g., gravity, magnetic, or structural sur-
veys). These data may be irregularly sampled in space and/or time. Here, we
will consider Fourier theory appropriate to the case where the data are sampled
at regular intervals (or where irregularly sampled data has been interpolated or
otherwise transferred to a regular array of numbers).

Beginning with a continuou function, multiplication by the (uniformly spaced
delta function sequence) shah function, III(t), can be conceptualized as perform-
ing a regular sampling operation for a time series. By ”regular”, we mean that
this operation selects out instantaneous functional values at equally-spaced in-
tervals, 1/r (where r is the sampling rate or sampling frequency), and ignores
continuous function information between the samples. In instrumentation prac-
tice, this type of operation is in practice performed by an analog-to-digital con-
verter (A to D) or digitizer, and the sampled values are stored as series or arrays
of numbers.

To examine what sampling does to the spectral characteristics of an arbitrary
function, we evaluate the Fourier transform of III(t) and apply the frequency-
domain counterpart of the convolution theorem. We will find F [III(t)] by eval-
uating the Fourier transform of a function with a limit that converges to III(t).

39

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM40

One such function is

III(t) =

∞∑
n=−∞

δ(t− n) = lim
τ→0

1

τ
e−πτ

2t2
∞∑

n=−∞
e−π(t−n)2/τ2

. (3.1)

Note that (3.1) consists of a broad Gaussian envelope

e−πτ
2t2 (3.2)

multiplied by a periodic component

1

τ

∞∑
n=−∞

e−π(t−n)2/τ2

(3.3)

You may already know that a smooth periodic function has a Fourier series,
which is a line spectrum consisting of equally spaced delta functions (some of
which may have zero amplitude so as to leave holes in the spectrum). The
Fourier series for (3.3) is

1

τ

∞∑
n=−∞

e−π(t−n)2/τ2

=

∞∑
n=−∞

e−πτ
2n2

eı2πnt (3.4)

so that

III(t) = lim
τ→0

e−πτ
2t2

∞∑
n=−∞

e−πτ
2n2

eı2πnt . (3.5)

Thus,

F [III(t)] = lim
τ→0

∞∑
n=−∞

e−πτ
2n2

F [e−πτ
2t2eı2πnt] (3.6)

and applying the frequency-domain counterpart of the time shift theorem gives

F [III(t)] = lim
τ→0

∞∑
n=−∞

e−πτ
2n2

F [e−πτ
2t2]|f=f−n . (3.7)

The Fourier transform of a Gaussian function is

F [e−απt
2

] =

∫ ∞
−∞

e−απt
2−2πıft dt (3.8)

= e−πf
2/α

∫ ∞
−∞

e−π(αt2+2ıft−f2/α) dt = e−πf
2/α

∫ ∞
−∞

e−π(α1/2t+ıf/α1/2)2 dt .

(3.9)
Substituting ξ = α1/2t+ ıf/α1/2 gives

=
1

α1/2
e−πf

2/α

∫ ∞
−∞

e−πξ
2

dξ =
1

α1/2
e−πf

2/α . (3.10)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM41

Figure 3.1: The Shah function and its Fourier Transform; Fourier Transform of
a Sampled Function (slightly aliased)

So the Fourier transform of a Gaussian is just another Gaussian! Thus, we have

F [III(t)] = lim
τ→0

1

τ

∞∑
n=−∞

e−πτ
2n2

e−π(f−n)2/τ2

. (3.11)

Now we take the limit as τ → 0 and see that (3.11) converges to the same limit
as (3.1); the shah is, like the Gaussian, its own Fourier transform

F [III(t)] = III(f) . (3.12)

Sampling and Aliasing. Consider a sampled time function

ψ(t) = φ(t) · rIII(rt) (3.13)

which is a regularly spaced (intervals of r−1) sequence of delta functions in time
with areas given by the values of φ(t) at those times. Using the convolution and
scaling theorems, we can see that (3.12) gives (Figure 3.1)

Ψ(f) = Φ(f) ∗ III(
f

r
) . (3.14)

Sampling thus simply replicates the Fourier transform of φ(t), Φ(f), along
the frequency axis at ±nr. These copies are referred to as aliases. If Φ(f) is

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM42

band-limited to having its energy in the frequency interval (−fmax, fmax) and
if fmax ≤ r/2, then these aliases will not overlap. This is a crucial observation;
it implies that φ(t) is fully recoverable from the sampled series via an inverse
Fourier transform across one of the aliases

φ(t) = F−1[Ψ(f)Π(f/r)] (3.15)

or (using the convolution theorem) as the convolution

φ(t) = ψ(t) ∗ r sinc (rt) . (3.16)

This remarkable result, that a continuous band-limited function can be fully
recovered from time series sampled at a rate of r > 2fmax (so that the aliases
don’t overlap!), leads to the definition of the Nyquist frequency

fN = 2fmax (3.17)

the minimum frequency at which we must sample for information to be recovered
without corruption from a sampled time series. Thus, if we wish to sample a
signal that has appreciable power up to 100 Hz, we must sample using a rate of
at least fN = 200 Hz. One way of intuitively appreciating the Nyquist frequency
concept is that it takes slightly more than two samples per period to accurately
characterize a sinusoid.

As can be seen from (3.14) that, if the sampling rate r is less than 2fmax =
fN , (as in Figure 3.1), then the sampled times series aliases will overlap and
corrupt each other, a condition called undersampling. Applying (3.16) to try
and recover φ(t) in this case will produce a distorted recovered function. This
undersampling distortion is called aliasing, and such a time series is referred to
as being aliased. If we aren’t interested in the higher frequency content in a
signal, we can eliminate aliasing problems by removing the higher-frequencies
from the data (using low-pass filtering) prior to sampling so that the signal con-
tains a negligible amount of energy at frequencies near and above fN/2. This
type of presampling, low-pass filter is called an antialias filter. In data acquisi-
tion systems, antialiasing is sometimes practically accomplished by drastically
oversampling the data at the analog input and then filtering and decimating
the signal digitally to produce an unaliased signal at a lower, desired sampling
rate. This eliminates the need for variable analog antialiasing electronics for the
lower sampling rates.

It is important to understand in detail what happens if we undersample data.
First, note that we never satisfy (3.17) exactly, because all real data sets are time
or space limited and thus can never be truly band-limited to ±r/2 (fortunately,
we can get close in this regard in practical cases). One way to see this is to
note that ”perfect” low-pass filtering is unobtainable, as the impulse response
of a perfect low-pass filter (one with a frequency response of Π(f/fmax)) is
the acausal sinc function, which has non-zero values from t = −∞ to t = ∞.
Consider the distorted spectrum, Φa(f), resulting from the influence of the two
nearest frequency-domain aliases, which are centered at f = ±r (Figure 3.1)

Φa(f) = Φ(f) + Φ(f − r) + Φ(f + r) . (3.18)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM43

If φ(t) is real, then Φ(f) is Hermitian, so that

Φa(f) = Φ(f) + Φ∗(r − f) + Φ∗(r + f) . (3.19)

The contribution to the aliased signal from the second two terms is just what one
would get by adding complex-conjugated versions of the spectrum which have
been “folded” in the frequency domain at f = ±r/2. Note that the actual char-
acter of corruption of the original signal depends on the specific characteristics
of Φ(f). The greatest distortion will occur if there is sufficient high-frequency
energy above f = r/2 so that even the lower frequency components of Φa(f)
(3.19) will be significantly different than those of Φ(f). A time domain sign
of danger in a sampled data set would be the occurrence of lots of terms with
alternating signs, as this is an indication that there is significant energy at or
above f = r/2.

As an example of aliasing which could occur in practice, consider an under-
sampled voltage that is contaminated by an f0 = 60 Hz AC sinusoidal noise

n(t) = A cos(2π · 60t) . (3.20)

To prevent aliasing of n(t), we would have to sample at a rate greater than
r ≥ fN = 2f0 = 120 Hz. If we instead sampled at a lesser rate, the delta
function spectrum of the noise component

na(t) = n(t) · rIII(rt) (3.21)

would have, in the central alias bracketing f = 0, its frequencies mapped to
f = ±(r − 60) Hz. As an extreme case, if we sampled at half of the Nyquist
frequency, (60 Hz), the 60 Hz energy in n(t) would be mapped to zero frequency
– producing a zero frequency component in the retrieved function. We can see
why this is by looking back in the time domain and noting that this corresponds
to sampling a sinusoid once per period, so that all such samples will have iden-
tical value. The specific value would depend on the phase relationship between
the sampling function and n(t); if the samples are centered on zero time and
n(t) is a cosine, then we would recover a maximum zero-frequency signal of
amplitude A. Aliasing thus puts true signal into different frequency ranges.
This behavior occurs because, for signal frequencies higher than the Nyquist
frequency, sampling and recovery is a nonlinear process.

Fourier Theory in Discrete Time. In analyzing sampled time series, it is
more practical to work in discrete (rather than continuous) time or space. As
previously mentioned, essentially all practical data analysis schemes are imple-
mented on computers, which do not process functions per se, but instead operate
on discrete ordered sets of numbers. A 1-dimensional ordered set of numbers is
called a sequence , which we will typically represent in subscript notation

xn(n ∈ integers) . (3.22)

The discrete time equivalent of the delta and step functions are the Kronecker
delta

δn−m ≡ δn,m =

{
1 n = m
0 n 6= m

(3.23)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM44

and its associated discrete step function

Hn−m =

{
1 n ≥ m
0 n < m

(3.24)

In the discrete time domain, summation supplants integration, so that the
delta/step relationship integral relationship in continuous time becomes

Hn−l =

n∑
k=−∞

δk−l . (3.25)

Analogously, convolution in the discrete world (e.g., in MATLAB) is a summa-
tion operation

xn ∗ yn =

∞∑
k=−∞

xkyn−k (3.26)

where the y index is reversed in the summation index, k, which fills in for its
continuous counterpart, τ .

To investigate how Fourier concepts apply to sequences, consider the re-
sponse of a linear discrete-time system (with an infinite-length impulse response
sequence xn) to a unit-amplitude, complex sinusoidal signal, sn:

gn =

∞∑
k=−∞

xksn−k =

∞∑
k=−∞

xke
2πıf(n−k) (3.27)

= eı2πfn
∞∑

k=−∞

xke
−ı2πfk ≡ X(f)eı2πfn (3.28)

where X(f) is the Fourier transform of xn (keep in mind that xn is a sequence,
not a continuous function). We can unify the Fourier transform definitions for
continuous and discrete functions using the sifting property of the delta function

X(f) ≡ F [xn] = F [rIII(rt)x(t)] = rF [

∞∑
n=−∞

δ(rt− n)x(t)] (3.29)

= r

∫ ∞
−∞

∞∑
n=−∞

δ(rt− n)x(t)e−ı2πftdt = r

∞∑
n=−∞

x(n/r)e−ı2πfn/r . (3.30)

The spectrum of (3.30) is continuous and periodic in the frequency domain,
(with a spectral period of r). This periodicity reflects the spectral aliasing effects
of sampling discussed earlier. It is usually most convenient to take r = 1, in
which case the spectrum is normalized with respect to the Nyquist frequency
and we need only concern ourselves with a unit Nyquist interval −1/2 ≤ f ≤ 1/2
to capture all of the information in xn (provided that we sample rapidly enough
so that the spectral aliases are non-overlapping)

X(f) =

∫ ∞
−∞

∞∑
n=−∞

δ(t− n)x(t)e−ı2πftdt =

∞∑
n=−∞

x(n)e−ı2πfn . (3.31)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM45

The original sequence can be recovered using the inverse Fourier transform,
where we restrict the range of integration to the Nyquist interval

xn =

∫ 1/2

−1/2

X(f)eı2πfn df . (3.32)

The Discrete Fourier Transform. (3.31) and (3.32) form a transform pair,
but not a very useful or symmetric one, as the time sequence is infinite and
the spectrum is continuous. You might imagine (and you would be right), that
X(f), being band limited to the Nyquist interval, could be completely specified
by some sequence in the frequency domain. In this case, we would have a
transform pair where both the time and frequency domain representations are
discrete, and that could be used in practical situations to analyze data.

To construct such a transform pair, consider a periodic sequence, xn, where
the period is N samples. For the moment, assume that the sequence is sampled
at a sampling rate of r = 1– we will discuss other sampling rates later. Because
of its periodicity, every component of xn of the form e2πikn/N must also be
N -sample periodic. These periodic components must therefore have frequencies
f = k/N , where k is some integer. Because our sequence is sampled at rate
r = 1, frequencies outside of the range 0 ≤ r ≤ 1 would be aliased. Thus it’s
unnecessary to include frequencies k/N for k outside of the range from 0 to
N − 1.

The sequence can thus be completely characterized across one of its periods
via the expansion

xn =
1

N

N−1∑
k=0

Xke
2πikn/N = IDFT(Xk) . (3.33)

The normalization factor 1/N is not strictly required, but is included at this
point to conform with standard conventions. Equation (3.33) defines our inverse
discrete Fourier transform. The corresponding forward transform is

Xk =

N−1∑
n=0

xne
−2πikn/N = DFT(xn) . (3.34)

To verify this transform pair, we can begin with (3.33) and apply the forward
transform to both sides of the equation

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
n=0

N−1∑
k=0

Xke
ı2πkn/Ne−ı2πnm/N . (3.35)

Interchanging the order of summation gives

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
k=0

Xk

N−1∑
n=0

eı2πn(k−m)/N . (3.36)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM46

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
k=0

Xk

N−1∑
n=0

(
eı2π(k−m)/N

)n
. (3.37)

Now, consider the innermost sum

N−1∑
n=0

(
eı2π(k−m)/N

)n
. (3.38)

Recall that the sum of a finite geometric series is given by

1 + r + r2 + . . .+ rN−1 =
1− rN

1− r
r 6= 1 . (3.39)

When r = 1, the sum is simply N . When k −m is a multiple of N , then

eı2π(k−m)/N = 1 (3.40)

and
N−1∑
n=0

(
eı2π(k−m)/N

)n
=

N−1∑
n=0

1n = N . (3.41)

When (the integer) k −m is not a multiple of N , eı2π(k−m)/N is not equal to
one, and

N−1∑
n=0

(
eı2π(k−m)/N

)n
=

1−
(
eı2π(k−m)/N

)N
1− eı2π(k−m)/N

. (3.42)

But (
eı2π(k−m)/N

)N
= eı2π(k−m) = 1 (3.43)

so,
N−1∑
n=0

(
eı2π(k−m)/N

)n
=

1− 1

1− eı2π(k−m)/N
= 0 . (3.44)

Thus

N−1∑
n=0

(
eı2π(k−m)/N

)n
=

{
N (k −m) is a multiple of N
0 otherwise

(3.45)

We are only interested in integer values of k and m between 0 and N − 1. Thus
k −m will only be a multiple of N when k −m = 0, and

N−1∑
n=0

(
eı2π(k−m)/N

)n
= Nδk,m . (3.46)

Returning to our original sum, and using the above result,

N−1∑
n=0

xne
−i2πnm/N =

1

N

N−1∑
k=0

XkNδk,m (3.47)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM47

Figure 3.2: Amplitude of (3.38) as a function of k −m for N = 12.

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM48

which reduces to
N−1∑
n=0

xne
−i2πnm/N = Xm . (3.48)

This derivation shows that DFT(IDFT(Xk)) = Xk. Similarly, it can now be
easily confirmed that IDFT(DFT(xn)) = xn. An example DFT/IDFT pair is
shown in Figure 3.3.

It is easy to see that the Discrete Fourier Transform of an N -periodic se-
quence also produces an N -periodic sequence

Xm+N =

N−1∑
n=0

xne
−i2πn(m+N)/N (3.49)

or

Xm+N = e−i2πN/N
N−1∑
n=0

xne
−i2πnm/N . (3.50)

Since e−i2π = 1,

Xm+N =

N−1∑
n=0

xne
−i2πnm/N = Xm. (3.51)

The k = 0 term of the DFT is just N times the average value of xn, while
the N -periodicity of the DFT implies that

XN−k =

N−1∑
n=0

xne
−ı2πn(N−k)/N =

N−1∑
n=0

xne
ı2πnk/N = X−k . (3.52)

Thus, the N periodicity here implies that the upper portion of the (N even) DFT
sequence, N/2 ≤ k ≤ N − 1, contains negative frequency spectral information,
corresponding to −N/2 ≤ k ≤ −1 (Figure 3.4), while the lower portion contains
positive frequency spectral information. If we wish to display an N -point DFT
spectral sequence centered on the zero-frequency component (as we are used to
picturing continuous Fourier transforms) we must therefore plot the DFT for
−N/2 ≤ k ≤ (N/2)−1 (or −(N −1)/2 ≤ k ≤ (N −1)/2 for N odd) rather than
0 ≤ k ≤ N − 1, taking into account the above mapping. In MATLAB, there is
an fftshift command that performs this rearrangement of the DFT coefficients.

Formulas for the DFT and its inverse can be written more compactly in
terms of

wN = ei2π/N . (3.53)

The DFT can be written as

Xm =

N−1∑
n=0

xnw
−mn
N . (3.54)

The inverse DFT becomes

xn =
1

N

N−1∑
k=0

Xkw
kn
N . (3.55)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM49

Figure 3.3: An example (N = 64) DFT.

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM50

Figure 3.4: DFT frequency-index mapping.

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM51

The DFT and its inverse can also be written in matrix form as
x0

x1

x2

...
xN−1

 =
1

N

1 1 1 · · · 1

1 wN w2
N · · · wN−1

N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
. . .

...

1 wN−1
N w

2(N−1)
N · · · w

(N−1)(N−1)
N

X0

X1

X2

...
XN−1

(3.56)

and
X0

X1

X2

...
XN−1

 =

1 1 1 · · · 1

1 w−1
N w−2

N · · · w
−(N−1)
N

1 w−2
N w−4

N · · · w
−2(N−1)
N

...
...

...
. . .

...

1 w
−(N−1)
N w

−2(N−1)
N · · · w

−(N−1)(N−1)
N

x0

x1

x2

...
xN−1

(3.57)

In the language of linear algebra, this shows that the DFT is a change of basis
formula. It’s also easy to show that the DFT basis is an orthogonal basis.

A summary of the discrete and continuous Fourier transform pairs defined
here is given in Table 1. Here, (C , D) denote continuous or discrete and (P
, A) denote periodic or aperiodic. Continuous periodic functions are assumed
periodic on the unit interval and discrete periodic functions have period N .

φ(t) Φ(f) Transform Forward Transform Inverse Transform

C, A C, A Fourier Transform Φ(f) =
∫∞
−∞ φ(t)e−ı2πftdt φ(t) =

∫∞
−∞ Φ(f)eı2πftdf

C, P D, A Fourier Series Φk =
∫ 1/2

−1/2
φ(t)e−ı2πktdt φ(t) =

∑∞
k=−∞ Φke

ı2πkt

D, A C, P F.T. of a Sampled function Φ(f) =
∑∞
n=−∞ φne

−ı2πfn φn =
∫ 1/2

−1/2
Φ(f)eı2πfndf

D, P D, P DFT Φk =
∑N−1
n=0 φne

−ı2πkn/N φn = 1
N

∑N−1
k=0 Φke

ı2πkn/N

Table 3.1: Four Discrete and Continuous Fourier Transform Pairs.

There are many results for the DFT that are analogous to results for the
continuous Fourier transform. For example, the time shift theorem for the DFT
is

DFT[xn−n0] =

N−1∑
n=0

xn−n0e
−ı2πkn/N (3.58)

DFT[xn−n0
] =

N−n0−1∑
l=−n0

xle
−ı2πk(l+n0)/N (3.59)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM52

DFT[xn−n0] = e−ı2πkn0/N
N−n0−1∑
l=−n0

xle
−ı2πkl/N (3.60)

because of the periodicity of xl, we can shift the summation limits to obtain

DFT[xn−n0] = e−ı2πkn0/N
N−1∑
l=0

xle
−ı2πkl/N (3.61)

or
DFT[xn−n0

] = e−ı2πkn0/NXk . (3.62)

Parseval’s theorem for the DFT is

N−1∑
n=0

|xn|2 =

N−1∑
n=0

xnx
∗
n (3.63)

N−1∑
n=0

|xn|2 =
1

N2

N−1∑
n=0

N−1∑
k=0

Xke
ı2πkn/N

N−1∑
l=0

X∗l e
−ı2πln/N (3.64)

N−1∑
n=0

|xn|2 =
1

N2

N−1∑
n=0

N−1∑
k=0

N−1∑
l=0

XkX
∗
l e
ı2πn(k−l)/N . (3.65)

Evaluating the sum over n first, using (3.46) gives

N−1∑
n=0

|xn|2 =
1

N2

N−1∑
k=0

N−1∑
l=0

XkX
∗
l Nδk,l (3.66)

which gives
N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2 . (3.67)

Many properties of the continuous Fourier transform also apply to the DFT,
but we must be careful, as the DFT applies to a periodic sequence, and not to
a finite series surrounded by an infinite number of zeros, as we might at first be
tempted to conceptualize from our experience with continuous time series.

A very important application of the DFT is in implementing the discrete
counterpart of the convolution theorem. Suppose we are given xn and yn, what
series has the DFT Zk = XkYk?

zn =
1

N

N−1∑
k=0

XkYke
ı2πkn/N . (3.68)

zn =
1

N

N−1∑
k=0

N−1∑
l=0

N−1∑
m=0

xle
−ı2πlk/Nyme

−ı2πmk/Neı2πkn/N . (3.69)

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM53

zn =
1

N

N−1∑
l=0

xl

N−1∑
m=0

ym

N−1∑
k=0

eı2πk(n−m−l)/N . (3.70)

The innermost sum is zero whenever n−m− l is not a multiple of N by (3.38),
so we get

zn = IDFT[XkYk] =

N−1∑
l=0

xl yn−l (3.71)

where it is understood that zn is N -periodic, as are xn and yn.
Because the functions that we manipulate with the DFT and IDFT are

periodic, and because the length of a convolution will be greater than or equal
to the maximum length of its two constituent series (and equal only in the case
where one is a Kronecker delta function), it is possible to get perhaps unexpected
effects when applying (3.71).

Suppose we convolve two aperiodic series xn and ym in the time domain
to obtain the serial product (this is what the MATLAB conv function does).
Further suppose that x and y have N and M contiguous non-zero terms, re-
spectively. The convolution is then

zn = xn ∗ yn =

∞∑
l=−∞

xl yn−l (3.72)

and will then have N +M − 1 significant terms, bracketed by zeros.
What happens if we use the discrete convolution theorem to convolve the

two functions? Here it is important to again keep in mind that the convolution
theorem for discrete series corresponds to a convolution of periodic sequences.
We must therefore take the period (i.e., the DFT size, L) to be longer than
N +M − 1, otherwise there will not be room to squeeze the N +M − 1-length
convolution result into an L-periodic result. We must therefore be careful to
pad sequences with a suitable numbers of zeros to accurately mirror (3.72) using
DFT techniques.

If L < N +M − 1, we get generally undesirable wraparound effects and the
result will be different from the serial product, especially in its tails. Because
of this wraparound, (3.71) strictly applies to what is referred to as cyclic, or
circular convolution (Figure 3.5). One way to avoid wraparound is to pad
functions with zeros (e.g., Figure 3.6).

Why bother to use (3.71) rather than (3.72) to evaluate convolutions? A ma-
jor incentive arises because of a set of computer algorithms which first emerged
in the mid 1960’s (e.g., Cooley and Tukey, “An Algorithm for the Machine Com-
putation of Complex Fourier Series” [6]. These Fast Fourier Transform or FFT
algorithms evaluate the DFT, but in a much faster manner than the straight-
forward application of (3.48). Because large DFT’s can be efficiently calculated
using the FFT algorithm, it is much more efficient to evaluate a convolution by
computing two DFT’s, multiplying them, and then taking the inverse transform
of the result, rather than by evaluating the serial product.

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM54

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
184−point Bartlett Function, 256−point series

g n

50 100 150 200 250
0

10

20

30

40

50

60

70

N

D
FT

−1
[D

FT
(g

n) ⋅
 D

FT
(g

n)]

Figure 3.5: Wraparound in an N = 256-point Circular Convolution.

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1
184−point Bartlett Function, 512−point series

g n

50 100 150 200 250 300 350 400 450 500
−20

0

20

40

60

80

N

D
FT

−1
[D

FT
(g

n) ⋅
 D

FT
(g

n)]

Figure 3.6: Same convolution as Figure 3.5, except with 256-point zero padding
to eliminate wrap-around and thus emulate a noncircular convolution.

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM55

We will derive an FFT algorithm for the special case in which N = 2p is
a power of 2. Similar ideas are used in algorithms that can work with more
general values of N . Given a fixed input sequence xn, Let

p(z) = x0 + x1z + . . .+ xN−1z
N−1 . (3.73)

Then the DFT of x is

X =

p(w0

N)
p(w−1

N)
p(w−2

N)
...

p(w
−(N−1)
N)

 (3.74)

where wN = eı2π/N .
We could use Horner’s rule to evaluate the polynomial p(z), which gives

p(z) = ((· · · (xN−1z + xN−2)z + xN−3)z + . . .+ x1)z + x0 . (3.75)

Evaluating p(z) in this way requires N − 1 complex multiplications and N − 1
complex additions. Computing the entire vector X takes N evaluations of p(z),
so computing the DFT in this manner takes 2N2 − 2N = O(N2) operations.

The FFT algorithm takes advantage of the fact that we are evaluating p(z)
only at powers of w−1

N . We begin by breaking apart the even and odd powers
in p(z). Let

peven(z) =

N−1∑
n=0 n even

xnz
n
2 (3.76)

and

podd(z) =

N−1∑
n=0 n odd

xnz
n−1
2 (3.77)

Then
p(z) = peven(z2) + zpodd(z2) . (3.78)

For example, if N = 8, then

p(z) = x0 + x1z + . . .+ x7z
7, (3.79)

peven(z) = x0 + x2z + x4z
2 + x6z

3, (3.80)

and
podd(z) = x1 + x3z + x5z

2 + x7z
3. (3.81)

Then
peven(z2) + zpodd(z2) = x0 + x1z + . . .+ x7z

7 . (3.82)

By using this decomposition of p(z), we only need to evaluate z at even
powers of wN . Because of the periodicity of the powers of wN , there are only

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM56

N HN TN
2 4 4
4 24 16
8 112 48

16 224 128
32 960 320
64 3972 768

Table 3.2: Operation counts for DFT by the naive algorithm (HN) and FFT
algorithm (TN .)

N/2 points at which we have to evaluate the polynomial. For example, when
N = 8, we need to evaluate p(z) for

z = w0
N , w

−1
N , . . . , w−7

N , (3.83)

after removing multiples of ei2π, the squares of these eight numbers are

z2 = w0
N , w

−2
N , w−4

N , w−6
N , w0

N , w
−2
N , w−4

N , w−6
N . (3.84)

Note that the even powers of wN repeat twice. Thus we only need to evaluate
peven and podd at 4 points.

Let TN be the number of arithmetic operations needed to evaluate the N
point DFT. In other words, TN is the number of arithmetic operations needed

to evaluate an Nth degree polynomial p(z) at w0
N , w−1

N , . . ., w
−(N−1)
N . By using

our formula, we can reduce this to 2 evaluations of polynomials of degree N/2
at N/2 points plus N multiplications and N additions. Thus

TN = 2TN/2 + 2N . (3.85)

We won’t find an explicit solution to this recurrence relation. However, we can
easily compute a table of values of TN for small values of N that are powers
of 2. Table 3.2 shows operations counts for the naive algorithm and our FFT
algorithm. Clearly, the FFT becomes much more efficient as N gets larger. In
fact, it can be shown that the growth of TN is O(N logN), while the growth of
HN is O(N2). For long signals with thousands or millions of samples, the FFT
is vastly more efficient than the naive algorithm.

Computation of the convolution of two sequences of length N takes O(N2)
time by direct evaluation of the convolution formula. If we use the convolution
theorem for the DFT, then we can do the job by zero padding the sequences to
length 2N , computing two FFT’s of length 2N , performing 2N multiplications,
and then doing an inverse FFT of length 2N . Since

T2N = 2TN + 4N ≤ 6TN , (3.86)

T2N is O(N logN). Thus the entire FFT convolution process takes O(N logN)
operations.

CHAPTER 3. SAMPLED TIME SERIES AND THE DISCRETE FOURIER TRANSFORM57

If we do not have large aliasing effects, so that the sampled sequence, xn,
adequately characterizes some near-band-limited continuous function in the real
world, φ(t), then the DFT of the sequence xn is just the spectrum of φ(t),
sampled at the N equally-spaced frequency points. As we go to finer and finer
sampling, we expect our calculated spectrum to approach the true spectrum,
Φ(f). One way to help see that this is true (in a somewhat nonrigorous way)
by considering the DFT when N becomes large.

It’s instructive to investigate the convergence of the DFT to the Fourier
Transform. Consider a discrete function defined by the N -point sequence, xn.
Taking the N -point DFT, where we’ll take N to be odd, N = 2M + 1, we get

Xk =

M∑
n=−M

xne
−ı2πkn/N (3.87)

Heuristically in the limit as N approaches infinity (finer and finer sampling), n
remains discrete, but the function becomes aperiodic (we might conceptualize
that it occupies the entire number line) and k thus become continuous (Table
4.1). The Fourier transform is thus

X(f) ≡
M∑

n=−M
xne
−ı2πfn . (3.88)

As a special case, consider the discrete rectangle function

Πn =

{
1 |n| ≤M
0 |n| > M

(3.89)

Taking the Fourier Transform of (3.89), where N = 2M + 1, we get

Π(f) =

M∑
n=−M

e−ı2πfn = eı2πfM
2M∑
n=0

e−ı2πfn (3.90)

= eı2πfM
1− e−ı2π(2M+1)f

1− e−ı2πf
=

sin(Nπf)

sin(πf)
≡ D(f) (3.91)

Expressions of the form of (3.91) are a discrete, periodic analogue to the sinc
function, occur frequently in discrete Fourier theory (e.g., in the kernel of the
multitaper eigenfunction equation we noted in discussing power spectra. Such
functions are commonly referred to as Dirichlet kernels. When N is large, the
numerator of (3.91) oscillates much more rapidly than the denominator. Making
the substitution y = Nf , (3.91) indeed then approaches the sinc function:

lim
N→∞

D(f) = lim
N→∞

sin(πy)

sin(πy/N)
=

sin(πy)

πy/N
= N sinc y . (3.92)

Chapter 4

Spectral Analysis

Energy and Power Spectra

It is frequently valuable to study the power distribution of a signal in the fre-
quency domain. For example, we may wish to have estimates for how the power
in a signal is distributed with frequency, so that we can quantitatively state
how much power is in a particular band of interest relative to other frequen-
cies. Power peaks and/or troughs across specific frequency ranges may reveal
important information about a physical process. Given a power spectral density
function, the power across any range of frequencies can then be estimated by
integrating such a function over the band of interest.

The simplest such measure of energy (or, with scaling modifications, power)
in a signal as a function of frequency is the energy spectral density, which is
just the square of the spectral amplitude

|Φ(f)|2 = Φ(f)Φ∗(f) . (4.1)

Applying the convolution theorem, and noting that phase conjugation in the
frequency domain corresponds to reversal in the time domain, this can be rec-
ognized as the Fourier transform of the autocorrelation

Φ(f)Φ∗(f) = F [φ(t) ∗ φ∗(−t)] = F [φ(t) cor φ∗(t)] . (4.2)

We can thus observe that function which has a sharp and narrow autocor-
relation function will have a broad energy spectral density, while a function
which has a broad autocorrelation function will have a narrow energy spectral
density. This can perhaps be understood better by considering what is in fact
required of a time-domain function for it to have narrow (in the limit, delta-
like) autocorrelation function; the function must change rapidly, so that it does
not resemble itself very much for a small shift from zero lag. For a function to
change rapidly, it must have high frequency energy in its spectrum. Note that,
because the units of a spectrum are u · s = u/Hz, the units of (4.1) are u2/Hz2,
where u denotes the physical units of φ(t) (e.g., Volts, Amperes, meters/s, etc.).

58

CHAPTER 4. SPECTRAL ANALYSIS 59

Many interesting signals, such as those arising from an incessant excitation,
are, practically speaking, unbounded in time or continuous (as opposed to sig-
nals that are limited in time, or transient). If the statistical behavior of the
signal (we will look at statistical aspects of time series much more later on in
the class) doesn’t change with time, so that the spectral and other properties of
the signal are time-invariant, it is generally referred to as stationary. Examples
where signals can often be considered to be stationary may include seismic, ther-
mal, or electromagnetic noise, tides, winds, temperatures, and currents. Some
signals of interest exhibit strong periodicities (tides, for example) because they
are associated with astronomical or other periodic forcing. Because of their
incessant nature, such signals have infinite total energy

ET = lim
T−>∞

∫ T/2

−T/2
|φ(t)|2 dt = ∞, (4.3)

so that the Fourier transform of the autocorrelation (4.2) won’t converge. The
frequency content of such signals may, however, still be examined using power
spectral density, or simply PSD.

Signal power averaged over some interval T is simply the energy (4.3) nor-
malized by the length of the observation

PT =
1

T

∫ T/2

−T/2
|φ(t)|2 dt =

1

T

∫ ∞
−∞
|φ(t) ·Π(t/T)|2 dt . (4.4)

As the observation interval T becomes long, this converges to the true signal
power

P = lim
T→∞

PT . (4.5)

The PSD is defined as

PSD[φ(t)] = lim
T→∞

1

T
ΦT (f) · Φ∗T (f) (4.6)

where the time series has been windowed by multiplying the time series with a
boxcar function of unit height and length T , so that

ΦT (f) = F [φ(t) ·Π(t/T)] . (4.7)

Note that dimensional analysis shows that the units of the power spectral den-
sity in (4.6) are u2/Hz. Further note that that PSDs will be real, symmetric
functions over f for the common case where φ(t) real (and thus has a Hermitian
spectrum). For this reason, as we noted for the complex Hermitian spectrum
in considering the various Fourier symmetry relationships, the power spectra of
real functions are typically plotted only for positive frequencies. Because we
can never do calculations on an infinite-length signal, all PSDs in practice are
estimates of P that we hope approach the ”true” PSD for the continuous and
(conceptually) time-infinite signal that we are studying.

The simplest (but definitely not the best!) way to estimate a PSD is to
simply truncate the data with a T -length rectangular time window extending

CHAPTER 4. SPECTRAL ANALYSIS 60

across a time interval that we can define as being between −T/2 to T/2. This
estimate, because it seems like the obvious thing to do, has a long history, and
it is sometimes referred to as a periodogram. To understand the relationship
between the periodogram estimate and the true PSD (4.6), note that for a
rectangular window of width T and a real-valued time series (which, again, has
a Hermitian spectrum)

PSDperiodogram =
1

T
|ΦT (f)|2 =

1

T
|F [φ(t)Π(t/T)]|2 (4.8)

Using the convolution theorem, this gives

PSDperiodogram =
1

T
|Φ(f) ∗ sinc (Tf)|2 (4.9)

where, recall, the Fourier transform of Π(t/T) is

sinc (Tf) =
sinπTf

πTf
. (4.10)

Thus, what we obtain in a periodogram estimate is the true PSD of the
process convolved in the frequency domain with the sinc (Tf) function. Figure
4.1 shows such a periodogram estimate for a sinusoidal process. The underlying
process has a delta function spectrum, with the delta function centered on the
frequency of the sinusouid. However, (4.9) shows in a broader peak in the PSD
estimate. The spearing effect of the convolution produced a limited spectral
resolution view of the sinusoidal process.

The loss of resolution caused by the convolution in (4.9) is undesirable, and
we typically want to minimize and characterize it. As convolution is essentially a
smoothing operation (recall that variances add when we convolve two functions,
thus increasing their spread), our windowed estimate in (4.9) is a blurred image
of the true spectrum. In the periodogram case, this blurring takes the specific
form of convolution with a sinc function because we chose an (abrupt) boxcar
data truncation on the ±T/2 interval, and the Fourier transform of the boxcar
function is a sinc. The sinc function’s slow ((Tf)−1) fall-off and oscillatory
side lobes are easily improved by modifying the estimation method, and the
periodogram should thus never be used in practice except for quick and dirty
estimates of the PSD.

The smearing of spectral resolution due to the convolution of the true spec-
trum with the Fourier transform of the windowing function is called spectral
leakage, as the frequency domain convolution in (4.9) causes power from sur-
rounding frequencies to “leak” into the estimate at any particular frequency. In
its simplest form, spectral leakage in the periodogram will make the PSD esti-
mate for a function that is really a sinusoid of frequency f have the appearance
of sinc functions centered on the true frequencies (±f) of the continuous signal,
rather than the true delta functions.

Spectral leakage can be reduced by increasing T , so that the Fourier trans-
form of the windowing function becomes reciprocally (by a factor of 1/T) nar-
rower. However, for statistical reasons involving the variance of the estimate

CHAPTER 4. SPECTRAL ANALYSIS 61

Figure 4.1: A Periodogram Estimate of a Pure Sinusoidal Process

CHAPTER 4. SPECTRAL ANALYSIS 62

that we will not elaborate on here, this is still a poor way to estimate the PSD.
A better way to reduce spectral leakage, at the cost of eliminating the statistical
contributions of data near the endpoints of the data series, is to window with
a smoother time function than the boxcar that has a Fourier transform that is
more delta-like by some measure. For example, consider the Bartlett or Parzen
window

Λ(2t/T) = 4/T 2 (Π(2t/T) ∗Π(2t/T)) (4.11)

which is a unit height triangle function spanning the interval −T/2 to T/2.
Λ(2t/T) is easily seen by the convolution theorem to have a Fourier transform
given by the sinc function squared

F [Λ(2t/T)] = 4/T 2F [Π(2t/T) ∗Π(2t/T)] = sinc 2(fT/2) (4.12)

which falls off asymptotically as (Tf)−2 and is positive everywhere (although it
is still oscillatory; Figure 4.2).

The formulation of various data windows such as the Parzen window has
historically formed a rich are of research (if not a veritable cottage industry) in
signal processing, and numerous function are in common usage (may of which
can be readily generated using various MATLAB functions in the signal pro-
cessing toolbox). The general tradeoff in window selection arises between the
width of the main lobe of the leakage function and the rate of decay away from
the center frequency. A few examples of commonly used windows and their
corresponding spectral leakage properties when they are applied to a true sinu-
soidal signal (which, again, has a ”true” delta function PSD), are shown in the
following figures.

An interesting issue in spectral estimation that arises from the use of win-
dows is the “throwing out” of data resulting from tapering near the data segment
endpoints. The result is that we are downweighting information and thus in-
creasing the statistical uncertainty of the PSD estimate. For long, stationary
time series, one straightforward and widely-applied method of addressing this
issue is to evaluate a suite of either overlapping or nonoverlapping spectral es-
timates for a host of window locations, and to subsequently average them and
calculate statistical bounds on the mean estimate. The most commonly used
technique along these lines is called Welch’s Method (see the pwelch function in
the MATLAB signal processing toolbox).

An elegant, more computationally-intensive, and increasingly widely utilized
method of estimating spectra (see the pmtm function in MATLAB’s signal pro-
cessing toolbox) is multitaper spectral estimation [13]. In multitaper spectral
estimation, a family of statistically independent spectral estimates is obtained
from a signal using an orthogonal set of windows on the estimation interval that
are referred to as prolate spheroidal tapers (Figure 4.6).

In multitaper spectral estimation individual spectra obtained from the pro-
late spheroidal tapers are combined in a weighted sum to produce a spectral
estimate with leakage that is approximately limited to some specified frequency
band, ±W . Specifically, for a specified time-bandwidth product, NW , the mul-
titapers are the Fourier Transforms of solutions, Uk, to the frequency-domain

CHAPTER 4. SPECTRAL ANALYSIS 63

Figure 4.2: A Bartlett or Parzen window estimate of a pure sinusoidal process
spectrum.

CHAPTER 4. SPECTRAL ANALYSIS 64

Figure 4.3: A Welch window estimate of a pure sinusoidal process spectrum.

CHAPTER 4. SPECTRAL ANALYSIS 65

Figure 4.4: A Hann window estimate of a pure sinusoidal process spectrum.

CHAPTER 4. SPECTRAL ANALYSIS 66

Figure 4.5: A Kaiser-Bessel window estimate of a pure sinusoidal process.

CHAPTER 4. SPECTRAL ANALYSIS 67

Figure 4.6: Prolate Spheroidal Taper Functions (0 ≤ k ≤ 4;NW = 4).

CHAPTER 4. SPECTRAL ANALYSIS 68

Figure 4.7: Fractional energy leakage outside of f = (−W,W) for the first five
multitapers (NW = 4).

eigenvalue-eigenfunction equation∫ W

−W

sinNπ(f − f ′)
sinπ(f − f ′)

Uk(N,W ; f ′) df ′ = λk(N,W) · Uk(N,W ; f) . (4.13)

where the λk are eigenvalues (the first 2NW of which are close to one), and N
is the discrete length of the taper sequence (this is a discrete formulation for
spectral estimation on sampled time series, which we shall discuss next shortly.
The integral in (4.13) is a convolution in the frequency domain between the Uk
and the Dirichlet kernel, a function that arises frequently in discrete Fourier
analysis because it is the Fourier transform of the sampled counterpart of the
boxcar function (more on this later). Solutions to (4.13) form an orthogonal
family of functions which have the greatest fractional energy concentration in
the frequency interval (−W,W). The eigenvalues in (4.13) are measures of
the degree to which spectral leakage is confined to (−W,W). Spectral leakage
becomes increasingly worse for higher-order tapers, with the energy leakage
being given approximately as

1− λk ≈
√

2π

k!
(8c)k+1/2e−2c (4.14)

where c = πNW . Figure 4.7 shows the fractional leakage for the first five
multitapers.

CHAPTER 4. SPECTRAL ANALYSIS 69

Figure 4.8: Prolate spheroidal taper spectral estimate (k = 0; NW = 4).

Because of the appreciable leakage of the higher order tapers the lowest few
(typically six or so, depending on the values of N and W) are typically used
in practice. Figures 4.8 through 4.12 show the five lowest order multitaper
estimates for NW = 4 for the example sine wave signal used in the earlier
figures. Figure 4.13 shows the multitaper estimate obtained by averaging them.
The leakage function displayed in Figure 4.13 approximates a frequency boxcar
of width 2W .

An example geophysical application of the PSD is to quantify the background
noise characteristics of seismic stations, so as to gauge, for example, how they
compare to known very quiet sites, and to assess what frequency bands good
or bad for signal detection. This is of considerable importance both for earth-
quake and Earth structure studies and for estimating detection thresholds for
clandestine events (e.g., nuclear tests). Figure 4.14 shows PSD estimates for a

CHAPTER 4. SPECTRAL ANALYSIS 70

Figure 4.9: Prolate spheroidal taper spectral estimate (k = 1; NW = 4).

CHAPTER 4. SPECTRAL ANALYSIS 71

Figure 4.10: Prolate spheroidal taper spectral estimate (k = 2; NW = 4).

CHAPTER 4. SPECTRAL ANALYSIS 72

Figure 4.11: Prolate spheroidal taper spectral estimate (k = 3; NW = 4).

CHAPTER 4. SPECTRAL ANALYSIS 73

Figure 4.12: Prolate spheroidal taper spectral estimate (k = 4; NW = 4).

CHAPTER 4. SPECTRAL ANALYSIS 74

Figure 4.13: Prolate spheroidal taper average spectral estimate (0 ≤ k ≤ 4;
NW = 4).

fairly quiet IRIS broadband seismic station in the Tien Shan mountains near
Ala Archa, Kyrgyzstan, at periods ranging from 0.1 to 103 s (about 17 min-
utes). The bounding curves are empirically-based high- and low-noise extremal
models for broadband stations. Noise at short periods is dominated by cultural
(man-made), wind, and other rapidly varying environmental effects. The promi-
nent noise peaks near 7 and 14 seconds are globally observed and are generated
by ocean waves. The long-period power is higher on the horizontal sensors
as opposed to the vertical sensors because they are sensitive to tilt caused by
barometric, thermal, or other long-period noise sources. The peak near 1.6 s is
unusual and may represent microseismic wave noise from the nearby Issyk Kul,
one of the largest high-altitude alpine lakes in the world.

As a final indication of the great utility of the PSD, the Figure (4.15) shows
processed PSDs from a broadband seismometer (Guralp CMG-3Tb) located
in a 255-m deep borehole in the polar icecap near the South Pole. A great
many of 1-hour data length, 50% overlap, PSDs using a hamming taper, were
calculated from the month of May, 2003, and the resulting individual PSDs
were used to assemble an empirical probability density function for the signal
characteristics at he station The bifurcation of the high frequency noise is caused
by intermittent periods where tractors are moving snow near the station. Pink
misty areas concentrated around 1 and 20 s are PSDs that include teleseismic
earthquake signals. At short periods this is among the quietest stations on
Earth.

CHAPTER 4. SPECTRAL ANALYSIS 75

Figure 4.14: Earth Acceleration Power Spectral Density for background noise
at the Ala Archa IRIS/IDA station as a function of period. Z, N , E refer
to vertical, north, and east seismometer components. Curves labeled NM are
the empirical noise model bounds of Peterson (1994) denoting to extremal PSD
values from stations installed around the world. The reference (0 db) level is
(1 m/s2)2/Hz. PSD estimates were obtained using Welch’s method.

CHAPTER 4. SPECTRAL ANALYSIS 76

Figure 4.15: Quiet South Pole (QSPA) Global Seismic Network Station, power
spectral density probability density plot

Chapter 5

Digital Filtering

Digital Filtering

We next turn to the (very broad) topic of how to manipulate a sampled signal
to alter the amplitude and/or phase of different frequency components of the
signal. There is an incredible amount of literature on this subject, and we will
only be able to scratch the surface here. There are many reasons for wanting to
filter a signal including:

1. Noise rejection/Signal enhancement

2. Remove an instrument response from the signal

3. Differentiate or integrate

4. Change the sampling rate

5. Artistic effects in audio and video.

Some particular types of filters that we will look at include low pass, high
pass, and band pass filters which cut off portions of the frequency spectrum
while allowing other frequencies to pass through the filter. In implementing
these filters we will want to achieve the desired frequency response while other-
wise distorting the signal as little as possible.

We will concentrate our analysis on filters which are themselves linear time
invariant systems. This will enable us to apply all of the techniques that we
have previously developed for LTI systems to analyze the performance of the
filter. However, it is also possible to construct more complicated nonlinear filters
which are not LTI systems.

In analyzing filters we will again encounter the concept of stability. A linear
filter is stable if the corresponding LTI is stable. If we try to use an unstable
filter, we’re likely to find that small amounts of noise in the input build up in
the output to intolerable levels. Unstable filters are practically impossible to
use.

77

CHAPTER 5. DIGITAL FILTERING 78

In some cases a filter is designed to process the signal in real time with little
or no delay, while in other cases we must receive the entire signal before we can
begin processing it. There is generally a preference for linear filters which are
causal, since these filters can be implemented in real time. If an acausal filter
needs to look ahead only a few samples, then we can implement the filter in
real time by simply inserting a buffer before the filter and allowing the filter to
delay its output by a few samples.

In practice, much of the human effort that goes into designing and imple-
menting digital filters is about tradeoffs between the desired frequency and phase
response of the filter and difficulty and cost of the implementation of the filter.

Filtering by Direct Manipulation of the FFT

One very simple approach to filtering a sampled signal is to compute its FFT
and then manipulate the individual components of the FFT to achieve a desired
frequency or phase response. This approach gives us complete freedom to control
the frequency and phase response of the filter.

There are two significant costs associated with implementing a filter in this
fashion. The first problem is that computing the FFT of a signal can (depending
on the sampling rate and time duration of the signal) be very computationally
intensive. For very long signals, computing the FFT of the entire signal may
not even be practical. The second issue is that since we must have the entire
signal in hand before we can begin filtering, we cannot use this method for real
time filtering.

For example, consider a 20 second long recording of some guitar music.
(The audio clip and MATLAB codes for this example will be made available
on the class web site.) The audio is digitized according to the consumer audio
CD standard at a sample rate of 44.1 Khz, with 16 bits per sample. For this
example, we’ve combined the left and right channels into one mono channel.
Thus the 20 seconds of audio requires 20 × 44100 × 16 bits, or 1.76 megabytes
of storage. We’ll store the samples in MATLAB as 8 byte double precision
numbers, which expands the storage requirements by a factor of four to about
8 megabytes. This is fairly large, but still well within the memory size limits of
our computers.

At the sampling rate of 44.1 Khz, the Nyquist frequency is 22.05 Khz. Is a
practical matter, most of us can’t hear (and the speakers in our classroom can’t
reproduce) much above about 15 Khz. Before sampling, this signal was passed
through an analog anti-aliasing filter that eliminated all frequencies above 22.05
Khz. Thus the sampling rate has been chosen to effectively reproduce all of the
frequencies in the original music while avoiding aliasing problems.

We read the signal into MATLAB and compute its FFT. Since there are
882,000 real values in the original signal, the FFT also has 882,000 complex
components. Since there are 882,000 frequency components over a frequency
range of 0 to 44,100 Hz, each component of the FFT represents a frequency
range of 0.05 Hz. Figure 5.1 shows a plot of the absolute values of the FFT

CHAPTER 5. DIGITAL FILTERING 79

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
4

−80

−60

−40

−20

0

20

40

60

80

frequency Hz

P
ow

er
 (

db
/H

z)

Figure 5.1: Spectrum of the original signal.

versus frequency. The vertical axis represents power. We have used a dB scale.
The horizontal access represents frequency in Hz. For convenience, we have used
the MATLAB command fftshift to rearrange the entries in the FFT so that 0
Hz is at the center of the spectrum.

Now, suppose that we want to low pass filter the signal, eliminating all
frequency components above 2 Khz. We do this by simply setting to 0 those
elements of the FFT that correspond to frequencies above 2 Khz. Figure 5.2
shows a plot of the revised spectrum. At all frequencies below 2 Khz, we’ve left
the spectrum alone, while at all frequencies above 2 Khz, we’ve zeroed out the
entries in the FFT.

We can play the filtered signal, and hear that it sounds much like the original
recording, but somewhat “dull.” The guitar notes are at frequencies between
about 400 Hz and 1 Khz. However, as a guitar string plays a note, the string also
vibrates at multiples of the base frequency. These harmonics are what give
the guitar its particular tone. By filtering out the harmonics, we’ve effectively
dulled the tone of the guitar.

We can also try filtering out the fundamental frequencies and just listen
to the higher harmonics. Figure 5.3 shows the spectrum after filtering out
everything below 1 Khz. When you listen to the playback of the filtered signal,
you’ll still be able to hear the original music, because the harmonics still carry
the tune.

CHAPTER 5. DIGITAL FILTERING 80

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
4

−100

−50

0

50

100

150

200

frequency Hz

P
ow

er
 (

db
/H

z)

Figure 5.2: Spectrum after low pass filtering.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
4

−80

−60

−40

−20

0

20

40

60

frequency Hz

P
ow

er
 (

db
/H

z)

Figure 5.3: Spectrum after high pass filtering.

CHAPTER 5. DIGITAL FILTERING 81

Phase Shifts

So far, we’ve only adjusted the amplitude of various frequency components in
the FFT. A filter which doesn’t change the phases of any of the components
of the FFT is called a zero–phase filter. Hidden within the phase of the
complex numbers in the FFT is the information about when the various notes
appear in the signal. Adjusting the phases of the FFT components can do some
interesting things to the signal.

Continuing our example, we’ll set the phase of each complex element of the
discrete spectrum to zero by taking the absolute value of each component. When
played back, the resulting gong-like signal bears little resemblance to the original
signal (although its amplitude spectrum is identical). The original frequencies
are all present, but the order of the notes has disappeared completely; they
are now all cosines that are aligned at zero time. In general, filtering that
affects phase can cause distortions to the signal that will make it virtually
unrecognizable (phase affects how all the Fourier components align in the time
domain, after all).

However, there is one important type of phase adjustment that does not
distort the relative time alignment of the Fourier components, and is fact use-
ful in many contexts. We will consider adjusting the phase of each frequency
component of the FFT by an amount proportional to its frequency.

That is, if the original signal contains a frequency component of the form

φ(t) = Ae2πift (5.1)

then we will adjust this to

φ̂(t) = Ae2πift+icf (5.2)

where c is some constant of proportionality. This results in the signal is shifted
by cf radians, or cf/(2π) cycles. Since the time length of each cycle is 1/f ,

φ̂(t) is φ(t) shifted in time by (cf/(2π))(1/f) = c/(2π). Notice that this time
shift is independent of f . Thus if we apply a phase shift of cf at each frequency,
then we’ll get a consistent and circular time shift of c/(2π). This is just an
implementation of the time shift theorem for discrete periodic spectra.

A filter which shifts each phase in the FFT by an amount proportional to its
frequency is called a linear phase filter. The time shift introduced by a linear
phase filter can sometimes be a nuisance. However, there is a clever technique
for correcting this effect; we can apply a linear phase filter to our signal, then
time reverse the filtered signal and apply the same filter a second time, and
finally time reverse the twice filtered signal. This has the effect of shifting the
signal forward and backward in time by the same amount. It also effectively
squares the frequency response of the filter. This technique is implemented in
the MATLAB command filtfilt.

Returning to our original example, suppose that we multiply each component
of the FFT by ei15f . This effectively adds 15f to the phase angle of each
component of the FFT. For example, at f=22000 Hz, the phase is shifted by

CHAPTER 5. DIGITAL FILTERING 82

φ = 330000 radians, which is 52,521 cycles, or 2.39 seconds. Similarly, at 100
Hz, the phase is shifted by φ = 1500 radians, or 238.7 cycles, which is also 2.39
seconds. We then invert the FFT to recover the filtered signal.

Note that the direction of this phase shift is backward in time. That is, at
time t = 0, we hear what was originally in the signal at t = 2.39 seconds. What
do you expect to hear during the last 2.39 seconds of the playback? Remember
that the FFT assumes that the entire signal is periodic.

Finally, we’ll consider another common and often trivial or inconsequential
type of phase shift. Suppose that the phase of each component of the FFT is
adjusted by π. This is equivalent to multiplying each component of the FFT by
eiπ, which is just −1. Because the FFT is a linear transformation of the original
signal, we can easily compute the effect of this phase shift on the original signal.
The inverse FFT of minus one times the FFT of the original signal is minus
one times the inverse FFT of the FFT of the original signal, or just minus the
original signal.

For many purposes, φ(t) and −φ(t) are indistinguishable signals. In our
audio example, this phase phase shift makes no discernible difference, because
your hearing system effectively analyzes the amplitudes of different frequency
components and not their absolute phases.

Finite Impulse Response Filtering

By finite impulse response or FIR filters, we refer to linear filtering operators
which have finite duration impulse responses. Such filters can be easily im-
plemented by simply convolving the input signal with the impulse response.
Since the impulse response is typically very short (perhaps just a few samples),
this convolution can often be efficiently implemented directly without using the
convolution theorem and the FFT.

Finite impulse response filters are invariably stable because they have no
recursive components (i.e., no internal feedback in their algorithms). Once the
input goes to 0, the output will thus return to zero within a finite period of
time determined by the length of the impulse response. It’s also trivial to make
such a filter causal by simply specifying that the impulse response be zero for
negative times.

In the following discussion, M will be the length of the filter sequence, N
will be the length of the input sequence, n will be used as a time index, and k
will be used as a frequency index. A common and easy to understand example
is the symmetric, M -point (M odd) running meanfilter defined as

wn =
1

M
ΠM =

{
1/M for |n| ≤ (M − 1)/2
0 for |n| > (M − 1)/2

. (5.3)

The M filter impulse response values w0, w1, ..., wM−1, are often referred to in
this context as weights . Convolution of an arbitrary sequence, yn, with this
particular wn results in a sequence with frequency characteristics (according to

CHAPTER 5. DIGITAL FILTERING 83

the convolution theorem)

Zk = Yk ·DFT[wn] = Yk ·
1

M

(M−1)/2∑
n=−(M−1)/2

e−ı2πkn/N (5.4)

Recall from our previous lecture notes on sampled time series that

M∑
n=−M

e−ı2πfn =
sin(Nπf)

sin(πf)
(5.5)

where N = 2M + 1. Thus

Zk = Yk ·
1

M

sin(Mπk/N)

sin(πk/N)
. (5.6)

The net result is a low-pass filter with a Dirichlet kernel frequency response
function. The DFT of wn is real. Note that at some frequencies, Wk is positive
while at other frequencies it is negative. As a result, the phase of this filter
“flips” from 0 to 180 degrees and back whenever Wk changes sign.

Note that although this low pass filter has a zero phase contribution, it is
also acausal and thus can only be implemented on a pre-recorded signal. This
is easily gotten around with the implementation of a pre-event memory in the
recording system.

As we have already seen, linear phase response is a frequently desirable
property of a filter because it will not distort the relative timing of the Fourier
components. All M -point, real-valued FIR filters with symmetric weights have
this property, as we can see by expressing the frequency response as

Wk =

M−1∑
n=0

wne
−ı2πkn/N = e−ıπk(M−1)/N

(M−1)/2∑
n=−(M−1)/2

wne
−ı2πkn/N (5.7)

= e−ıπk(M−1)/N

2

(M−1)/2∑
n=1

wn cos(2πkn/N) + w0

 = P (k) ·A(k) . (5.8)

The phase factor P (k) is complex with magnitude one, so it only adjusts the
phase. Furthermore, the phase adjustment is a linear function of k. Meanwhile,
the amplitude factor A(k) is real, so it only changes the relative amplitude at
different frequencies.

The MATLAB command conv can be used to convolve a filter sequence w
with the input sequence x. One problem with this is that the convolution will
lengthen the sequence by M − 1 samples. This is because the response of the
filter continues after the end of the input signal. If these samples are unwanted
or zero, you can simply truncate the filtered signal to produce an output with
the same number of samples as the input

CHAPTER 5. DIGITAL FILTERING 84

>> y=conv(x,w);

>> y=y(1:N);

An alternative is to use the MATLAB command filter. This command is
designed for more complicated IIR filters (discussed below) which are specified
by two vectors. However, it can be used with an FIR filter by specifying the
filter weights as the first argument, and “[1]” as the second argument. e.g.

>> y=filter(w,[1],x);

Now suppose we have some desired continuous (analog) filter characteristic,
Ω(f), and we wish to construct an FIR realization, specified by N weights, wn.
As our realization is discrete, we let Ω(f) be periodic in f , and apply the inverse
Fourier transform on the Nyquist interval to obtain

wn =

∫ 1/2

−1/2

Ω(f)eı2πfn df (5.9)

where f is normalized to the Sampling rate, r. However, there is a complication
in applying this recipe, as the resulting sequence may have an infinite number
of nonzero wn. Consider, for example, the perfect low pass filter, with a desired
cutoff frequency of fs/α, defined by

Ω(f) = Π(αf/2) . (5.10)

The inverse Fourier transform gives

wn = 2

∫ 1/α

0

cos(2πfn) df =
2

α
sinc (2n/α) (5.11)

which has an infinite number of nonzero wn.
The sinc function decays as n−1. What happens if we simply truncate the

series to M terms, bounded by ±(M − 1)/2? In this case we are convolving the
ideal frequency response with the DFT of the boxcar function, which is the by
now familiar Dirichlet kernel

(M−1)/2∑
n=−(M−1)/2

e−ı2πkn/N =
sin(Mπk/N)

sin(πk/N)
≡ D(M,N, k) . (5.12)

The frequency response of our truncated realization is thus the convolution of
the desired response with the Fourier transform of the discrete boxcar function
weighting. This particular realization is thus not especially desirable because the
Dirichlet kernel is a very oscillatory function which doesn’t fall off particularly
rapidly with frequency. The result is the introduction of large side lobes to
the frequency response of this filter realization. We can reduce this problem by
applying less abrupt truncation and/or by taking N to be as large as possible.
This brings us back once again to the issue of windowing, which arose previously

CHAPTER 5. DIGITAL FILTERING 85

0 20 40 60 80 100 120
−0.5

0

0.5
Rectangular Window; N=128

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
−4

10
−2

10
0

f/r

Figure 5.4: FIR weights and response for a 128-point rectangular window FIR
realization of a low pass filter with a desired cutoff frequency of f = r/4.

in these notes in different contexts associated with estimating power spectral
densities and in sampling.

Although usually not an optimal way to design filters, windowing the infinite
sequence defined by (5.9) provides a simple way of obtaining useful closed forms
for FIR filter weights. Some examples of windowed realizations of ideal low-
pass filters for α = 4 (filter corner at 1/2 of the Nyquist frequency) are shown
in Figures 5.4, 5.5, 5.6.

Because of the unique correspondence between an N -length sequence and
its N DFT coefficients, an N -length FIR filter can be uniquely specified by
N DFT coefficients. Another design method for obtaining FIR filter weights,
called Frequency Sampling, is thus to specify frequency characteristics at up toN
desired frequencies and then take the IDFT, rather than the inverse continuous
FFT, as we did in (5.9). This gets around the problem of truncating an infinite
number of weights, because the IDFT produces exactly N weights. For example,
the perfect low pass filter realization, where the passband is defined from k =
−(M − 1)/2 to k = (M − 1)/2 becomes

wn =
1

N

(M−1)/2∑
k=−(M−1)/2

eı2πnk/N =
1

N

sin(πnM/N)

sin(πn/N)
=

1

N
D(M,N, k) . (5.13)

Convolution of an input series of length N with (5.13) is identical to simply
taking the DFT of the input series, setting the frequency components for |k| >
M equal to zero, and then inverse transforming the modified k-series back to

CHAPTER 5. DIGITAL FILTERING 86

0 20 40 60 80 100 120
−0.5

0

0.5
Bartlett Window; N=128

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
−2

10
−1

10
0

f/r

Figure 5.5: FIR weights and response for a 128-point Bartlett window FIR
realization of a low pass filter with a desired cutoff frequency of f = r/4. Note
the reduction in ripple near the transition band relative to the simple truncation
series (Figure 5.4).

the n domain via the IDFT.
In practice, we determine the desired filter length M , then pick N so that

a filter of length M covers all of the frequencies for which we want a nonzero
response. Once the filter sequence is computed, we can apply the filter to a
sequence of arbitrary length by convolving the filter sequence with the input
sequence.

The problem with this type of filtering is that we have only defined the
frequency response at N points. what happens to the frequency response at
frequencies that are not constrained?

The frequency response of the sequence wn is given by (5.13). Taking a unit
sampling interval (so that f is normalized to the Nyquist frequency) gives (when
the Hermitian terms are collapsed into a cosine function)

W (f) =
2

N

N/2−1∑
n=1

(
sin(πnM/N)

sin(πn/N)
cos(2πnf)

)
+
M

N
+

1

N
cos(2πnf) (5.14)

where the last two terms are for n = 0 and n = N/2, respectively. (5.14) is
plotted as a function of normalized frequency in Figures 5.7 and 5.8 for N = 128,
M = 31 and for N = 512, M = 127.

We see that the frequency response oscillates wildly between the frequency
sample points, even though it dutifully follows the ideal low pass specification

CHAPTER 5. DIGITAL FILTERING 87

0 20 40 60 80 100 120
−0.5

0

0.5
Hamming Window; N=128

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
−2

10
−1

10
0

f/r

Figure 5.6: FIR weights and response for a 128-point Hamming window FIR
realization of a low pass filter with a desired cutoff frequency of r/4. Note
the reduction in ripple near the transition band relative to the simple trunca-
tion series (Figure 5.4) and the Bartlett window (Figure 5.5). The tradeoff for
smoother response and better rejection outside of the desired passband is to
have a more gradual transition.

CHAPTER 5. DIGITAL FILTERING 88

Figure 5.7: Frequency sampling frequency response in attempting to realize an
ideal low pass filter; N=128

CHAPTER 5. DIGITAL FILTERING 89

Figure 5.8: Another frequency sampling frequency response in attempting to
realize an ideal low pass filter; N=512. Note that increasing the number of fre-
quency specifications does not reduce the amplitude of the undesirable response
ripple.

CHAPTER 5. DIGITAL FILTERING 90

exactly at the proscribed frequencies. The largest overshoots occur near the
transition band. This type of behavior at the intermediate frequencies is called
the Gibbs phenomenon and Figures 5.7 and 5.8 show that it has the unfortunate
property that the percent overshoot does not decrease as N increases, although
the width of the ripples does decrease as we squeeze them by stubbornly speci-
fying more and more frequencies in our frequency sampling procedure.

If frequency sampling is really equivalent to direct manipulation of the FFT,
then why didn’t we notice any problems when we directly manipulated the FFT
of the 20 second audio clip? In that case, the FFT had 882,000 frequencies, so
the equivalent FIR filter would consist of a sequence of over 80,000 weights.
Thus the ripple was confined to extremely narrow frequency bands near the
cutoff at 2 Khz.

It turns out that one can in fact design much better behaved (smaller ripple)
filters by using more sophisticated design methods. Although we won’t get
into this in these notes, one very popular approach is the use of the Remez
exchange algorithm to design FIR filters with specified maximum and minimum
amplitudes in each of several frequency bands. Typically, a quite small filter (say
15 points) can adequately match the desired frequency response with very little
ripple. The MATLAB command firpm implements this approach to designing
a FIR filter.

More compact filter representations are possible if we allow recursiveelements
in our filters, where a component of the output is fed back into the input. In
addition, there are systems of interest that have impulse responses with non-zero
values at t = ∞ (e.g., integrators) which cannot be expressed at all in a finite
length FIR series. To fully appreciate this and to get a more general outlook
on discrete realizations of continuous idealizations, we need to introduce some
new types of transforms that are related to the Fourier transform.

The Laplace Transform

The One-Sided Laplace transform is a generalized Fourier transform which ex-
plicitly allows for complex frequency, s = σ + ıω, where σ and ω are real

Φ(s) ≡ L[φ(t)] =

∫ ∞
0

φ(t)e−st dt . (5.15)

The convergence of the integral is very much an issue. Assuming that s is a
positive real number or is complex with a positive real part, the function e−st

will go to 0 as t goes to infinity. For the integral to converge, φ(t) must not
grow too quickly as t goes to infinity. If |φ(t)| ≤ Kebt, for some real constants
K and b, and Re(s) > b, then the integral will converge.

Note that an alternative Two-Sided Laplace Transform is used by some au-
thors. In the two–sided Laplace transform, the integral is evaluated from minus
infinity to plus infinity instead of from 0 to plus infinity. The two sided Laplace
transform of H(t)φ(t) is precisely the one sided transform of φ(t).

CHAPTER 5. DIGITAL FILTERING 91

If we make the substitution s = 2πıf = ıω, we get

L[φ(t)] =

∫ ∞
0

φ(t)e−st dt =

∫ ∞
−∞

H(t)φ(t)e−2πıft dt = F [H(t)φ(t)] . (5.16)

The the Laplace transform of φ(t) is equivalent to the Fourier transform of
H(t)φ(t). An alternative way to look at this is to say that as long as our signals
are zero before time t = 0, the Fourier transform and Laplace transform are
equivalent. This equivalence will be used frequently. In practice, we will often
assume that signals begin after time t = 0, so that multiplying by H(t) isn’t
necessary. Because of this relationship between the Laplace transform and the
Fourier transform, many properties of the Laplace transform can be proved by
using the already known properties of the Fourier transform.

For example, consider the action of a linear time invariant system on a signal
x(t), which we’ll assume is zero for all t before t = 0. Let φ(t) be the impulse
response of the system, and let Φ(f) be the Fourier transform of the impulse
response. Assume further that the system is causal so that the output, y(t), is
zero before time t = 0. We know from our work with the Fourier transform that
the Fourier transform of the output is Y (f) = X(f)Φ(f). Using our substitution
s = 2πıf , we get that Y (s) = X(s)Φ(s). Here we’ve abused notation slightly by
using Y (s) for the Laplace transform of y(t) and Y (f) for the Fourier transform
of y(t). As long as all of the functions involved are zero before time 0, this works
beautifully.

Recall that the Fourier transform of the derivative of f(t) is given by F [f ′(t)] =
2πıfF [f(t)]. Using the equivalence of the Fourier and Laplace transforms for
functions which are zero before time t = 0, we would get that L[f ′(t)] = sL[f(t)].
This is almost, but not quite correct. The problem occurs because f(0) might
be nonzero. Using the definition of the Laplace transform and integration by
parts, it’s easy to show that L[f ′(t)] = sL[f(t)]− f(0). In general,

L[f (n)(t)] = snL[f(t)]− sn−1f(0)− . . .− sf (n−2)(0)− fn−1(0) . (5.17)

Next, we consider a linear time invariant system that is governed by a nth
order linear differential equation with constant coefficients.

an
dny

dtn
+ . . .+ a1

dy

dt
+ a0y = bm

dmx

dtm
+ . . .+ b1

dx

dt
+ b0x . (5.18)

Many (but by no means all) LTI’s can be written in this form. If we assume
that y(0), y′(0), . . ., y(n−1)(0) = 0, then by the rule for the Laplace transform
of a derivative,

(ans
n + . . . a1s+ a0)Y (s) = (bms

m + . . . b1s+ b0)X(s). (5.19)

This can be rewritten as

Y (s)

X(s)
= Φ(s) =

∑m
j=0 bjs

j∑n
k=0 aks

k
. (5.20)

CHAPTER 5. DIGITAL FILTERING 92

As in the Fourier transfer function definition, the m roots of the numerator
of (5.20) are called zeros, because Φ(s) is zero there, and the n roots of the
denominator are called poles, because Φ(s) is infinite there. If the coefficients,
ai and bi in (5.18) are real, then the poles and zeros are either real or form
complex conjugate pairs. Note that at a pole frequency, sp, an output can
occur even for zero input. As we have seen before, a stable system has all of its
poles on the left hand side of the complex plane (i.e., Re(sp) < 0), so that the
pole frequencies have negative real parts

Another qualitative point is that closely-spaced poles and zeros cancel and
can be ignored unless we are very close to them. Indeed for large frequencies all
poles and zeros will start to cancel in this manner, so that Φ(s) asymptotically
approaches

G(s) =
bm
an

(s)m−n (5.21)

which changes by some multiple of about 6 dB for every doubling in frequency
(6 dB per octave).

The Inverse Laplace Transform

For t ≥ 0, the inverse Laplace transform is given by

φ(t) =
1

2πı

∫ γ+ı∞

γ−ı∞
Φ(s)est ds (5.22)

where γ is selected to be large enough so that the integral converges. if |φ(t)| ≤
Kebt for some constants K and b, then any value of γ larger than b will suffice.

In practice, this integral is usually evaluated by the technique of contour
integration, using a contour c which includes the line Re(s) = γ and a semicir-
cular arc to the left. See figure 5.9. If the integral over the semicircular arc is
0 (because Φ(s) goes to zero fast enough as the radius increases), then we can
replace the integral over the line with an integral around the entire contour

φ(t) =
1

2πı

∫
c

Φ(s)est ds . (5.23)

Why bother with the contour integral? An important theorem of complex
analysis states that if f(z) has a finite number of poles, then the counter clock-
wise integral around a closed contour, which contains the poles of f(z) can be
evaluated by ∫

c

f(z)dz = 2πı
∑

α=poles of f(z)

residue(α) (5.24)

where the residue at a pole z = α of order m is

residue(α) =
1

(m− 1)!
lim
z→α

dm−1

dzm−1
(z − α)mf(z) . (5.25)

CHAPTER 5. DIGITAL FILTERING 93

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5.9: The contour used in computing the inverse Laplace transform.

Notice that the value of the contour integral depends only on the residues and
the locations of the poles. Any contour which surrounds the same collection of
poles will result in the same value for the integral! We can apply this formula
to (5.23) to evaluate the inverse Laplace transform of Φ(s).

For example, suppose that our linear time invariant system is governed by
the differential equation

2y′(t) + y(t) = x(t) . (5.26)

We find that

Φ(s) =
1

1 + 2s
. (5.27)

In this case the system has a single pole of order 1 at s=-1/2. We will now find
the impulse response by computing the inverse Laplace transform using (5.23)
and contour integration. We can use the integration path from −ı∞ to +ı∞.

φ(t) =
1

2πı

∫ ı∞

−ı∞

1

1 + 2s
est ds . (5.28)

Our integrand goes to 0 very rapidly as our semicircular arc expands, so that
in the limit, the integral over the semicircular arc is in fact 0. To show this, we
use the substitution s = Reıθ, and take the limit as R goes to infinity∫ 3π/2

π/2

1

1 + 2Reıθ
eRe

ıθtReiθ dθ . (5.29)

CHAPTER 5. DIGITAL FILTERING 94

In the limit as R goes to infinity, this integrand goes to 0 and the integral goes
to 0, so it is safe in this case to replace (5.22) with (5.23). A very common
mistake is to make the switch to the contour without checking that the integral
over the semicircular arc is 0. In such cases, contour integration will give the
wrong answer, so beware!

The residue at s=-1/2 is

residue(−1/2) = lim
z→−1/2

(s+ 1/2)
1

1 + 2s
est =

1

2
e(−1/2)t (5.30)

The factors of 2πı in (5.23) and (5.24) cancel out, so

φ(t) =
1

2
e(−1/2)t t ≥ 0 . (5.31)

Although any inverse Laplace transform can in theory be computed by this
method, in practice it’s usually easier to refer to a table of Laplace transforms
or to use a symbolic computation package such as Maple to do the work. Table
5.1 gives some useful Laplace transforms.

A very common problem in practice is to find the inverse Laplace transform
of a rational function Φ(s) = p(s)/q(s), where p(s) and q(s) are polynomial
functions of s. We can perform a partial fraction decomposition of Φ(s) in
terms of its poles a1, a2, . . ., am.

Φ(s) =
p(s)

q(s)
=

m∑
j=1

nj∑
k=1

cj,k
(s− aj)k

. (5.32)

Here nj is the multiplicity of the pole aj . Note that since we’re working with
complex poles, there are no irreducible quadratic factors. This partial fraction
decomposition can be done by hand, or it can be done with the help of a symbolic
computation package such as Maple, Mathematica, or with MATLAB’s symbolic
computation toolbox.

From the table of inverse Laplace transforms, we can see that

L−1

[
1

(s− a)n

]
=

t(n−1)

(n− 1)!
eat. (5.33)

Thus

φ(t) = L−1 [Φ(s)] =

m∑
j=1

nj∑
k=1

cj,k
(k − 1)!

tk−1eajt. (5.34)

This expression of φ(t) in terms of the poles of Φ(s) is very useful, because
it provides us with a stability criterion. If Re(aj) < 0, then eajt will go to 0 as
t goes to infinity. However, if Re(aj) ≥ 0, then eajt will not decay as t goes to
infinity. Thus our filter will be stable if and only if Re(aj) < 0 for j = 1, . . .,
m. That is, the filter will be stable if all of the poles are in the left half plane.

CHAPTER 5. DIGITAL FILTERING 95

Table 5.1: Table of Laplace Transforms
f(t) F (s) where valid
1 1

s s > 0
eat 1

s−a s > a
t(n−1)

(n−1)!e
at 1

(s−a)n s > a

tn n!
sn+1 s > 0

sin(at) a
s2+a2 s > 0

cos(at) s
s2+a2 s > 0

eat sin(bt) b
(s−a)2+b2 s > a

eat cos(bt) s−a
(s−a)2+b2 s > a

H(t− c) e−cs

s s > 0
δ(t− c) e−cs

f (n)(t) snF (s)− sn−1f(0)− . . .− f (n−1)(0)
ectf(t) F (s− c)
H(t− c)f(t− c) e−csF (s)

The Chandler Wobble

As an example of a geophysical system transfer function with one complex pole
in the s plane and a complex forcing and response, we next consider the Chan-
dler wobble or free nutation response of the earth’s spin axis, which changes due
to some combination of mass shifts in the Earth due to oceanic or atmospheric
circulation, glaciation, vegetation variations, snow or surface water accumula-
tion, large earthquakes, mantle motions, core-mantle interactions, etc. Lately,
it has been claimed that the most important processes, at least from 1985-1996,
were atmospheric and oceanic processes, with the dominant mechanism being
ocean-bottom pressure variations [7]. In a Cartesian grid is laid out at the north
pole with an origin at the mean pole position (the axis of greatest moment of
inertia), the spin axis at a given time can be specified as being at at (y1, y2)
(Figure 5.10.)

If the forcing function, in this case, the migration of the Earth’s principal axis
of maximum rotational inertia due to mass movements, in the same coordinate
system, is (x1, x2), the governing differential equations of motion are those of a
body rotating slightly off from its maximum moment of inertia principal axis

ẏ1

ωc
+ y2 = x2 (5.35)

−ẏ2

ωc
+ y1 = x1 (5.36)

where, for a rigid body,

ωc =

(
C −A
C

)
Ω (5.37)

CHAPTER 5. DIGITAL FILTERING 96

Ω
Rotation Axis

CLocus of
rotation
axis on
Earth’s
surface

Axis of maximum
rotational inertia

x

y(t)

Principal Axis of Rotation
(Greatest Moment of Inertia)

Im

Re

Wobble’’
‘‘Chandler

Temporary Axis of Rotation

Figure 5.10: Geometry of the Chandler Wobble
.

CHAPTER 5. DIGITAL FILTERING 97

where C and A are the polar and equatorial rotational moments of inertia and
Ω is the spin rate. In the Earth, the components of the Chandler wobble have
amplitudes of tens of meters, and are thus readily detectable using astronomical
or other techniques. The ideal rigid body frequency (5.37) for a solid Earth
is about 305 days, (C − A)/C ≈ 1/305.51) but the observed decay constant
is significantly longer (about 430 days) due to the Earth not being a perfectly
elastic body.

We can jointly consider the two equations (5.35 and 5.36) by defining the
complex quantities

x = x1 + ıx2 (5.38)

y = y1 + ıy2 (5.39)

to obtain

i
ẏ

ωc
+ y = x . (5.40)

Taking the Laplace transform of both sides gives

Y (s)

(
is

ωc
+ 1

)
= X(s) (5.41)

so that the transfer function is

Y (s)

X(s)
=

ωc
is+ ωc

(5.42)

which has a single pole at s = ıωc (as y(t) and x(t) are complex valued, there is
no complex conjugate pole at s = −ıωc in this case). Physically, this means that
the locus of the rotational axis on the earth’s surface will indefinitely precess
from west to east, once the system is excited. This asymmetry arises from the
gyroscopic nature of the system. Dissipation in the earth (the principal cause
or causes for the damping of the Chandler wobble are, again, controversial) can
be accommodated by making ωc complex

ωc =
2π

Tc

(
1 +

i

2Qc

)
=

π

Tc

(
2 +

i

Qc

)
(5.43)

where Qc is the quality factor (see Chapter 2) of the system and Tc is the natural
frequency. The pole of the system response (5.42) then becomes

p =
π

Tc

(
2ı− 1

Qc

)
(5.44)

which has a negative real part and hence describes a decaying sinusoidal motion.
The impulse response is thus

φ(t) = L−1[Y (S)/X(s)] =
1

2πı

∫
c

−iωc
s− ıωc

est ds (5.45)

CHAPTER 5. DIGITAL FILTERING 98

and may be found via contour integration and the residue theorem to be the
complex sinusoid

= −iωceıωct (5.46)

where the phase of (5.46) signifies the phase relationship between the complex
forcing and response functions, x(t) and y(t). In the problem of the Chandler
wobble, the interesting physics are tied up in the measurement of Tc (which is
around 430 days) and of the forcing function, x(t). The wobble is continuously
excited by mass movements in the solid Earth, oceans, and the atmosphere
which change its moments of inertia and averages about 0.14 seconds of arc (6.8×
10−7 rad), which corresponds to a root mean square (rms) polar discrepancy of
about 4.5 m).

It is worth noting that in some interesting situations, such as the excitation
of the normal modes of the earth, we can examine the response and estimate
the pole positions without worrying about the exact spectrum of the excitation
function. This is because the excitation function is broad-band relative to our
observational bandwidth and thus, on average, excites many frequencies.

The Z Transform

Just as the discrete Fourier transform as an alternative to the Fourier transform
to analyze discretized signals, the Z transform is the discrete analog of the
continuous Laplace transform.

Consider a complex variable z and define the z transform of a sequence xn
as

X(z) = Z[xn] =

∞∑
n=−∞

xnz
−n. (5.47)

A warning: a few authors use zn rather than z−n in their z transform definitions.
Again, this is mere convention, akin to choosing e−ı2πft or eı2πft in the Fourier
transform definitions, but can lead to misinterpretations. Also, some authors
will define a one-sided version of the z transform in which the sum runs from
n = 0 to infinity. As a rule, always check to see what conventions a given author
is using!

Multiplication by z−l in the z domain is equivalent to a time delay (rightward
shift) of l samples and multiplication by zl is equivalent to a time advance
(leftward shift) of l samples; the exponent of z in each term is a place holder
to designate where a particular value fits into the time series. The time shift
theorem for the z transform is thus

Z[xn−i] =

∞∑
n=−∞

xn−iz
−n = z−i

∞∑
n=−∞

xn−iz
−(n−i) = z−i

∞∑
m=−∞

xmz
−m

(5.48)
or

Z[xn−i] = z−iX(z) . (5.49)

CHAPTER 5. DIGITAL FILTERING 99

Finding closed-form expressions for the z transforms of common time se-
quences relies on the specific properties of each series, but as an example, con-
sider an exponential series

xn =

{
cn n ≥ 0
0 n < 0

. (5.50)

In this case, we can use the standard procedure for collapsing geometric series
to obtain

Z[xn] =

∞∑
n=0

cnz−n =
1

1− cz−1
=

z

z − c
(5.51)

when |z| > |c| .
The case when c = 1 gives the z transform of the discrete unit step function

Z[Hn] =
z

z − 1
. (5.52)

The convolution theorem relationship for the z transform is particularly easy
to see. For a particular m, the terms in the product

W (z) = X(z)Y (z) =

∞∑
m=−∞

wmz
−m (5.53)

can be seen from polynomial multiplication of X(z) and Y (z) to be

xnz
−nym−nz

−(m−n) . (5.54)

It follows that

Wm =

∞∑
n=−∞

xnym−n =

∞∑
n=−∞

ynxm−n (5.55)

which is just the discrete (linear) convolution of xn and yn.
To evaluate the inverse z transform, we again make use of the technique

of contour integration. By the residue theorem, the counterclockwise contour
integration around a pole of degree −k + 1 is

1

2πı

∫
c

dz

z−k+1
=

{
1 k = 0
0 k 6= 0

. (5.56)

The inverse z transform is thus

xn =
1

2πı

∫
c

X(z)zn−1 dz (5.57)

where c is a counterclockwise closed contour selected so that the integral will
converge.

CHAPTER 5. DIGITAL FILTERING 100

To discuss issues of convergence, we express the z transform as a function of
complex z in a polar coordinate system z = Reı2πf , where R is a real number.
The z transform is then

X(Reı2πf) =

∞∑
n=−∞

xn · (Reı2πf)−n =

∞∑
n=−∞

xnR
−ne−ı2πfn (5.58)

for R = 1, z lies on the unit circle in the complex plane, and the z transform is
equivalent to the Fourier series of the sequence xn. The infinite series defined
by the z transform (5.47) converges when

∞∑
n=−∞

|xnz−n| =
∞∑

n=−∞
|xnR−n| <∞ . (5.59)

As the z transform contains terms for both positive and negative n, the general
situation is that the sequence converges in some annular region, where R is not
so large that the negative n part of the sequence diverges, but not so small that
the positive n part of the sequence diverges, i.e.,

Rh− < |z| < Rh+ (5.60)

where Rh− and Rh+ designate the inner and outer radii of the annulus, respec-
tively.

Given the inverse z transform (5.57) we can now examine what happens in
the z domain when we multiply two time series together

wn = xn · yn . (5.61)

Taking the z transform of both sides yields

W (z) =

∞∑
n=−∞

xnynz
−n =

1

2πı

∞∑
n=−∞

xn

∫
c

Y (v)
(v
z

)n dv
v

(5.62)

=
1

2πı

∫
c

Y (v)

{ ∞∑
n=−∞

xn

(v
z

)n} dv

v
=

1

2πı

∫
c

Y (v)X(z/v)
dv

v
(5.63)

setting z = Reıφ and letting the contour, c be the circular path v = ρeıθ gives

W (Reıφ) =
1

2π

∫ 2π

0

Y (ρeıθ)X(
R

ρ
eı(φ−θ)) dθ (5.64)

This is a generalized case of the convolution relationship for the Fourier trans-
form. To see this, evaluate (5.64) on the unit circle, where R = ρ = 1, φ = 2πf ,
and θ = 2πf ′ to obtain

W (f) =

∫ 1

0

Y (e2πıf ′)X(e2πı(f−f ′)) df ′ (5.65)

CHAPTER 5. DIGITAL FILTERING 101

which is a circular convolution! In fact, the DFT of a sequence,

Xk =

N−1∑
n=0

xne
−ı2πnk/N (5.66)

is just the z transform evaluated at N equiangular points around the unit circle,
i.e.,

Xk = X(z = eı2πk/N)k = 0, 1, 2, ..., N − 1 . (5.67)

How can we relate the discrete-time z transform to the continuous-time
Laplace transform? How we do this is fundamental to designing discrete systems
which mimic continuous ones.

Consider the Laplace transform of a sampled version of a continuous func-
tion, x(t), which is assumed to be 0 before t = 0:∫ ∞

0

x(t)III(t)e−st dt =

∫ ∞
0

∞∑
n=0

x(n)δ(t− n)e−st dt (5.68)

=

∞∑
n=0

x(n)

∫ ∞
0

δ(t− n)e−st dt =

∞∑
n=0

x(n)e−sn =

∞∑
n=0

xnz
−n . (5.69)

Notice that if we let z = es, then z−n = e−sn. Thus the mapping between z
and s is simply z = es!

The general relationship between the z transform and the Fourier domain
is shown in Figure 5.11. The imaginary axis in the s-plane corresponds to the
unit circle in the z-plane. Similarly, the right half s-plane maps outside of the
z-plane unit circle and the left half of the s-plane maps inside of the z-plane
unit circle. Note that this mapping is multivalued, with a periodicity of 2π in
the s-plane imaginary dimension, i.e., all of the points s = R(2πıf +2πım) map
to the same point on the unit circle in the z plane, z = eıR2πf .

Recall the stability criterion, that a filter is stable if and only if the poles
of Φ(s) lie in the left half plane. In terms of z, the condition is that a filter is
stable if and only if the poles of Φ(z) lie inside the unit circle.

IIR filtering

We will now consider recursive filters which effectively take weighted averages
of the input and previous output samples. The filter equation is of the form

K∑
k=0

akyn−k =

M∑
m=0

bmxn−m (5.70)

where y is the output sequence and x is the input sequence. This can be rewrit-
ten to show how yn can be computed

yn =

∑M
m=0 bmxn−m −

∑K
k=1 akyn−k

a0
. (5.71)

CHAPTER 5. DIGITAL FILTERING 102

s = i ωsamp/2

Z = es

Conformal Mapping

Re(s) < 0
|z| < 1

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

DFT values

1

23

4

5

6
7

0
Re

Re(s) < 0 Re(s) > 0

4

3

1

0

7

6

5

Im

S plane Z plane

Re

Re(s)=0

2

Anatomy of the Z Transform

Laplace Transform
F(s) F(z)

z Transform

(N=8)

R
e(

s)
=

0

Re(s) > 0
|z| > 1

|z| = 1

Im

Figure 5.11: The Z Transform, and its relationship to the Fourier domain.

CHAPTER 5. DIGITAL FILTERING 103

As equation (5.71) shows, recursive filters of this type are always causal. In this
form, the filter is trivial to program. Given the filter coefficients b, a, and the
input sequence x, the MATLAB command filter can be used to compute y.

We can compute the z transform of the impulse response by multiplying
equation (5.70) by z−n, and summing up terms from n = −∞ to ∞.

∞∑
n=−∞

K∑
k=0

akyn−kz
−n =

∞∑
n=−∞

M∑
m=0

bmxn−mz
−n (5.72)

Y (z)

K∑
k=0

akz
−k = X(z)

M∑
m=0

bmz
−m. (5.73)

Thus

Φ(z) =
Y (z)

X(z)
=

∑M
m=0 bmz

−m∑K
k=0 akz

−k
. (5.74)

Note the similarities between (5.70), (5.74) and (5.18), (5.20), this is because
delays map into powers of z−1 in the z transform, just as differentiation maps
into powers of s in the Laplace transform.

When is our recursive filter stable? For our filter to be stable, we must have
that the impulse response sequence φn goes to 0 as n goes to infinity. Recall
that if all of the poles of Φ(s) are in the left half plane (or have negative real
parts), then an LTI is stable. If all of the poles of Φ(z) are contained within the
unit circle, then by our transformation z = es, all of the poles of Φ(s) will be
in the left half plane, and our filter will be stable. Thus the stability condition
for a recursive filter of the form (5.70) is that the poles of Φ(z) must lie within
the unit circle.

The Impulse Invariance Method

Consider the simple continuous-time system defined by

τ
dy

dt
+ y = x (5.75)

where τ is real. Solving for the transfer function using the Laplace transform
yields

Y (s)

X(s)
=

1

1 + τs
(5.76)

which has a pole at s = −1/τ and is stable for τ > 0. The frequency response
is found by letting s = 2πıf

Y (f)

X(f)
=

1

1 + ı2πτf
(5.77)

CHAPTER 5. DIGITAL FILTERING 104

which is 1 at zero frequency, and becomes smaller as f increases. This system
is thus a low pass filter. The impulse response is

L−1[Y (s)/X(s)] =
1

2πı

∫
c

est ds

1 + τs
= H(t)τ−1est|s=τ−1 =

H(t)

τ
e−t/τ . (5.78)

and the step response is thus

H(t) ∗H(t)τ−1e−t/τ = H(t)(1− e−t/τ) . (5.79)

This response is nonzero for all non-negative t <∞, and thus cannot be modeled
at large t with any FIR filter, unless we are willing to use an arbitrarily large
number of filter terms. However, a very simple recursive filter can come much
closer to mimicking the desired response.

In the impulse invariance method, we pick a recursive filter so that the im-
pulse response of the digital filter matches the desired impulse response of the
continuous filter.

Consider the step response of the discrete system defined by

yn − αyn−1 = xn(1− α) (5.80)

For a step sequence input, we get

y0 = 1− α
y1 = α(1− α) + (1− α)
y2 = α2(1− α) + α(1− α) + (1− α)

(5.81)

and so forth. In general,

yn = (1− α)

n∑
k=0

αk = 1− αn+1 = 1− e(n+1) ln(α) (5.82)

which has the form of a sampled version of the desired continuous response
(5.79). (5.80) is thus an IIR filter realization of (5.79).

To express this IIR filter in the z domain, recall the z−1 is the z transform of
a one sample delay. We can thus map the xn and yn in (5.80) to the z domain
by multiplying each term by z−n and summing over all n

∞∑
n=−∞

ynz
−n − α

∞∑
n=−∞

yn−1z
−n = (1− α)

∞∑
n=−∞

xnz
−n (5.83)

which can be factored as

Y (z)(1− αz−1) = (1− α)X(z) (5.84)

to obtain the z transfer function

Y (z)

X(z)
=

1− α
1− αz−1

. (5.85)

CHAPTER 5. DIGITAL FILTERING 105

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

n

ph
i(n

)

Desired Impulse Response
IIR Filter Response

Figure 5.12: Impulse invariance discrete realization compared to a target con-
tinuous response in the time domain.

To evaluate the frequency response of (5.85), we evaluate the transfer function
on the unit circle, or at z = e2πıf/fs , where fs is the sampling frequency, and
the Nyquist interval is the range of frequencies is thus −fs/2 ≤ f ≤ fs/2

Φ(z = e2πıf/fs) =
1− α

1− αe−ı2πf/fs
. (5.86)

The corresponding frequency response of the continuous system is given by
(5.77). Both the continuous and discrete response functions are plotted in Figure
5.13, using τ = 10 and the corresponding value for α, α = 1 − 1/τ , so that
values for the discrete and continuous time functions agree at n = 0 and t = 0,
respectively.

The major discrepancy in the frequency domain is that a discrete system
has a periodic frequency response, and so, for this filter, must return to a value
of 1 at f = fs, while the continuous system continues to approach zero response
with increasing frequency at a rate of about 6 dB per octave.

CHAPTER 5. DIGITAL FILTERING 106

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

f/fs

ab
s(

P
hi

)
(d

B
)

Desired Response
IIR Filter Response

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

f/fs

P
ha

se
 (

de
gr

ee
s)

Desired Response
IIR Filter Response

Figure 5.13: Impulse invariance discrete realization compared to a target con-
tinuous response in the frequency domain.

CHAPTER 5. DIGITAL FILTERING 107

The Bilinear Transformation

Consider writing the discrete y sequence at a sampling interval of ∆ as

y(n∆) =

∫ n∆

∆(n−1)

ẏ(u)du+ y(∆[n− 1]) . (5.87)

Approximating the integral in (5.87) by the trapezoidal rule then gives

y(n∆) ≈ ∆

2
[ẏ(∆[n− 1]) + ẏ(n∆)] + y(∆[n− 1]) . (5.88)

which has the discrete time counterpart

yn =
∆

2
[ẏn−1 + ẏn] + yn−1 (5.89)

The original (rewritten) differential equation (5.75) is

ẏn =
1

τ
(xn − yn) (5.90)

or equivalently

ẏn−1 =
1

τ
(xn−1 − yn−1) . (5.91)

Thus, we can eliminate the time derivatives by evaluating ẏ + ẏn−1 from the
sum of (5.90) and (5.91) and substituting the result into (5.89). This yields

yn =
∆

2τ
[xn−1 − yn−1 + xn − yn] + yn−1 (5.92)

or

yn(1 +
∆

2τ
)− yn−1(1− ∆

2τ
) =

∆

2τ
(xn + xn−1) . (5.93)

(5.91) has the z transform

Φ(z) =
Y (z)

X(z)
=

∆
2τ (1 + z−1)

(1 + ∆
2τ)− (1− ∆

2τ)z−1
(5.94)

=
(1 + z−1)

(2τ
∆ + 1)− (2τ

∆ − 1)z−1
(5.95)

=
1

1 +
(

2τ
∆

) (
1−z−1

1+z−1

) . (5.96)

Evaluating the frequency response of (5.96) by taking z = e2πıf/fs , we get

Φ(z = ei2πf/fs) =
1

1 +
(

2τ
∆

) (
1−e−ı2πf/fs
1+e−ı2πf/fs

) (5.97)

CHAPTER 5. DIGITAL FILTERING 108

=
1

1 +
(

2τ
∆

)
ı tanπf/fs

. (5.98)

(5.98) is thus the response of the continuous system (5.76) with the substitution

s =
2i

∆
tanπf/fs . (5.99)

(5.98) is plotted along with the continuous response in Figure 5.15).
Recalling that the continuous frequency response (5.77) is just (5.76), eval-

uated at s = ı2πf , we can see that the frequency mapping between (5.98) and
5.77) is just

2πfc =
2

∆
tanπfd/fs (5.100)

where fd is the digital frequency and fc is the continuous frequency. The con-
tinuous system frequency response tends to zero as fc → ∞. The bilinear z
transform frequency response, on the other hand tends to zero where

πfd
fs

=
π

2
(2m+ 1) (5.101)

or

fd =
fs
2

(2m+ 1) (5.102)

where m is an integer, which is just at odd multiples of the Nyquist frequency,
fN = fs/2. The bilinear z-transform substitution (5.99) thus maps the semi-
infinite frequency interval of the continuous system (−∞, ∞) into the Nyquist
interval [−fN , fN]. To obtain the digital transfer function, Φd(z), from a given
analog filter transfer function, Φa(s), we simply substitute

s =
2

∆

1− z−1

1 + z−1
. (5.103)

An alternative explanation of the bilinear transform approach is that if z =
es, and

ŝ = 2
1− 1

z

1 + 1
z

(5.104)

then

ŝ = 2
1− e−s

1 + e−s
= 2

1− e−2πıf

1 + e−2πıf
= 2ı tan(πf) . (5.105)

For small frequencies f , tanπf ≈ πf . Thus

ŝ ≈ 2πıf . (5.106)

That is, ŝ is an approximation to s. By using ŝ in place of s in the transfer
function, we obtain a transfer function that can be expressed as a rational
function of 1/z.

Of course, we can never match the analog response with a digital system
because of aliasing, but we can match some desirable characteristic of the analog

CHAPTER 5. DIGITAL FILTERING 109

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

n

ph
i(n

)

Desired Impulse Response
IIR Filter Response

Figure 5.14: Bilinear z transform discrete realization response compared to a
target continuous response in the time domain.

system (e.g., ripple height, corner frequency, etc.) within the Nyquist interval.
In general, we can do this far more compactly with an IIR filter, but as always,
there is a price, in this case IIR filters will have more complicated (non-linear)
phase characteristics than FIR filters. We can see this directly by noting that
the z transform of an FIR filter is just a polynomial in z−1, while the z transform
of a recursive filter is a ratio of two polynomials (a rational function) in z−1.

CHAPTER 5. DIGITAL FILTERING 110

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

f/fs

ab
s(

P
hi

(f
))

 (
dB

)

Desired Response
Bilinear Realization

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

100

f/fs

an
gl

e(
P

hi
(f

))
 (

de
gr

ee
s)

Desired Response
Bilinear Realization

Figure 5.15: Bilinear z transform discrete realization response compared to a
target continuous response in the frequency domain.

CHAPTER 5. DIGITAL FILTERING 111

Some Common Filter Types

Some filter types are commonly encountered in a wide variety of applications.
A high pass filter is designed to pass through all frequencies above a cut-off
frequency fc. The ideal high pass filter would have |Φ(f)| = 1 for f ≥ fc and
|Φ(f)| = 0 for f < fc. Similarly, a low pass filter would have |Φ(f)| = 1 for
f < fc and |Φ(f)| = 0 for f ≥ fc. An ideal band pass filter has |Φ(f)| = 1 for
f1 ≤ f ≤ f2 and |Φ(f)| = 0 for frequencies outside of the pass band. An ideal
band stop filter has |Φ(f)| = 0 for f1 ≤ f ≤ f2 and |Φ(f)| = 1 for frequencies
outside of the pass bad.

In practice it’s simply impossible to achieve these ideal frequency responses.
However, it is possible to design filters that are optimal with respect to some
objective criterion. The most common goal is to minimize the “ripple” in the
pass band. This is simply the difference (in dB) between the largest value of
|Φ(f)| and the smallest value of |Φ(f)| in the pass band. In the stop band, the
typical goal is to minimize the maximum value of ‖Φ(f)| in the stop band.

The Butterworth filter is designed to be optimally flat in its passband for
amplitude response (i.e., to be ”ripple”-less). Another very commonly applied
filter is the Chebyshev filter. The type 1 Chebyshev filter has no more than R dB
of ripple in the pass band, while the type 2 Chebyshev filter has |Φ(f)| at least
R dB down within the pass band. The sharpness of the corner is controlled by
the order of the filter (the number of poles in its transfer function). In general,
higher order filters can realize very sharp transition bands in their amplitude
response, but at a cost of complex (i.e., non-linear-phase) frequency response.
See Figures 5.16 through 5 for examples of the frequency response that can be
obtained with these filter designs.

Unfortunately, these highly optimized filters tend to have very odd phase
responses. There is a useful trick that can be used to produce a zero phase
filter with amplitude response that is the square of the amplitude response of
the original filter. Given a signal x(t), let u(t) = φ[x(t)]. Let v(t) = u(−t),
effectively time reversing the filtered signal. Let w(t) = φ[v(t)]. Finally, let
y(t) = w(−t), effectively time reversing the signal again. The MATLAB com-
mand filtfilt implements this procedure. Note that the resulting filter will be
acausal. See Figures 5.22 and 5.23.

The amplitude of the frequency response of this filter is |Φ(f)|2. To see this,
let X(f) be the Fourier transform of x(t). Then

U(f) = Φ(f)X(f). (5.107)

By the time reversal theorem, the Fourier transform of u(−t) is U(−f). Thus

V (f) = U(−f) = Φ(−f)X(−f). (5.108)

Then
W (f) = Φ(f)V (f) = Φ(f)Φ(−f)X(−f). (5.109)

Finally,
Y (f) = W (−f) = Φ(−f)Φ(f)X(f). (5.110)

CHAPTER 5. DIGITAL FILTERING 112

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

A
m

pl
itu

de

Time

1−pole Butteworth Low Pass Filter, Time−forward/reversed

Figure 5.16: 1-pole Butterworth low-pass realization impulse response.

Assuming that the impulse response φ(t) is real, Φ(f) is Hermitian. Thus

Y (f) = Φ(f)∗Φ(f)X(f) = |Φ(f)|2X(f). (5.111)

CHAPTER 5. DIGITAL FILTERING 113

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−60

−50

−40

−30

−20

−10

0

| Φ
 |

(d
B

)

1−pole Butteworth Low Pass Filter

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

P
ha

se
 (

de
g)

log
10

(f)

Figure 5.17: 1-pole Butterworth low-pass realization transfer function.

CHAPTER 5. DIGITAL FILTERING 114

0 100 200 300 400 500 600
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

A
m

pl
itu

de

Time

8−pole Butterworth Low Pass Filter

Figure 5.18: 8-pole Butterworth low-pass realization impulse response.

CHAPTER 5. DIGITAL FILTERING 115

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−60

−50

−40

−30

−20

−10

0

| Φ
 |

(d
B

)

8−pole Butteworth Low Pass Filter

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−800

−700

−600

−500

−400

−300

−200

−100

0

P
ha

se
 (

de
g)

log
10

(f)

Figure 5.19: 8-pole Butterworth low-pass realization transfer function.

CHAPTER 5. DIGITAL FILTERING 116

0 100 200 300 400 500 600
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

A
m

pl
itu

de

Time

8−pole Chebyshev Type 1 Low Pass Filter (R=3 dB)

Figure 5.20: 8-pole Chebyshev (type 1) low-pass realization impulse response.

CHAPTER 5. DIGITAL FILTERING 117

−4 −3.5 −3 −2.5 −2 −1.5 −1
−60

−50

−40

−30

−20

−10

0

| Φ
 |

(d
B

)

8−pole Chebyshev Type 1 Low Pass Filter (R=3 dB)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−400

−350

−300

−250

−200

−150

−100

−50

0

P
ha

se
 (

de
g)

log
10

(f)

Figure 5.21: 8-pole Chebyshev (type 1) low-pass realization transfer function.

CHAPTER 5. DIGITAL FILTERING 118

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
m

pl
itu

de

Time

1−pole Butteworth Low Pass Filter, Time−forward/reversed

Figure 5.22: 1-pole Butterworth low-pass realization impulse response with
forward-reverse-time filtering (2 poles, effectively).

CHAPTER 5. DIGITAL FILTERING 119

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−60

−50

−40

−30

−20

−10

0

| Φ
 |

(d
B

)

1−pole Butteworth Low Pass Filter, Time−forward/reversed

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1

P
ha

se
 (

de
g)

log
10

(f)

Figure 5.23: 1-pole Butterworth low-pass realization transfer function with
forward-reverse-time filtering (2 poles, effectively).

Chapter 6

Deconvolution

We have seen how to perform convolution of discrete and continuous signals
in both the time domain and with the help of the Fourier transform. In these
lectures, we’ll consider the problem of reversing convolution or deconvolving an
input signal, given an output signal and the impulse response of a linear time
invariant system.

We begin with the equation

d(t) = g(t) ∗m(t) (6.1)

where d(t) and g(t) are known. Our goal is to solve for the unknown m(t).
Although there’s no obvious way to use the convolution integral to solve this

equation, the equation becomes much easier to solve in the frequency domain.
By the convolution theorem,

D(f) = G(f)M(f). (6.2)

Thus

M(f) =
D(f)

G(f)
. (6.3)

Once we have M(f), we can invert the Fourier transform to obtain m(t). Simi-
larly, if we have discrete time signals and

dn = (gn ∗mn)∆t (6.4)

then
Dk = GkMk∆t (6.5)

for k = 0, 1, . . . , N − 1. Solving for Mk, we get

Mk =
Dk

Gk∆t
. (6.6)

Once we have the vector M we can invert the discrete Fourier transform to
obtain mn. This simple approach to solving the deconvolution problem is called
spectral division.

120

CHAPTER 6. DECONVOLUTION 121

Unfortunately, this method seldom works in practice. The first problem is
that denominator in (6.3) might be zero, at least for some frequencies. In that
case, M(f) is undefined, and we can’t invert the Fourier transform to obtain
m(t). Another way of looking at this is to consider what output the system
will produce for sine waves at different frequencies. If the system produces zero
output for a sine wave at a particular frequency f0, then it’s clear that we can’t
solve the deconvolution problem for any input signal that contains a sine wave
at frequency f0 because there’s no evidence of this sine wave in the output!

What about noise? First, suppose that noise n(t) is mixed with the true
signal before the convolution. In that case we have

d(t) = g(t) ∗ (m(t) + n(t)) (6.7)

or
D(f) = G(f)(M(f) +N(f)). (6.8)

If we perform spectral division, we obtain

M(f) +N(f) =
D(f)

G(f)
. (6.9)

In this situation, the deconvolution hasn’t made the noise any worse than it
was before the deconvolution. Later in the course we’ll discuss approaches to
removing noise with a known frequency spectrum from such a signal.

Things get trickier if the noise is added after the convolution with g(t). In
that case, we have

d(t) = g(t) ∗m(t) + n(t) (6.10)

or
D(f) = G(f)M(f) +N(f). (6.11)

If we try to perform spectral division, we end up with

M(f) +
N(f)

G(f)
=
D(f)

G(f)
. (6.12)

The N(f)/G(f) term will introduce noise into the recovered signal. At frequen-
cies where G(f) is small but nonzero, the deconvolution process can greatly
increase the magnitude of the noise.

Various techniques have been developed to deal with this noise. The basic
idea is to avoid division by zero by somehow modifying the denominator in (6.6).
This regularizes the deconvolution problem. In performing the regularization,
we want to do as little as possible to frequencies where the noise is insignificant,
while damping out the noise at frequencies where it is larger than the signal.
Because the DFT of a real input signal is always Hermitian (i.e. Mk = M∗N−k)
it is important that we perform the regularization in a way that produces a
Hermitian M sequence and a real signal mn.

For example, we might try

Mk =
Dk

(Gk + λ)∆t
(6.13)

CHAPTER 6. DECONVOLUTION 122

where λ is a small positive real number. When Gk is much larger than λ, then
this will have little effect on Mk. However, when Gk is very small compared
to λ, this will effectively zero out the response at frequency k. One problem
with this scheme is that if Gk = −λ, we can still get division by zero. It would
obviously be better to work with the absolute value of Gk.

A scheme called water level regularization is widely used in geophysics.
Since problems only occur at frequencies where |G(f)| is small, we pick a critical
level w and adjust G(f) only when |G(f)| ≤ w. At frequencies where |G(f)| > w
we simply perform spectral division. This has the advantage of not altering the
spectral division method at good frequencies. At frequencies where |G(f)| is
small, we need to replace G(f) with something that isn’t too small. We could
simply use w, but it is slightly better to use a complex number that at least has
the same phase as G(f). So we, use

Ĝ(f) = w
G(f)

|G(f)|
. (6.14)

If G(f) is exactly zero this still causes problems! In that case, we’ll use Ĝ(f) =
w. In discrete time, the water level deconvolution scheme can be written as

M̂k =
Dk

Ĝk∆t
(6.15)

where

Ĝk =

Gk |Gk| > w
wGk
|Gk| 0 < |Gk| ≤ w
w Gk = 0.

(6.16)

Note that M̂k will be a Hermitian sequence. When we invert the transform to
obtain mn, we’ll get back a real signal.

In order for the water level regularization to work we need to make sure that
w∆t is somewhat larger than |Nk|. If w is too large, then we simply get back
dn scaled down by a factor of w. If w is too small, than the result will be overly
noisy, often at higher frequencies where |G(f)| is smaller.

In the following example, A small amount of noise in the data makes spectral
division unstable, but water level regularization produces very good results.

The input signal ism(t) = te−t and the impulse response is g(t) = e−5t sin(10t).
See Figures 6.1 and 6.2. This signal was sampled at intervals of ∆t = 0.01 sec-
onds. The convolved signal d(t) is 10 seconds long, so there are 1001 samples.

Random noise was added to the signal with a normal distribution with mean
0 and standard deviation 0.0001. Figure 6.4 shows the noisy data. Figure 6.5
shows the unfortunate result of simple spectral division- the high frequency noise
is greatly increased in amplitude.

The white noise that we added to the signal has approximately equal energy
at all frequencies. Recall Parseval’s theorem for the DFT,

N−1∑
j=0

|xj |2 =
1

N

N−1∑
k=0

|Xk|2. (6.17)

CHAPTER 6. DECONVOLUTION 123

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

m
(t

)

The model that we would like to recover

Figure 6.1: The input signal.

Since N = 1001, we expect the |Nk| values of our noise to be about
√

1001 or
roughly 30 times larger than the |nn values. Thus a typical value of |Nk| should
be about 0.003. In order to make the values of w∆t larger than 0.003, we’d like
to have w ≥ 1.

Figures 6.6 through 6.8 shows the results obtained with w = 0.1, w = 1, and
w = 10. Although the solution is under regularized at w = 0.1, the solution is
quite good by the time we get to w = 10.

CHAPTER 6. DECONVOLUTION 124

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

g(
t)

The impulse response

Figure 6.2: The impulse response.

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

t

d(
t)

Data without noise added

Figure 6.3: Clean data.

CHAPTER 6. DECONVOLUTION 125

0 1 2 3 4 5 6 7 8 9 10
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

t

dn
(t

)

Data with noise added

Figure 6.4: The data with a small amount of noise added.

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

m
in

v(
t)

Solution by spectral division

Figure 6.5: Deconvolution by spectral division, no regularization.

CHAPTER 6. DECONVOLUTION 126

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

m
w

at
1(

t)

Water level deconvolution solution, w=0.1

Figure 6.6: Water level solution, w = 0.1.

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

m
w

at
2(

t)

Water level deconvolution solution, w=1.0

Figure 6.7: Water level solution, w = 1.0.

CHAPTER 6. DECONVOLUTION 127

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t

m
w

at
3(

t)

Water level deconvolution solution, w=10.0

Figure 6.8: Water level solution, w = 10.0.

CHAPTER 6. DECONVOLUTION 128

In Tikhonov regularization, we use

M̂k =
G∗kDk

(G∗kGk + λ)∆t
(6.18)

where λ is a small positive parameter. This is similar to (6.13), in that when
|Gk| is much larger in magnitude than λ, we get essentially (6.6). However,
when |Gk| is much smaller than λ, Mk is reduced in magnitude. It’s not hard
to show that if Mk is obtained by Tikhonov regularization then Mk will be
Hermitian. Furthermore, the denominator in this formula can never be 0.

The size of the factor
G∗kNk

(G∗kGk + λ)∆t
(6.19)

determines whether a noise frequency k will be effectively eliminated from the
deconvolved signal. To get rid of the noise, we want

|G∗kNk| < λ∆t. (6.20)

This gives us a very simple criteria for picking λ. We’ll discuss more sophisti-
cated methods for picking λ in the inverse problems course.

Returning to our earlier example, we know that |Nk| is typically about 0.003,
while |Gk| is typically around 3. Thus we need λ∆t > 0.01 or λ > 1 to cover
the noise. Figures 6.9 through 6.11 show the effect of different values of the
regularization parameter λ.

CHAPTER 6. DECONVOLUTION 129

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

m
tik

1(
t)

Tikhonov solution, λ=0.01

Figure 6.9: Deconvolution with Tikhonov regularization, λ = 0.01.

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

m
tik

2(
t)

Tikhonov solution, λ=0.1

Figure 6.10: Deconvolution with Tikhonov regularization, λ = 0.1.

CHAPTER 6. DECONVOLUTION 130

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

m
tik

3(
t)

Tikhonov solution, λ=1.0

Figure 6.11: Deconvolution with Tikhonov regularization, λ = 1.0.

CHAPTER 6. DECONVOLUTION 131

It can be shown that Tikhonov regularization minimizes

min ‖G ·M −D‖22 + λ‖M‖22. (6.21)

By Parseval’s theorem, this is equivalent to minimizing

min ‖g ∗m− d‖22 + λ‖m‖22. (6.22)

The objective function is a weighted sum of a term that measures how well the
model m fits the data d and a term that measures the energy of the model m.
Tikhonov regularization is effectively picking the smallest energy signal that fits
the data reasonably well, with the relative balance of these two factors controlled
by the regularization parameter λ.

An alternative formulation of Tikhonov regularization sets a limit δ on the
data misfit and then minimizes ‖m‖2.

min ‖m‖2
‖g ∗m− d‖2 ≤ δ.

(6.23)

There are situations in which other kinds of regularization are appropriate.
We’ll consider an example in which a controlled source (e.g. a vibroseis truck) is
used to send a seismic wave down into the earth. The wave bounces back from
reflecting layers at various depths and a seismograph of the reflected signal is
recorded. We’d like to recover the depths of these reflecting layers.

Here, g(t) is the known source signal, d(t) is the recorded seismograph,
and m(t) is the unknown. The reflector should appear in m(t) as scaled delta
functions, with a reflect at time “depth” t0/2 appearing as a scaled δ(t− t0).

In this case, we want m to be a simple sequence of spikes. Rather than using
Tikhonov regularization to minimize ‖m‖2, we want to minimize the number of
nonzero entries in m. Let ‖m‖0 be the number of nonzero entries in m. Than
we can formulate our regularization problem as

min ‖m‖0
‖g ∗m− d‖2 ≤ δ.

(6.24)

Unfortunately, these kinds of optimization problems are extremely difficult to
solve.

A surprisingly effective alternative is to instead minimize

‖m‖1 =

n∑
j=1

|mj |. (6.25)

The regularization problem is then

min ‖m‖1
‖g ∗m− d‖2 ≤ δ.

(6.26)

It turns out that these problems can be effectively solved by convex optimization
techniques.

CHAPTER 6. DECONVOLUTION 132

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

10

t

m
(t

)

The model that we would like to recover

Figure 6.12: The target model m(t).

For an example, we’ll use the same impulse response from our previous
example.

g(t) = e−5t sin(10t). (6.27)

This time our target model m(t) will be

m(t) = 10δ(t− 2)− 7δ(t− 2.5) + 4δ(t− 4) + 6δ(t− 7). (6.28)

Again we’ll add random noise to the convolved signal and then attempt to
recover m(t).

Figure 6.12 shows the target model. Figure 6.13 shows the data with noise
added. It’s quite hard to pick out the impulses in this plot. Figures 6.14
shows the best result that could be obtained with Tikhonov regularization. The
impulses are artificially broadened, and the noise is not completely removed from
the signal. Figure 6.15 shows using (6.26) produces an amazingly good recovery
of m(t). Notice that the spikes are correctly placed in time. The amplitude
of the spikes is reduced and the spikes are slightly broader than they should
be, but the results are vastly better than the results obtained with Tikhonov
regularization.

CHAPTER 6. DECONVOLUTION 133

0 1 2 3 4 5 6 7 8 9 10
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t

dn
(t

)

Data with noise added

Figure 6.13: Data with noise added.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

m
tik

(t
)

Tikhonov solution, λ=20.0

Figure 6.14: Tikhonov solution.

CHAPTER 6. DECONVOLUTION 134

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

t

m
sp

ar
se

(t
)

Sparse solution, δ=0.3

Figure 6.15: 1-norm regularized solution.

Chapter 7

Introduction to
Multidimensional and
Multichannel Processing

We have now covered most of the basic tools in analyzing one-dimensional time
or spatial series. Many data sets in geophysics and other fields, however, are
inherently multi-dimensional, either because the independent variable is mul-
tidimensional (e.g., a 2-dimensional survey or a 3-dimensional structure) or
because the data itself is a vector quantity (e.g., three-component seismic or
electromagnetic data).

Two or higher dimensional data sets require a multidimensional analysis
technique. Some examples include photographic records, remote sensing data,
or other 2-d images, seismic records from a 2-dimensional array, and gravity
and magnetic surveys. Other signals may be considered multidimensional, with
the two axes being physically different, such as a linear array of seismometers,
where one dimension is temporal and the other is spatial or a two-dimensional
array with a third time dimension. In general, much of one’s intuition developed
from analyzing 1-dimensional systems may be applied, although there are some
very important concepts of 1-dimensional systems which do not apply in more
dimensions.

Let x(n1, n2) be a two-dimensional sequence defined for integer n1 and
n2. Such a 2-d sequence is usually obtained from sampling a continuous 2-
dimensional function. Some examples of 2-d sequences would be the unit im-
pulse:

δ(n1, n2) =

{
1 for n1 = n2 = 0
0 otherwise

(7.1)

the step function

H(n1, n2) =

{
1 for n1, n2 ≥ 0
0 otherwise

(7.2)

135

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING136

the exponential

x(n1, n2) =

{
αn1

1 αn2
2 for n1, n2 ≥ 0

0 otherwise
(7.3)

and the sinusoid
x(n1, n2) = eı2π(f1n1+f2n2) . (7.4)

If a system is linear and time invariant, then convolution is a valid concept
in dimensions higher than 1, thus if x(n1, n2) is an input to a two dimensional
system which has an impulse response of φ(n1, n2), then the output is

y(n1, n2) = x(n1, n2)∗φ(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)x(n1−m1, n2−m2)

(7.5)

=

∞∑
m1=−∞

∞∑
m2=−∞

φ(n1 −m1, n2 −m2)x(m1,m2) (7.6)

(7.6) is usually difficult to apply, however, consider a simple case given in [11],
where

φ(n1, n2) = αn1n2 (7.7)

and

x(n1, n2) =

{
1 for 0 ≤ n1, n2 ≤ 2
0 otherwise

(7.8)

the response, φ(n1, n2) ∗ x(n1, n2) is thus

y(n1, n2) =

2∑
m1=0

2∑
m2=0

α(n1−m1)(n2−m2) (7.9)

which, in general must be evaluated term by term for each (n1, n2) where each
term requires 32 = 9 operations. If φ(n1, n2) is separable , i.e., it can be written
as

φ(n1, n2) = g(n1) · f(n2) (7.10)

then the response can be calculated in terms of consecutive 1-dimensional con-
volutions, as (7.6) now becomes

y(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

g(m1)f(m2)x(n1 −m1, n2 −m2) (7.11)

=

∞∑
m1=−∞

g(m1)

(∞∑
m2=−∞

f(m2)x(n1 −m1, n2 −m2)

)
(7.12)

where the term inside of the parentheses is a sequence of 1-d convolutions where
m1 is allowed to range from −∞ to ∞. If the input sequence is also separable,
so that x(n1, n2) = a(n1) · b(n2), then

y(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

g(m1)f(m2)a(n1 −m1)b(n2 −m2) (7.13)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING137

=

(∞∑
m1=−∞

g(m1)a(n1 −m1)

)(∞∑
m2=−∞

f(m2)b(n2 −m2)

)
(7.14)

which is also separable, i.e.,

y(n1, n2) = α(n1) · β(n2) (7.15)

where α(n1) and β(n2) are 1-dimensional convolutions (7.14).
As in 1-d systems, sinusoidal inputs play the fundamental functional role in

the Fourier analysis of 2-d systems. This is because 2-dimensional sinusoidal
functions

x(n1, n2) = eı2πf1n1eı2πf2n2 (7.16)

are eigenfunctions of the 2-d convolution operation. Consider the output of a
system with impulse response φ(n1, n2) to a complex exponential input

y(n1, n2) =

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)eı2πf1(n1−m1)eı2πf2(n2−m2) (7.17)

= eı2πf1n1eı2πf2n2

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)e−ı2πf1m1e−ı2πf2m2 = x(n1, n2)Φ(f1, f2)

(7.18)
where Φ(f1, f2) is the frequency response of the system in two dimensions and
hence defines a 2-d Fourier transform of a 2-d sampled function. The corre-
sponding inverse transformation (see table below) is just

φ(n1, n2) =

∫ 1/2

−1/2

∫ 1/2

−1/2

Φ(f1, f2)eı2πf1n1eı2πf2n2 df1 df2 . (7.19)

Note that Φ(f1, f2) is periodic in frequency with unit period for both f1 and f2,
as we’d expect for a sampled function

Φ(f1, f2) = φ(f1 + l, f2 +m) (l,m integers) (7.20)

which is two-dimensional aliasing. If φ(n1, n2) is real, then

Φ(f1, f2) =

∞∑
m1=−∞

∞∑
m2=−∞

φ(m1,m2)e−ı2πf1m1e−ı2πf2m2 = Φ∗(−f1,−f2)

(7.21)
so that Φ(f1, f2) is Hermitian in a 2-d sense.

We now have the tools for performing windowed filter design in 2-dimensions
in a manner entirely analogous to that which we previously examined for 1-d
FIR filters. Consider the perfect low pass filter with a response given by

Φ(f1, f2) =

{
1 for − α ≤ f1 ≤ α,−β ≤ f2 ≤ β
0 otherwise

(7.22)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING138

taking the inverse Fourier transform gives the n domain series

φ(n1, n2) =

∫ α

−α

∫ β

−β
eı2πf2n2eı2πf1n1df2df1 (7.23)

if the frequency response is separable, so is the n domain response, so

φ(n1, n2) =

(∫ α

−α
eı2πf1n1df1

)(∫ β

−β
eı2πf2n2df2

)
(7.24)

=

(
eı2πf1n1

ı2πn1

)∣∣∣∣α
f1=−α

(
eı2πf2n2

ı2πn2

)∣∣∣∣β
f2=−β

=

(
sin(2παn1)

πn1

)(
sin(2πβn2)

πn2

)
.

(7.25)
This frequency response and a plot of its corresponding filter weights is shown
on the following page.

Unless we have a physical reason for wishing to treat the n1 and n2 direc-
tions unequally, we would generally want to have a response which is circularly
symmetric in the time and frequency domains. Such a filter is specified by

Φ(f1, f2) =

{
1 f2

1 + f2
2 ≤ f2

max

0 otherwise
(7.26)

and the corresponding filter weights are obtainable as

φ(n1, n2) =

∫ fmax

−fmax

∫ (f2
max−f

2
1)1/2

−(f2
max−f2

1)1/2
eı2πf1n1eı2πf2n2 df2 df1 . (7.27)

An easy way to evaluate this integral is to note that both the n and frequency
response of the system are circularly symmetric, thus, we can obtain the general
solution by finding φ(n1, 0) and then substituting (n2

1 + n2
2)1/2 for n1.

φ(n1, 0) =

∫ fmax

−fmax

∫ (f2
max−f

2
1)1/2

−(f2
max−f2

1)1/2
eı2πf1n1 df2 df1 (7.28)

=

∫ fmax

−fmax

eı2πf1n1 · 2(f2
max − f2

1)1/2 df1 (7.29)

using the polar substitution f1 = fmax sin θ gives

=

∫ π/2

−π/2
2(f2

max − f2
max sin2 θ)1/2eı2πfmaxn1 sin θ · fmax cos θ dθ (7.30)

= 2f2
max

∫ π/2

−π/2
cos2 θeı2πfmaxn1 sin θdθ (7.31)

=
2πfmaxJ1(2πfmaxn1)

n1
(7.32)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING139

where J1 is the first-order Bessel function. Thus

φ(n1, n2) =
2πfmaxJ1(2πfmax(n

2
1 + n2

2)1/2)

(n2
1 + n2

2)1/2
. (7.33)

Before proceeding further with the topic of 2-d filtering, we must define a
2-d DFT. The utility of the multidimensional DFT arises for the same reasons
as for 1-d series; it enables us to deal with limited time series (with the added
implication that our sampled signals are now periodic), and it is implementable
with highly efficient FFT routines.

A periodic signal in two dimensions satisfies

x(n1, n2) = x(n1 +m1N1, n2 +m2N2) (7.34)

where (N1, N2) are the periods of the 2-d signal (in samples) along the two grid
axes and

(m1,m2) integers (7.35)

As in one dimension, such 2-d signals can be decomposed into a linear combina-
tion of a finite number of exponential basis functions which have periods which
are submultiples of (N1, N2). Thus,

x(n1, n2) =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

X(k1, k2)eı2πn1k1/N1eı2πn2k2/N2 (7.36)

where X(k1, k2) is the 2-d DFT of x(n1, n2). The corresponding DFT is there-
fore

X(k1, k2) =

N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)e−ı2πn1k1/N1e−ı2πn2k2/N2 . (7.37)

Noe that we could also define a 2-d z transform

x(z1, z2) =

∞∑
n1=−∞

∞∑
n2=−∞

x(n1, n2)z−n1
1 z−n2

2 (7.38)

and a corresponding inverse z transform (with contours c1 and c2)

x(n1, n2) =
1

(ı2π)2

∫
c1

∫
c2

X(z1, z2)zn1−1
1 zn2−1

2 dz1 dz2 . (7.39)

A general 2-d digital filter is thus characterizable by a difference equation

y(n1, n2) =

p∑
i=−p

q∑
j=−q

αijx(n1− i, n2− j)−
r∑

i=−r

s∑
j=−s

βijy(n1− i, n2− j) (7.40)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING140

Figure 7.1: A 2-dimensional sampled function and its DFT

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING141

where i and j are not both zero in the second summation, and we have made
the constant coefficients symmetric about y(0, 0). This has a z transform given
by

Y (z1, z2) =

∑p
i=−p

∑q
j=−q βijz

−i
1 z−j2∑r

i=−r
∑s
j=−s αijz

−i
1 z−j2

(7.41)

where α00 = 1 has poles and zeros in a 4-dimensional space defined by the real
and imaginary parts of z1 and z2. Evaluating stability for such filters is difficult,
primarily because one cannot, in general, factor the 2-dimensional numerator
and denominator to obtain a simple view of the zero and pole frequencies. As
a result of this property (or non-property) of higher-dimensional polynomials,
the cascade of two stable IIR filters may not even be stable! (this issue is still a
current research topic). Because of these difficulties, we will primarily concern
ourselves with FIR higher-dimensional filters here (this is the case where there
are no poles and thus no potential stability problems).

The two dimensional function shown in Figure (7.1) could be applied as
an FIR filter to effect low-pass filtering by the use of the convolution theorem
(direct manipulation of the DFT) or via convolution with a corresponding kernel
in two dimensions. However, this filter is anisotropic in the (k1, k2) plane,
in the sense the wavenumber components along the diagonals will experience
different filtering than along the k1 or k2 directions, and the filtering in k1 and
k2 directions has different cutoff wavenumbers. Consider, instead, a circularly
symmetric, low-pass filter case defined by the ideal response (Figure 7.2), which
has the transfer function

Φ(f1, f2) =

{
1 f2

1 + f2
2 ≤ 1/4

0 otherwise
(7.42)

from (7.33), we know that the corresponding filter weights are given by

w(n1, n2) =

{
πfmaxJ1((π/2)(n2

1 + n2
2)1/2)

2(n2
1 + n2

2)1/2 (7.43)

Taking a N by N -point rectangular window (a simple truncation of the 2-d
series) produces a filter with a frequency response

W (f1, f2) =

(N−1)/2∑
n1=−(N−1)/2

(N−1)/2∑
n2=−(N−1)/2

w(n1, n2)e−ı2πn1f1e−ı2πn2f2 (7.44)

where (f1, f2) is normalized to the Nyquist interval, so that both frequencies
span (−1/2, 1/2).

As in the 1-d case, we can improve the ripple features of the filtering by
applying a windowing function with better spectral leakage characteristics than
the 2-dimensional rectangular window implied by simply convolving with a trun-
cated w(n1, n2). As we usually wish our window to be circularly symmetric in

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING142

−0.4
−0.2

0
0.2

−0.4

−0.2

0

k
1
/N

Desired 2−d Low−pass Filter Response

k
2
/N

Figure 7.2: A 2-dimensional ideal lowpass filter response.

the (f1, f2) and (n1, n2) planes, we can take a window function, ŵ, from 1-
dimensional analysis and substitute the radius in (n1, n2)-space for n to obtain
a circularly symmetric 2-dimensional window

w(n1, n2) = ŵ(n2
1 + n2

2)1/2 . (7.45)

As in 1-d processing, the Kaiser-Bessel window is a good candidate for a win-
dowing function due to its low spectral leakage. An N by N , 2-d Kaiser-Bessel
window is

w(n1, n2) =
I0

[
2π
√

1− (n2
1 + n2

2)/N2)
]

I0(2π)
(7.46)

for n2
1 + n2

2 ≤ N2 and
w(n1, n2) = 0 (7.47)

for n2
1 + n2

2 > N2, where I0(x) is the modified Bessel function of the first kind
and 0th order. The response of the Kaiser-Bessel windowed low pass filter is
superior in smoothness and in attenuation (reduction of spectral leakage) to the
rectangular window, as shown in the plots on the following pages.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING143

Figure 7.3: A 64 by 64 truncated FIR realization of the ideal low pass filter
response.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING144

−60
−40

−20
0

20

−60
−40

−20
0

20

n
1

2−d Kaiser−Bessel Window

n
2

Figure 7.4: A Kaiser Bessel window in 2 dimensions.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING145

Figure 7.5: A 64 by 64 Kaiser Bessel-windowed FIR realization of the ideal low
pass filter response.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING146

Frequency-Wavenumber Filtering

We next consider some aspects of filtering in a two-dimensional system where
the two-dimensions do not have the same units. Consider a linear array of
seismometers or antennae deployed in the x̂ direction with a constant spacing.
Signals from such an array can be displayed in a 2-dimensional record section,
where we have t as the ordinate and channel number, or x, as the abscissa (or
vice-versa). The response of such a system to a traveling, sinusoidal plane wave
of frequency f0

φ(t, x) = eı2πf0(t−x/v0) (7.48)

where v0 is the apparent phase velocity of the wave across the array, is of
particular interest, as such signals impinge upon the array at specific angles
given by

θ = sin−1(c/v0) (7.49)

where c is the true wave velocity in the medium and θ is the angle between the
planar wavefront and the x̂ direction. Thus, when θ = 0, the apparent phase
velocity v0 = ∞, as the wavefront strikes all of the sensors simultaneously.
Conversely, when θ = 90, v0 = c, as the plane wave is propagating directly
along the array axis (in the x̂ direction).

If we arrange the data in (t, x)-space to form a 2-dimensional array (prac-
tically speaking, we may have to resample the traces to form an evenly-spaced
array in the sampled case), we can take a 2-d Fourier transform of (7.48) as

Φ(f, k) =

∫ ∞
−∞

∫ ∞
−∞

φ(t, x)e−ı2πfteı2πxf/v dt dx =

∫ ∞
−∞

∫ ∞
−∞

φ(t, x)e−ı2πfteı2πkx dt dx

(7.50)
where the wavenumber (or spatial frequency) is, here, defined as the reciprocal
length

k = 1/λ = f/v . (7.51)

The f − k transform of the plane wave evaluated using (7.48)) is thus∫ ∞
−∞

∫ ∞
−∞

eı2πf0te−ı2πxk0e−ı2πfteı2πxk dt dx = δ(f − f0, k − k0) (7.52)

so that every traveling sinusoidal wave of a given frequency and wavenumber in
(x, t)-space maps to a delta function in (f, k)-space!

Note that we have chosen a mixed exponential sign convention for the f −
k transform, where the frequency portion has a minus sign in the exponent,
consistent with our previous convention for 1- and 2-dimensional transforms,
but the wavenumber transform exponent has a plus sign. We do this so that
waves propagating towards increasing x for increasing t (like 7.48) will map into
the first quadrant of the f−k plane. Of course there are three other conventions
of exponent signs which could be chosen here.

In f − k space, arbitrary signals of a given apparent phase velocity, v0 are
specified by (7.51), so that such signals lie along lines which intersect the f − k

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING147

origin and have slopes of v0 in an f vs. k presentation. Now suppose that we
wish to selectively resolve waves within a range of apparent velocities. This
procedure is called beam forming, as it was first developed in radar and radio
transmission applications. In seismological applications, because of Snell’s law,
the horizontal phase velocity of a signal remains constant throughout a given
ray path in a horizontally homogeneous medium. Thus, beam forming using
seismic array data selectively examines waves which turn within a particular
depth range (as our array is generally deployed horizontally). For a simple 1-
d array of sensors we can preferentially extract signals with a specific phase
velocity above some cutoff value, v0, by using a filter with an f − k response
given by

Y (f, k) =

{
1 − |f |/v0 ≤ k ≤ |f |/v0

0 otherwise
(7.53)

It’s instructive to examine the impulse response of (e.g., [9]), given by the inverse
f − k transform

y(t, x) =

∫ ∞
−∞

∫ ∞
−∞

Y (f, k)eı2πfte−ı2πkx dk df . (7.54)

Of course, in practical situations, x and t are both discrete variables, so that, for
unit time sampling interval, ∆t = 1 and unit spatial sampling interval, ∆x = 1

y(n∆t, (m+1/2)∆x) = y(n,m+1/2) =

∫ 1/2

−1/2

∫ 1/2

−1/2

Y (f, k)eı2πfne−ı2πk(m+1/2) dk df

(7.55)
where we have assumed that there are an even number of receivers in the array,
so that the half-integer spatial index, m + 1/2 gives a symmetric deployment
relative to the x origin. Evaluating the integral over k for Y (f, k) gives

∫ 1/2

−1/2

eı2πfn
(
e−ı2πk(m+1/2)

−ı2π(m+ 1/2)

)∣∣∣∣∣
|f |/v0

k=−|f |/v0

df (7.56)

=
1

π(m+ 1/2)

∫ 1/2

−1/2

eı2πfn sin(2π(m+ 1/2)|f |/v0) df (7.57)

=
2

π(m+ 1/2)

∫ 1/2

0

cos 2πfn sin(2π(m+ 1/2)f/v0) df (7.58)

using unity apparent velocity as the cutoff value for the sake of illustration gives

v0 = ∆x/∆t = 1 (7.59)

so that

y(n,m+ 1/2) =
2

π(m+ 1/2)

∫ 1/2

0

sin(2πf(m+ 1/2)) cos(2πfn) df . (7.60)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING148

Because, for m2 6= n2,∫
sin(mx) cos(nx)dx =

−cos(m− n)x

2(m− n)
− cos(m+ n)x

2(m+ n)
+ C (7.61)

we have

y(n,m+1/2) =
2

π(m+ 1/2)

(
−cos(2πf(n+m+ 1/2))

4π(n+m+ 1/2)
− cos(2πf(−n+m+ 1/2))

4π(−n+m+ 1/2)

)∣∣∣∣1/2
0

(7.62)

=
2

π(m+ 1/2)
× (7.63)(

−cos(π(n+m+ 1/2))

4π(n+m+ 1/2)
− cos(π(−n+m+ 1/2))

4π(−n+m+ 1/2)
+

1

4π(n+m+ 1/2)
+

1

4π(−n+m+ 1/2)

)
.

(7.64)
As m and n are integers, the cosine terms are zero, so that

y(n,m+ 1/2) =
1

2π2(m+ 1/2)

(
1

(n+m+ 1/2)
+

1

(−n+m+ 1/2)

)
(7.65)

or

y(n,m+ 1/2) =
1

π2 [(m+ 1/2)2 − n2]
. (7.66)

As is usual in FIR filter design problems, the weights are nonzero for large
indices (n and m) and we are forced into a truncation procedure to produce
a finite set of filter weights. As in our previous examples, the Kaiser Bessel
window provides a good choice for truncating the 2-d weights. Rectangular and
Kaiser-Bessel windowed realizations of the velocity filter (7.66) for 64 channels
of 64 sample data are shown on the following page.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING149

As the 3-d perspective plots make it difficult to see the x− t domain impulse
response, we also show a plot of the impulse response traces for 16 traces of 64
samples. Each time series in the impulse response consists of a simple convolving
kernel. The response of the filter, r(n,m+ 1/2) to an arbitrary input, φ(n,m+
1/2), is thus given by the 2-d convolution of (7.66) with the input traces

r(n,m+ 1/2) =

N∑
i=1

M/2−1∑
j=−M/2

φ(i, j + 1/2)y(n− i,m+ 1/2− j) (7.67)

r(n, 1/2) is thus obtainable by convolving each time series in the input with
the corresponding time series in the impulse response (7.66), followed by a
summation (stack) of the resultant M convolutions all m.

A particularly simple f − k filter has weights given by

y(n,m) = δ(n = 0) (7.68)

The m = 0 output of such a filter is just a zero-lag stack of the input traces. The
f − k impulse response of such a system is just the Discrete Fourier transform
of y(n,m)

Y (ν, µ) =

N−1∑
n=0

M−1∑
m=0

δ(n = 0)e−ı2πνn/Neı2πµm/M (7.69)

where our frequency-wavenumber indices are the integers (ν, µ).

=

M−1∑
m=0

eı2πµm/M =
1− eı2πµ

1− eı2πµ/M
(7.70)

which has the amplitude response given by the Dirichlet kernel

|Y (ν, µ)| = sin(πµ)

sin(πµ/M)
(7.71)

which is independent of the Nyquist-normalized frequency, ν. The t − x and
f − k plots are shown on the following page. The zero-lag stack, then, acts like
a low pass filter in k and a high pass filter in v, so that waves with large k (short
wavelengths) and low v (less vertical ray paths) will be attenuated, while those
with small k (long wavelengths) will be relatively unaffected.

Consider now what happens if we stack the time series with some time lag,
∆, imposed between the channels, so that the impulse response is now

y(n,m) = δ(n+ ∆m). (7.72)

Such a system is called a phased array and has many applications in geophysics,
optics, and electromagnetics (e.g., RADAR). The f − k response then becomes

Y (ν, µ) =

N−1∑
n=0

M−1∑
m=0

δ(n+ ∆m)e−ı2πνn/Neı2πµm/n (7.73)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING150

Figure 7.6: A rectangular-widowed velocity filter.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING151

Figure 7.7: A Kaiser-Bessel-windowed velocity filter.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING152

=

M−1∑
m=0

eı2πν∆m/Neı2πµm/M (7.74)

for the symmetric case N = M , we have

=

M−1∑
m=0

eı2πm(ν∆+µ)/N (7.75)

which gives the amplitude response

|Y (ν, µ)| = sin(π(ν∆ + µ))

sin(π(ν∆ + µ)/M)
(7.76)

which is shown on the following page for ∆ = 1, along with the response of the
unlagged series. Rotating the impulse response in the t − x domain has thus
simply rotated the Fourier Transform by the same angle (in this case, 45◦). We
now know how to modify the velocity filter to enclose some other hourglass-
shaped swath of the f − k plane – we simply must impose a linear lag between
the initial time traces to rotate the response function to the desired angle.

An important application of phased arrays is to receive or transmit narrow
frequency band energy preferentially from a small range of azimuths. Consider
a linear hydrophone array trailed from a ship with an array element spacing of
∆x = 30 m and a length of 3600 m (M = 121 elements in all). If such an array
is receiving energy from a narrow-band source (so that we are only interested
in a small range of frequencies), we can calculate the width of the main lobe of
the Dirichlet kernel response if we know the sound speed (about 1500 m/s in
water).

For a f1 = 50 Hz source, the wavelength is thus about 30 m. The f − k
response of the streamer for stacked traces is

|Y (ν, µ)| = sin(πµ)

sin(πµ/M)
(7.77)

where we can convert a general discrete f−k transform to a function of Nyquist-
normalized wavenumber, k, and Nyquist-normalized frequency, f , using the
transformations

µ = Mk/ks (7.78)

ν = Nf/fs (7.79)

where ks is the spatial sampling frequency

ks = 1/(∆x) = 1/30 m−1 (7.80)

and fs is the time sampling frequency to obtain

|Y (f, k)| = sin(Mπk/ks)

sin(πk/ks)
. (7.81)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING153

The first zero of this function occurs at k = k1, defined by

sin(Mπk1/ks) = 0 (k1 6= 0) (7.82)

or where
k1 = ks/M ≈ 2.75× 10−4 m−1 (7.83)

which occurs at a plane wave emergence angle of

θ = sin−1(c/v1) = sin−1(ck1/f1) = sin−1(1500 ·2.75×10−4/50) ≈ 0.47◦ (7.84)

(corresponding to a phase lag of 2π between the first and last hydrophones) so
that the total width of the main lobe is ±θ, or about 1◦. The second major
maximum occurs when the contributions of the plane wave are again in phase
at all of the receivers, where k = ks and

θ = sin−1(cks/f1) = sin−1(1500/(30 · 50)) = 90◦. (7.85)

If frequency is doubled to f2 = 100 Hz, then the wavelength is halved, and the
main lobe becomes narrower, with the first zero now occurring at

θ = sin−1(ck1/f2) = sin−1(1500 · 2.75× 10−4/100) ≈ 0.24◦ . (7.86)

The second major maximum now occurs at only

θ = sin−1(cks/f2) = sin−1(1500 · 2/(60 · 100)) = 30◦. (7.87)

so that the main beam has become narrower, but we now have a second maxi-
mum to contend with at 30◦ from normal incidence.

Frequency-Wavenumber Filtering with 2-dimensional
arrays

Next, we consider data from a 2-dimensional array of instruments. Again, we
can decompose incident energy into a superposition of traveling waves, but we
now have an additional spatial dimension to contend with because our signals
now have two spatial dimensions.

A particular wave field sampled by a two-dimensional array can be decom-
posed into plane waves

φ(t, x, y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ(f, kx, ky)eı2πfte−ı2πkxxe−ı2πkyy df dkx dky

(7.88)
where kx and ky are the wavenumbers in the x and y directions and Φ(kx, ky, f)
is a 3-dimensional frequency-wavenumber spectrum. A particular plane wave
propagates at an azimuth, φ, specified by

φ = tan−1(ky/kx) (7.89)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING154

Figure 7.8: A linear array response as a function of incident angle.

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING155

kx and ky are thus not independent, but are related by the Pythagorean theorem

k2
x + k2

y = f2/v2. (7.90)

The f − k spectrum of a 2-dimensional time signal is thus

Φ(f, kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

φ(t, x, y)e−ı2πfteı2πkxxeı2πkyydtdxdy (7.91)

and its discrete counterpart is

Φ(ν, µx, µy) =

N−1∑
n=0

L−1∑
l=0

M−1∑
m=0

φ(l, n,m)e−ı2πnν/Neı2πlµx/Leı2πmµy/M . (7.92)

As in the case of an ideal 1-dimensional array, we can (theoretically at least)
calculate a frequency-wavenumber spectrum from real data using (7.92) to de-
termine the nature of the incident energy in terms of a plane wave decompo-
sition. Unfortunately, this is not usually the case in seismology, particularly
at high frequencies, as spatial heterogeneity induces scattering which fragments
the wavefront near the array, reducing the signal coherence from sensor to sen-
sor. One can improve the situation somewhat by introducing station corrections
(e.g., [1]), so that the wavefront is best reconstructed (this procedure is analo-
gous to the adaptive optical techniques used in modern large telescopes).

Upward and Downward Continuation of Remotely
Sensed Data

Consider a point mass, m, located at the origin, which produces a gravitational
field

~g(r̂) =
−mGr̂
r2

=
−mG(xx̂+ yŷ + zẑ)

(x2 + y2 + z2)3/2
(7.93)

where G is Newton’s gravitational constant. At a general position (x, y, z), the
vertical (z component) of the gravity field will thus be

gz = ẑ · ~g =
−mGz

(x2 + y2 + z2)3/2
(7.94)

The integral of gz over the xy plane is∫ ∞
−∞

∫ ∞
−∞

gz dx dy = −mGz
∫ ∞
−∞

∫ ∞
−∞

(x2 + y2 + z2)−3/2 dx dy (7.95)

= −2πmGz

∫ ∞
0

r dr

(z2 + r2)3/2
(7.96)

= −2πmGz

(
−1

(z2 + r2)1/2

)∣∣∣∣∞
0

= −2πmG (7.97)

CHAPTER 7. INTRODUCTION TOMULTIDIMENSIONAL ANDMULTICHANNEL PROCESSING156

which, interestingly, does not depend on z. If we take the output of our system
to be the vertical field at z = 0, then we clearly have a delta function at the
origin with a magnitude given by (7.94), as the field has no vertical component
except exactly at the origin. Next consider a surface at a height h above the xy
plane. The vertical field there is just

gz(h) = − h

2π(x2 + y2 + h2)3/2
= − h

2π(r2 + h2)3/2
(7.98)

where we have normalized the response by (7.94). As field quantities obey su-
perposition and linearity, vertical field measurements of a general field obtained
at an arbitrary height z = h are thus specified by the 2-dimensional convolution
of (7.98) with the field at z = 0.

We can examine the frequency response of this filter by taking the Fourier
transform of (7.98)

g(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

h

2π(x2 + y2 + h2)3/2
e−ı2πkxxe−ı2πkyy dx dy (7.99)

which can be solved to obtain

g(kx, ky) = e−2πh(k2x+k2y)1/2 (7.100)

which is the frequency response of the upward continuation filter. Note that
(7.100) is thus a low pass filter – as we move away from the (z = 0) plane, we
loose the high frequencies in our survey. Conversely, if we wish to extrapolate
downwards to the earth’s surface, we need to implement the (unstable) inverse
filter, g−1(kx, ky). This 2-dimensional deconvolution can be achieved in a sta-
ble way by a regularized (e.g., 2-d water level) deconvolution in the frequency
domain.

Multi-dimensional filtering in MATLAB

Basic filtering operations can be done with the functions filter2 and conv2. There
are also 2-dimensional DFT operations (fft2 and ifft2), as well as a routine (fftn
and ifftn) for arbitrary dimensionality. 2-dimensional FIR filter design pro-
grams are also available using the windowing and frequency sampling methods
(fwind1/fwind2, fsamp2, respectively) in the image processing toolbox. This
toolbox also has two-dimensional functions (fspecial) and many, many other
useful functions for operating on 2-dimensional arrays.

Chapter 8

Notes on Random Processes

A Brief Review of Probability

In this section of the course, we will work with random variables which are
denoted by capital letters, and which we will characterize by their probability
density functions (pdf) and cumulative density functions (CDF.) We will
use the notation fX(x) for the pdf and FX(a) for the CDF of X. Here, the
subscript X tells us which random variable’s pdf or CDF we’re working with.
The relation between the pdf and CDF is

P (X ≤ a) = FX(a) =

∫ a

−∞
fX(x)dx. (8.1)

Since probabilities are always between 0 and 1, the limit as a goes to negative
infinity of F (a) is 0, and the limit as a goes to positive infinity of F (a) is 1.
Also,

∫∞
−∞ f(x)dx = 1. By the fundamental theorem of calculus, F ′(a) = f(a).

The most important distribution that we’ll work with is the normal dis-
tribution.

P (X ≤ a) =

∫ a

−∞

1√
2πσ2

e−(x−µ)2/2σ2

dx. (8.2)

Unfortunately, there’s no simple formula for this integral. Instead, tables or nu-
merical approximation routines are used to evaluate it. The normal distribution
has a characteristic bell shaped pdf. The center of the bell is at x = µ, and
the parameter σ2 controls the width of the bell. The particular case in which
µ = 0, and σ2 = 1 is referred to as the standard normal random variable.
The letter Z is typically used for the standard normal random variable. Figure
8.1 shows the pdf of the standard normal.

The expected value of a random variable X is

µX = E[X] =

∫ ∞
−∞

xfX(x)dx. (8.3)

Note that this integral does not always converge!

157

CHAPTER 8. NOTES ON RANDOM PROCESSES 158

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x)

Figure 8.1: The standard normal pdf.

For a normal random variable, it turns out (after a bit of work to evaluate
the integral) that E[X] = µ.

We’ll often work with random variables that are functions of other random
variables. If X is a random variable with pdf fX(x) and g() is a function, then
g(X) is also a random variable, and

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx. (8.4)

Because integration is a linear operator,

E[X + Y] = E[X] + E[Y] (8.5)

and
E[sX] = sE[X]. (8.6)

The variance of a random variable X is

V ar(X) = E[(X − E[X])2] (8.7)

V ar(X) = E[X2 − 2XE[X] + E[X]2] (8.8)

Using the linearity of E[] and the fact that the expected value of a constant is
the constant, we get that

V ar(X) = E[X2]− 2E[X]E[X] + E[X]2 (8.9)

V ar(X) = E[X2]− E[X]2. (8.10)

CHAPTER 8. NOTES ON RANDOM PROCESSES 159

For a normal random variable, it’s relatively easy to show that V ar(X) = σ2.
If we have two random variables X and Y , they may have a joint proba-

bility density f(x, y) with

P (X ≤ a and Y ≤ b) =

∫ a

−∞

∫ b

−∞
f(x, y) dy dx (8.11)

Two random variables X and Y are independent if they have a joint density
and

f(x, y) = fX(x)fY (y). (8.12)

If X and Y have a joint density, then the covariance of X and Y is

Cov(X,Y) = E[(X − E[X])(Y − E[Y])] = E[XY]− E[X]E[Y]. (8.13)

It turns out that if X and Y are independent, then E[XY] = E[X]E[Y], and
Cov(X,Y) = 0. However, there are examples whereX and Y are dependent, but
Cov(X,Y) = 0. If Cov(X,Y) = 0, then we say thatX and Y are uncorrelated.

The correlation of X and Y is

ρXY =
Cov(X,Y)√
V ar(X)V ar(Y)

. (8.14)

The correlation is a sort of scaled version of the covariance that we will make
frequent use of.

Some important properties of V ar, Cov and correlation include:

V ar(X) ≥ 0 (8.15)

V ar(sX) = s2V ar(X) (8.16)

V ar(X + Y) = V ar(X) + V ar(Y) + 2Cov(X,Y) (8.17)

Cov(X,Y) = Cov(Y,X) (8.18)

−1 ≤ ρXY ≤ 1 (8.19)

The following example demonstrates the use of some of these properties.
Example 8.1

Suppose that Z is a standard normal random variable. Let

X = µ+ σZ. (8.20)

Then
E[X] = E[µ] + σE[Z] (8.21)

so
E[X] = µ. (8.22)

Also,
V ar(X) = V ar(µ) + σ2V ar(Z) (8.23)

CHAPTER 8. NOTES ON RANDOM PROCESSES 160

V ar(X) = σ2. (8.24)

Thus if we have a program to generate random numbers with the
standard normal distribution, we can use it to generate random num-
bers with any desired normal distribution. The MATLAB command
randn generates N(0,1) random numbers.

Suppose that X1, X2, . . ., Xn are independent realizations of a random
variable X. How can we estimate E[X] and V ar(X)?

Let

X̄ =

∑n
i=1Xi

n
(8.25)

and

s2 =

∑n
i=1(Xi − X̄)2

n− 1
(8.26)

These estimates for E[X] and V ar(X) are unbiased in the sense that

E[X̄] = E[X] (8.27)

and
E[s2] = V ar(X). (8.28)

We can also estimate covariances with

Ĉov(X,Y) =

∑n
i=1(Xi − X̄)(Yi − Ȳ)

n
(8.29)

Random Vectors

In digital signal processing we’ve been dealing with signals, represented in dis-
crete time by vectors. Thus it’s important to be able to work with random
variables that are vectors. We’ll consider random vectors of the form

X =

X1

X2

...
Xn

 (8.30)

where the individual random variablesXi are assumed to have a joint probability
density function.

The expected value of a random vector is

µ = E[X] =

E[X1]
E[X2]

...
E[Xn]

 . (8.31)

CHAPTER 8. NOTES ON RANDOM PROCESSES 161

The covariance matrix of X is

C = Cov(X) = E[XXT]− E[X]E[X]T . (8.32)

Since

XXT =

X1X1 X1X2 X1X3 · · · X1Xn

X2X1 X2X2 X2X3 · · · X2Xn

...
...

...
...

...
XnX1 XnX2 XnX3 · · · XnXn

 , (8.33)

Ci,j = E[XiXj]− E[Xi]E[Xj] = Cov(Xi, Xj). (8.34)

We will also work with the correlation matrix

Pi,j =
Cov(Xi, Xj)√

Cov(Xi, Xi)
√
Cov(Xj , Xj)

. (8.35)

Just as with scalar random variables, the expected value and covariance of
a random vector have many useful properties. In deriving these properties we
have to be somewhat careful, since matrix multiplication is not commutative.
Thus

E[AX] = AE[X], (8.36)

but
E[XA] = E[X]A, (8.37)

An analogous result to V ar(sX) = s2V ar(X) is that

Cov(AX) = E[(AX)(AX)T]− E[AX]E[AX]T . (8.38)

Cov(AX) = E[AXXTAT]−AE[X]E[X]TAT . (8.39)

Cov(AX) = AE[XXT]AT −AE[X]E[X]TAT . (8.40)

Cov(AX) = A(E[XXT]− E[X]E[X]T)AT . (8.41)

Cov(AX) = ACov(X)AT . (8.42)

Recall that a symmetric matrix A is positive semidefinite (PSD) if xTAx ≥ 0,
for all x. Also A is positive definite (PD) if xTAx ≥ 0, for all nonzero x.

Corresponding to the property that V ar(X) ≥ 0, we find that the covariance
matrix C of a random variable is always positive semidefinite. To show this, let

W = α1X1 + . . . αnXn = αTX. (8.43)

Then
V ar(W) = E[(W − E[W])(W − E[W])T]. (8.44)

V ar(W) = E[(W − E[W])(W − E[W])T]. (8.45)

Since
W − E[W] = αTx− αTµ, (8.46)

CHAPTER 8. NOTES ON RANDOM PROCESSES 162

V ar(W) = E[αT (x− µ)(x− µ)Tα]. (8.47)

V ar(W) = αTE[(x− µ)(x− µ)T]α. (8.48)

V ar(W) = αTCα. (8.49)

But V ar(W) ≥ 0. Thus αTCα ≥ 0, for every vector α, and C is positive
semidefinite.

We can estimate E[X] and Cov(X) from a sample of random vectors drawn
from the distribution. Suppose that the columns of an n by m matrix X are m
random vectors drawn from the distribution. Then we can estimate

E[Xj] ≈ µ =

∑n
j=1X1,j

m
(8.50)

or

E[X] ≈ µ =
Xe

m
, (8.51)

where e is the vector of all ones. We can also estimate that

Cov(X) ≈ C =
XXT

m
− µµT . (8.52)

The Multivariate Normal (MVN) Distribution

The multivariate normal distribution (MVN) is an important joint proba-
bility distribution. If the random variables X1, . . ., Xn have an MVN, then the
probability density is

f(x1, x2, . . . , xn) =
1

(2π)n/2
1√
|C|

e−(x−µ)TC−1(X−µ)/2. (8.53)

Here µ is a vector of the mean values of X1, . . ., Xn, and C is a matrix of
covariances with

Ci,j = Cov(Xi, Xj). (8.54)

The multivariate normal distribution is one of a very few multivariate distri-
butions with useful properties. Notice that the vector µ and the matrix C
completely characterize the distribution.

We can generate vectors of random numbers according to an MVN distri-
bution by using the following process, which is very similar to the process for
generating random normal scalars.

1. Find the Cholesky factorization C = LLT .

2. Let Z be a vector of n independent N(0,1) random numbers.

3. Let X = µ+ LZ.

To see that X has the appropriate mean and covariance matrix, we’ll com-
pute them.

E[X] = E[µ+ LZ] = µ+ E[LZ] = µ+ LE[Z] = µ. (8.55)

Cov[X] = E[(X − µ)(X − µ)T] = E[(LZ)(LZ)T]. (8.56)

Cov[X] = LE[ZZT]LT = LILT = LLT = C. (8.57)

CHAPTER 8. NOTES ON RANDOM PROCESSES 163

Covariance Stationary processes

A discrete time stochastic process is a sequence of random variables Z1,
Z2, In practice we will typically analyze a single realization z1, z2, . . ., zn
of the stochastic process and attempt to estimate the statistical properties of
the stochastic process from the realization. We will also consider the problem
of predicting zn+1 from the previous elements of the sequence.

We will begin by focusing on the very important class of stationary stochas-
tic processes. A stochastic process is strictly stationary if its statistical prop-
erties are unaffected by shifting the stochastic process in time. In particular, this
means that if we take a subsequence Zk+1, . . ., Zk+m, then the joint distribution
of the m random variables will be the same no matter what k is.

In practice, we’re often only interested in the means and covariances of the
elements of a time series. A time series is covariance stationary, or second
order stationary if its mean and its autocovariances (or autocorrelations) at
all lags are finite and constant. For a covariance stationary process, the auto-
covariance at lag m is γm = Cov(Zk, Zk+m). Since covariance is symmetric,
γ−m = γm. The correlation of Zk and Zk+m is the autocorrelation at lag m.
We will use the notation ρm for the autocorrelation. It is easy to show that

ρk =
γk
γ0
. (8.58)

The autocovariance and autocorrelation matrices

The covariance matrix for the random variables Z1, . . ., Zn is called an auto-
covariance matrix.

Γn =

γ0 γ1 γ2 . . . γn−1

γ1 γ0 γ1 . . . γn−2

.
γn−1 γn−2 . . . γ1 γ0

 (8.59)

Similarly, we can form an autocorrelation matrix

Pn =

1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ1 . . . ρn−2

.
ρn−1 ρn−2 . . . ρ1 1

 . (8.60)

Note that
Γn = σ2

ZPn. (8.61)

Since the autocovariance matrix is a covariance matrix, it is positive semidefi-
nite. It’s easy to show that the autocorrelation matrix is also positive semidefi-
nite.

An important example of a stationary process that we will work with occurs
when the joint distribution of Zk, . . ., Zk+n is multivariate normal. In this
situation, the autocovariance matrix Γn is precisely the covariance matrix C for
the multivariate normal distribution.

CHAPTER 8. NOTES ON RANDOM PROCESSES 164

Estimating the mean, autocovariance, and auto-
correlation

Given a realization z0, z2, . . ., zN−1, of a stochastic process, how can we estimate
the mean, variance, autocovariance and autocorrelation?

We will estimate the mean by

z̄ =

∑N−1
j=0 zj

N
. (8.62)

We will estimate the autocovariance at lag k with

ck =
1

N

N−1∑
j=0

(zj − z̄)(zj+k − z̄). (8.63)

Here we have used the convention that zk is a periodic sequence to get zj+k in
cases where j + k > N − 1.

Note that c0 is an estimate of the variance, but it is not the same unbiased
estimate that we used in the last lecture. The problem here is that the zi
are correlated, so that the formula from the last lecture no longer provides an
unbiased estimator. The formula given here is also biased, but is considered to
work better in practice.

We will estimate the autocorrelation at lag k with

rk =
ck
c0
. (8.64)

The following example demonstrates the computation of autocorrelation and
autocovariance estimates.

Example 8.2

Consider the time series of yields from a batch chemical process
given in Table 1. The data is plotted in Figure 8.2. These data are
taken from p 31 of Box, Jenkins, and Reinsel. Read the table by
rows. Figure 8.3 shows the estimated autocorrelation for this data
set. The fact that r1 is about -0.4 tells us that whenever there is
a sample in the data that is well above the mean, it is likely to be
followed by a sample that is well below the mean, and vice versa.
Notice that the autocorrelation tends to alternate between positive
and negative values and decays rapidly towards a noise level. After
about k = 6, the autocorrelation seems to have died out.

Just as with the sample mean, the autocorrelation estimate rk is a random
quantity with its own standard deviation. It can be shown that

V ar(rk) ≈ 1

n

∞∑
v=−∞

(ρ2
v + ρv+kρv−k − 4ρkρvρv−k + 2ρ2

vρ
2
k). (8.65)

CHAPTER 8. NOTES ON RANDOM PROCESSES 165

47 64 23 71 38 64 55 41 59 48
71 35 57 40 58 44 80 55 37 74
51 57 50 60 45 57 50 45 25 59
50 71 56 74 50 58 45 54 36 54
48 55 45 57 50 62 44 64 43 52
38 59 55 41 53 49 34 35 54 45
68 38 50 60 39 59 40 57 54 23

Table 8.1: An example time series.

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

Sample

O
ut

pu
t

Figure 8.2: An example time series.

The autocorrelation function typically decays rapidly, so that we can identify a
lag q beyond which rk is effectively 0. Under these circumstances, the formula
simplifies to

V ar(rk) ≈ 1

n
(1 + 2

q∑
v=1

ρ2
v), k > q. (8.66)

In practice we don’t know ρv, but we can use the estimates rv in the above
formula. This provides a statistical test to determine whether or not an auto-
correlation rk is statistically different from 0. An approximate 95% confidence
interval for rk is rk ± 1.96 ∗

√
V ar(rk). If this confidence interval includes 0,

then we can’t rule out the possibility that rk really is 0 and that there is no
correlation at lag k.

Example 8.3

CHAPTER 8. NOTES ON RANDOM PROCESSES 166

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

lag k

r k

Figure 8.3: Estimated autocorrelation for the example data.

Returning to our earlier data set, consider the variance of our es-
timate of r6. Using q = 5, we estimate that V ar(r6) = .0225 and
that the standard deviation is about 0.14. Since r6 = −0.0471 is
considerably smaller than the standard deviation, we will decide to
treat rk as essentially 0 for k ≥ 6.

The spectrum and autocorrelation

In continuous time, the spectrum of a signal φ(t) is given by

PSD(f) = |Φ(f)|2 = Φ(f)Φ(f)∗. (8.67)

Since

Φ(f) =

∫ ∞
t=−∞

φ(t)e−2πiftdt, (8.68)

Φ(f)∗ =

∫ ∞
t=−∞

φ(t)∗e+2πiftdt. (8.69)

Let τ = −t. Then dτ = −dt, and

Φ(f)∗ =

∫ ∞
τ=−∞

φ(−τ)∗e−2πifτdτ. (8.70)

Φ(f)∗ = F [φ(−t)∗] . (8.71)

CHAPTER 8. NOTES ON RANDOM PROCESSES 167

Thus
PSD(f) = F [φ(t)]F [φ(−t)∗] , (8.72)

or by the convolution theorem,

PSD(f) = F [φ(t) ∗ φ(−t)∗] = F [autocorr φ(t)] . (8.73)

We can derive a similar connection in discrete time between the periodogram
and the autocovariance. Given a N -periodic sequence zn, the autocovariance is

cn =
1

N

N−1∑
j=0

(zj − z̄)(zj+n − z̄). (8.74)

cn =
1

N

N−1∑
j=0

zjzj+n − 2

N−1∑
j=0

zj z̄ +

N−1∑
j=0

z̄2

 . (8.75)

Since

z̄ =
1

N

N−1∑
j=0

zj , (8.76)

cn =
1

N

N−1∑
j=0

zjzj+n −Nz̄2

 . (8.77)

Now, we’ll compute the DFT of cn.

Cm =

N−1∑
n=0

cne
−2πinm/N . (8.78)

Cm =

N−1∑
n=0

N−1∑
j=0

zjzj+n
N

− z̄2

 e−2πinm/N . (8.79)

By our “technical result”,

N−1∑
n=0

−z̄2e−2πinm/N = −Nz̄2δm. (8.80)

When m = 0, e−2πimn/N = 1, so we get

C0 =

N−1∑
n=0

N−1∑
j=0

zjzj+n
N

−Nz̄2. (8.81)

Since
N−1∑
n=0

N−1∑
j=0

zjzj+n
N

= Nz̄2, (8.82)

CHAPTER 8. NOTES ON RANDOM PROCESSES 168

C0 = 0. (8.83)

Note that by definition,

C0 =

N−1∑
n=0

cne
−2πi0n/N =

N−1∑
n=0

cn, (8.84)

So C0 = 0 implies that the average of the autocovariances must be 0.
When m 6= 0, things are more interesting. In this case,

Cm =

N−1∑
n=0

N−1∑
j=0

zjzj+n
N

e−2πinm/N . (8.85)

Cm =
1

N

N−1∑
n=0

N−1∑
j=0

zjzj+ne
−2πinm/N . (8.86)

Cm =
1

N

N−1∑
j=0

zj

N−1∑
n=0

zj+ne
−2πinm/N . (8.87)

Cm =
1

N

N−1∑
j=0

zje
+2πijm/N

N−1∑
n=0

zj+ne
−2πi(j+n)m/N . (8.88)

Using the fact that z is real we get,

Cm =
1

N

N−1∑
j=0

z∗j e
+2πijm/N

N−1∑
n=0

zj+ne
−2πi(j+n)m/N . (8.89)

Cm =
1

N
Z∗m

N−1∑
n=0

zj+ne
−2πi(j+n)m/N . (8.90)

Using the fact that z is N -periodic, we get

Cm =
1

N
Z∗mZm. (8.91)

Note that because cn is symmetric, Cm is real. Also note that the right hand
side of this equation is always nonnegative. This means that Cm ≥ 0. It turns
out that Cm ≥ 0 is equivalent to the autocovariance matrix being positive
semidefinite.

Thus knowing the spectrum of z is really equivalent to knowing the auto-
covariance, c, or its DFT, C. In practice, the sample spectrum from a short
time series is extremely noisy, so it’s extremely difficult to make sense of the
spectrum. On the other hand, it is much easier to make sense of the autocor-
relation function of a short time series. For this reason, the autocorrelation is
more often used in analyzing shorter time series.

Example 8.4

CHAPTER 8. NOTES ON RANDOM PROCESSES 169

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

P
S

D
 (

dB
)

f/fs

Figure 8.4: Periodogram of the sample time series.

Figure 8.4 shows the periodogram for our example data. It’s very
difficult to detect any real features in this spectrum. The problem
is that with a short time series you get little frequency resolution,
and lots of noise. Longer time series make it possible to obtain both
better frequency resolution (by using a longer window) and reduced
noise (by averaging over many windows.) However, if you’re stuck
with only a short time series, the first few autocorrelations may be
more informative than the periodogram.

Generating Correlated Gaussian Noise

The connection between the autocovariance and spectrum also provides us with
another way to generate random Gaussian noise with specified autocovariance.
In this approach, introduced by Shinozuka and Jan [12], we start with a desired
autocovariance cn, compute the DFT Cm, and then use (8.91) to get a real,
nonnegative square root, Zm. We could simply invert this to obtain a real
sequence zn. However, this sequence wouldn’t be random. Shinozuka’s clever
idea was to compute Zm, and then apply random phases to each of the Zm
components, while keeping the sequence Zm Hermitian. To do this, we multiply
Zk by eθki, and multiply Z−k by e−θki, where θk is uniformly distributed between
0 and 2π. We can then invert the discrete Fourier transform to get a random
sequence zn with exactly the required autocovariances.

CHAPTER 8. NOTES ON RANDOM PROCESSES 170

Note that in order to make this work, we must insure that the average of
covariances c is 0 and C0 = 0. If we start with a given sequence of covariances it
may be necessary to additional positive or negative covariances at an extremely
long lag to make the mean of c equal 0. Fortunately, we can simply extend c so
that it is much longer than the desired random output sequence z, in much the
same way that we used 0 padding in computing convolution by the FFT.

An important advantage of this spectral method for generating correlated
Gaussian noise is that it does not require computing and storing the Cholesky
factorization of the autocovariance matrix. This makes the generation of long
(millions of points) sequences or 2-D or 3-D random fields computationally
tractable.

Chapter 9

Kalman Filtering

Introduction

Data Assimilation is the problem of merging model predictions with measure-
ments of a system to produce an optimal estimate of the current state of the sys-
tem and/or predictions of the future state of the system. For example, weather
forecasters run massive computational models that predict winds, temperature,
and other physical conditions. As time progresses, it is important to incorpo-
rate available weather observations into the mathematical model. Since these
weather observations are noisy, the problem of incorporating the observations
into the model is inherently statistical in nature.

Data Assimilation is a important topic in many areas of science, including
atmospheric physics, oceanography, and hydrology. In the next few lectures,
we’ll introduce Kalman filtering, which is one of the simplest approaches to
data assimilation. The Kalman filter was introduced in a 1960 paper by R. E.
Kalman [8].

The Model Of The System

Consider a discrete time dynamical system governed by the equation

xk = Axk−1 +Buk−1 + wk−1. (9.1)

Here, xk, uk−1, and wk−1 are vectors and the subscripts refer to the time steps
rather than indexing elements of the vectors. The state of the system at time
k is given by the vector xk. Deterministic inputs to the system at time k − 1
are given by uk−1. Random noise affecting the system at time k − 1 is given
by wk−1. We’ll assume that wk−1 has a multivariate normal distribution with
mean 0 and covariance matrix Q.

We’ll obtain a vector of measurements zk at time k, where zk is given by

zk = Hxk + vk. (9.2)

171

CHAPTER 9. KALMAN FILTERING 172

Here vk represents random noise in the observation zk. We’ll assume that vk is
normally distributed with mean 0 and covariance matrix R.

The matrices A, B, H, Q, and R are all assumed to be known, although the
Kalman filter can be extended to simultaneously estimate these matrices along
with xk. For now, our goal is to estimate xk and predict xk+1, xk+2, . . ., as
accurately as possible given z1, z2, . . ., zk.

The estimate that we will obtain will come in the form of a multivariate
normal distribution with a specified mean x̂k and covariance matrix P̂k. We
will want to measure the “tightness” of this multivariate normal distribution.
A convenient measure of the tightness of an MVN distribution with covariance
matrix C is

trace(C) = C1,1 + C2,2 + . . .+ Cn,n. (9.3)

trace(C) = V ar(X1) + V ar(X2) + . . .+ V ar(Xn). (9.4)

Example 9.5

For example, xk might be a six element vector containing the po-
sition (3 coordinates) and velocity (3 coordinates) of an aircraft at
time k. The vector uk−1 might represent control inputs (thrust, el-
evator, rudder, etc.) to the aircraft at time k − 1, and wk−1 might
represent the effects of turbulence on the aircraft. We may be using
a very simple radar to observe the aircraft, so that we get mea-
surements of the position, z, but not the velocity of the aircraft at
each moment in time. These measurements of the aircraft’s position
might also be noisy.

In many cases, the system that we’re interested in is described by a system
of differential equations in continuous time:

x′(t) = Ax(t) +Bu(t). (9.5)

We can discretize this system of equations using time steps of length ∆t, to get

x(t+ ∆t) = x(t) + ∆tx′(t). (9.6)

x(t+ ∆t) = x(t) + ∆t(Ax(t) +Bu(t)). (9.7)

Letting xk = x(t+ ∆t) and xk−1 = x(t), we get

xk = (I + ∆tA)xk−1 + ∆tBuk−1. (9.8)

In many practical applications of Kalman filtering the mathematical model
of the system consists of an even more complicated system of partial differential
equations. Such systems are commonly discretized using finite difference or
finite element methods. Rather than diving into the details of the numerical
analysis used in discretizing PDE’s, we will simply assume that our problem has
been cast in the form of (9.1).

CHAPTER 9. KALMAN FILTERING 173

The Kalman Filter

We have two sources of information that can help us in estimating the state of
the system at time k. First, we can use the equations that describe the dynamics
of the system. Substituting wk−1 = 0 into (9.1), we might reasonably estimate

x̂k = Axk−1 +Buk−1 (9.9)

A second useful source of information is our observation zk. We might pick x̂k
so as to minimize ‖zk −Hxk‖. There’s an obvious trade-off between these two
methods of estimating xk. The Kalman filter produces a weighted combina-
tion of these two estimates that is optimal in the sense that it minimizes the
uncertainty of the resulting estimate.

We’ll begin the estimation process with an initial guess for the state of
the system at time 0. Since we want to keep track of the uncertainty in our
estimates, we’ll have to specify the uncertainty in our initial guess. We describe
this by using a multivariate normal distribution

x0 ∼ N(x̂0, P̂0). (9.10)

In the prediction step, we are given an estimate x̂k−1 of the state of the
system at time k − 1, with associated covariance matrix P̂k−1. We substitute
the mean value of wk−1 = 0 into (9.1) to obtain the estimate

x̂−k = Ax̂k−1 +Buk−1. (9.11)

The minus superscript is used to distinguish this estimate from the final estimate
that we get after including the observation zk. The covariance of our new
estimate is

P̂−k = Cov(x̂−k). (9.12)

P̂−k = Cov(Ax̂k−1 +Buk−1 + wk−1). (9.13)

The Buk−1 term is not random, so its covariance is zero. The covariance of
wk−1 is Q. The covariance of Ax̂k−1 is A Cov(x̂k−1)AT . Thus

P̂−k = ACov(x̂k−1)AT +Q. (9.14)

P̂−k = AP̂k−1A
T +Q. (9.15)

We could simply repeat this process for x1, x2, If no observations of the
system are available, that would be an appropriate way to estimate the system
state.

In the update step, we modify the prediction estimate to include the obser-
vation.

x̂k = x̂−k +Kk(zk −Hx̂−k) (9.16)

x̂k = (I −KkH)x̂−k +Kkzk. (9.17)

Here the factor Kk is called the Kalman gain. It adjusts the relative influence of
zk and x̂−k . In many applications of Kalman filtering the factor K is simply set

CHAPTER 9. KALMAN FILTERING 174

once at the time a system is designed and it is not dynamically adjusted during
the operation of the filter. In other applications the Kalman gain is dynamically
adjusted to take into account the latest information on the covariance of xk−1.

No matter how Kk is determined, we can produce an updated covariance
matrix by applying the rule for the covariance of a matrix times an MVN vector.
The new covariance is

P̂k = (I −KkH)P̂−1
k (I −KkH)T +KkRK

T
k . (9.18)

We will next show that

Kk = P̂−k H
T (HP̂−k H

T +R)−1 (9.19)

is optimal in the sense that it minimizes the trace of P̂k.
The covariance of our updated estimate is

P̂k = (I −KkH)P̂−k (I −KkH)T +KkCov(zk)KT
k . (9.20)

Since Cov(zk) = R,

P̂k = (I −KkH)P̂−k (I −KkH)T +KkRK
T
k . (9.21)

This simplifies to

P̂k = P̂−k −KkHP̂
−
k − P̂

−
k H

TKT
k +Kk(HP̂−k H

T)KT
k +KkRK

T
k . (9.22)

P̂k = P̂−k −KkHP̂
−
k − P̂

−
k H

TKT
k +Kk(HP̂−k H

T +R)KT
k . (9.23)

We want to minimize the trace of P̂k. Using vector calculus, it can be shown
that

∂trace(P̂k)

∂Kk
= −2(HP̂−k)T + 2Kk(HP̂−k H

T +R). (9.24)

Setting the derivative equal to 0,

−2(HP̂−k)T + 2Kk(HP̂−k H
T +R) = 0. (9.25)

Kk = (HP̂−k)T (HP̂−k H
T +R)−1. (9.26)

Kk = P̂−k H
T (HP̂−k H

T +R)−1. (9.27)

Using this optimal Kalman gain, P̂k simplifies further.

P̂k = P̂−k −KkHP̂
−
k − P̂

−
k H

TKT
k +Kk(HP̂−k H

T +R)KT
k . (9.28)

P̂k = P̂−k − P̂
−
KH

T (HP̂−k H
T +R)−1HP̂−k −

P̂−k H
T (P̂−KH

T (HP̂−k H
T +R)−1))T+

P̂−KH
T (HP̂−k H

T +R)−1(HP̂−k H
T +R)(P̂−k H

T (HP̂−k H
T +R)−1)T (9.29)

CHAPTER 9. KALMAN FILTERING 175

P̂k = P̂−k − P̂
−
k H

T (HP̂−k H
T +R)−1HP̂−k (9.30)

P̂k = (I −KkH)P̂−k . (9.31)

Again, remember that this formula is only correct when we use the optimal
Kalman gain given by (9.19).

The algorithm can be summarized as follows. For k = 1, 2, . . .,

1. Let x̂−k = Ax̂k−1 +Buk−1.

2. Let P̂−k = AP̂k−1A
T +Q.

3. Let Kk = P̂−k H
T (HP̂−k H

T +R)−1.

4. Let x̂k = x̂−k +Kk(zk −Hx̂−k).

5. Let P̂k = (I −KkH)P̂−k .

In practice, we may not have an observation at every time step. In that case,
we can use predictions at each time step and compute updates steps whenever
observations become available.

Example 9.6

In this example, we’ll consider a system governed by the second order
differential equation

y′′(t) + 0.01y′(t) + y(t) = sin(2t) (9.32)

with the initial conditions y(0) = 0.1, y′(0) = 0.5.

We must first use a standard trick to convert this second order ordi-
nary differential equation into a system of two first order differential
equations. Let

x1(t) = y(t) (9.33)

and
x2(t) = y′(t). (9.34)

The relation between x1(t) and x2(t) is

x′1(t) = x2(t). (9.35)

Also, (9.32) becomes

x′2(t) = −x1(t)− 0.01x2(t) + sin(2t). (9.36)

This system of two first order equations can be written as

x′(t) = Ax(t) +Bu(t) (9.37)

where

A =

[
0 1
−1 −0.01

]
, (9.38)

CHAPTER 9. KALMAN FILTERING 176

B =

[
1 0
0 1

]
, (9.39)

and

u(t) =

[
0

sin(2t)

]
. (9.40)

This system of differential equations will be discretized using (9.8)
with time steps of ∆t = 0.01. At each time step, the state vector
will be randomly perturbed with N(0, Q), noise, where

Q =

[
0.0005 0.0

0.0 0.0005

]
. (9.41)

We will observe x1(t) once per second (every 100 time steps.) Thus

H =
[

1 0
]
. (9.42)

Our observations will have a variance of 0.0005.

For the initial conditions we will begin with the estimate

x̂0 =

[
0
0

]
(9.43)

and covariance

P̂0 =

[
0.5 0.0
0.0 0.5

]
. (9.44)

Figure 9.1 shows the true state of the system. Figure 9.2 shows the
estimate of the system state using only prediction steps. The dotted
lines in this plot are one standard-deviation error bars. The initial
uncertainty in x(t) is due to uncertainty in the initial conditions.
Later, this uncertainty increases due to the effect of noise on the
state of the system.

Figure 9.3 shows the Kalman filter estimates including observations
of x1(t) once per second. Although the initial uncertainty is quite
high, the Kalman filter quickly “learns” the actual state of the sys-
tem and then tracks it quite closely. Each circle on the x1(t) plot
represents an observation of the system. Notice that when an obser-
vation is obtained the Kalman estimate “jumps” to incorporate the
new observation. Also note that although we only observe x1(t), the
Kalman filter also manages to track x2(t). This happens because the
system of differential equations connects x1(t) and x2(t). Figure 9.4
shows the true state of the system and the Kalman filter estimate
on the same plot.

Figure 9.5 shows the differences between the system state and the
simple prediction. Figure 9.6 shows the difference between the sys-
tem state and the Kalman prediction. Notice that the Kalman filter
produced much tighter estimates of both x1(t) and x2(t) using only
a few observations of x1(t).

CHAPTER 9. KALMAN FILTERING 177

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

x 1(t
)

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

x 2(t
)

Figure 9.1: Plot of the system state x(t).

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

xp
re

d 1(t
)

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

xp
re

d 2(t
)

Figure 9.2: Estimate of x(t) using prediction steps only.

CHAPTER 9. KALMAN FILTERING 178

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

xp
re

dk
1(t

)

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

xp
re

dk
2(t

)

Figure 9.3: Kalman estimates of the x1(t) and x2(t).

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

x 1(t
)

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

x 2(t
)

xtrue
xpredk

Figure 9.4: Kalman estimate versus the true values of x1(t) and x2(t).

CHAPTER 9. KALMAN FILTERING 179

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

t

xp
re

d 1(t
)−

x 1(t
)

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

t

xp
re

d 2(t
)−

x 2(t
)

Figure 9.5: Difference between the system state and prediction estimate.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

t

xp
re

dk
1(t

)−
x 1(t

)

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

t

xp
re

dk
2(t

)−
x 2(t

)

Figure 9.6: Difference between the system state and Kalman estimate.

CHAPTER 9. KALMAN FILTERING 180

The Extended Kalman Filter

The Extended Kalman Filter (EKF) extends the Kalman filtering concept to
problems with nonlinear dynamics. Our new equation for the time evolution of
the system state will be of the form

xk = f(xk−1, uk−1, wk−1) (9.45)

where wk−1 is a random perturbation of the system. This time, we’ll assume
that wk−1 has a multivariate normal distribution with mean 0 and covariance
matrix Qk−1. That is, the covariance is allowed to be time dependent.

Our new measurement model will be

zk = h(xk, vk) (9.46)

where vk is a multivariate normal N(0, Rk) noise vector.
The prediction step is a straight forward generalization of what we have

previously done in the Kalman filter.

x̂−k = f(x̂k−1, uk−1, 0). (9.47)

We’ll also introduce a new notation for the predicted observation

ẑ−k = h(x̂−k , 0). (9.48)

In general, for a nonlinear function f , x̂−k will not have a multivariate normal
distribution. However, we can reasonably hope that f(x, u, w) will be approxi-
mately linear for relatively small changes in x and w, so that x̂−k will be at least
approximately normally distributed.

We linearize f(x, u, w) around (x̂k−1, uk−1, 0) as

f(x, u, w) = f(x̂k−1, uk−1, 0) +Ak−1(x− x̂k−1) +Wk−1(w − 0) (9.49)

where A and W are matrices of partial derivatives of f with respect to x and w.
Note that since uk−1 is assumed to be known exactly, we don’t need to linearize
in the u variable. The entries in Ak−1 and Wk−1 are given by

Ai,j,k−1 =
∂fi(x̂k−1, uk−1, 0)

∂xj
. (9.50)

Wi,j,k−1 =
∂fi(x̂k−1, uk−1, 0)

∂wj
. (9.51)

Using this linearization, we end up with an approximate covariance matrix for
x̂−k ,

P̂−k = Ak−1P̂k−1A
T
k−1 +Wk−1Qk−1W

T
k−1. (9.52)

Similarly, we can linearize h(). Let

Hi,j,k =
∂hi(x̂

−
k , 0)

∂xj
. (9.53)

CHAPTER 9. KALMAN FILTERING 181

Vi,j,k =
∂hi(x̂

−
k , 0)

∂vj
. (9.54)

Now, let
ê−xk = xk − x̂−k (9.55)

and
ê−zk = zk − ẑ−k . (9.56)

We don’t actually know xk, but we do expect xk− x̂−k to be relatively small.
Thus we can use our linearization of f() to derive an approximation for ê−xk .

ê−xk = f(xk−1, uk−1, wk−1)− f(x̂k−1, uk−1, 0). (9.57)

By the linearization,

ê−xk ≈ Ak−1(xk−1 − x̂k−1) + εk (9.58)

where εk accounts for the effect of the random wk−1. The distribution of εk is
N(0,Wk−1Qk−1W

T
k−1). Similarly,

ê−zk = h(xk, vk)− h(x̂−k , 0). (9.59)

By the linearization this is approximately

ê−zk ≈ Hê
−
xk

+ ηk (9.60)

where ηk has an N(0, VkRkV
T
k) distribution.

Ideally, we could update x̂−k to get xk by

xk = x̂−k + ê−xk . (9.61)

Of course, we don’t know ê−xk , but we can estimate it. Let

êxk = Kk(zk − ẑ−k) (9.62)

where Kk is a Kalman gain factor to be determined. Then let

x̂k = x̂−k + êxk . (9.63)

By a derivation similar to our earlier derivation of the optimal Kalman gain for
the linear Kalman filter, it can be shown that the optimal Kalman gain for the
EKF is

Kk = P̂−k H
T
k (HkP̂

−
k H

T
k + VkRkV

T
k)−1. (9.64)

Using this optimal Kalman gain, the covariance matrix for the updated estimate
x̂k is

P̂k = (I −KkHk)P̂−k . (9.65)

CHAPTER 9. KALMAN FILTERING 182

The EKF algorithm can be summarized as follows. For k = 1, 2, . . .,

1. Let x̂−k = f(x̂k−1, uk−1, 0).

2. Let P̂−k = Ak−1P̂k−1A
T
k−1 +Wk−1Qk−1W

T
k−1.

3. Let Kk = P̂−k H
T
k (HkP̂

−
k H

T
k + VkRkV

T
k)−1.

4. Let x̂k = x̂−k +Kk(zk − h(x̂−k , 0))).

5. Let P̂k = (I −KkHk)P̂−k .

The Ensemble Kalman Filter

A fundamental problem with the EKF is that we must compute the partial
derivatives of f() so that they’re available for computing the covariance matrix
in the prediction step. An alternative approach involves using Monte Carlo
simulation. In the Ensemble Kalman Filter (EnKF), we generate a collection
of state variables according to the MVN distribution and time k = 0, and then
follow the evolution of this ensemble through time.

In the following, we’ll assume that our system state evolves according to

xk = f(xk−1, uk−1, wk−1) (9.66)

and that our observation model is

zk = Hxk + vk. (9.67)

Instead of using partial derivatives of f() to estimate x̂−k and P̂−k , we’ll use
Monte Carlo simulation. Suppose that we’re given a collection (or ensemble) of
random state vectors at time k−1, x̂ik−1, i = 1, 2, . . . ,m. For each random state
vector, we can generate a random N(0, Qk−1) vector wik−1, and then update the
vector with

x̂i,−k = f(x̂ik−1, uk−1, w
i
k−1), i = 1, 2, . . . ,m. (9.68)

Now, we can estimate x̂−k and the covariance matrix P̂−k from the vectors x̂i,−k .
Next, we need to derive an update algorithm. We could simply use the

observation zk in the update formula from the Kalman filter for each state
vector in the ensemble. However, this tends to drive all of the members of the
ensemble towards the same state. Rather, at time k, we obtain a new observation
zk, which is assumed to include MVN N(0, R) noise. By adding N(0, R) noise
to zk, we obtain an ensemble of simulated observations, zik, i = 1, 2, . . . ,m.

We update our ensemble of solutions with

x̂ik = x̂i,−k + P̂−k H
T (HP̂−k H

T +R)−1(zik −Hx̂
i,−
k). (9.69)

This is simply the Kalman filter update, but using the estimated covariance
matrix P̂−k , and the Monte Carlo simulated observations zik.

CHAPTER 9. KALMAN FILTERING 183

Finally, we can use the ensemble of states x̂ik, i = 1, 2, . . . ,m to estimate the

mean state, x̂k, and the covariance P̂k.
The algorithm can be summarized as follows. Begin by constructing an

ensemble of m state vectors with mean x̂0 and covariance P̂0. For k = 1, 2, . . .,

1. Let x̂i,−k = f(x̂ik−1, uk−1, w
i
k−1), i = 1, 2, . . . ,m.

2. Estimate P̂−k and x̂−k from the x̂i,−k .

3. Generate an ensemble of observations zik = zk + vik, for i = 1, 2, . . . ,m.

4. Let x̂ik = x̂i,−k + CHT (HCHT +R)−1(zik −Hx̂
i,−
k) for i = 1, 2, . . . ,m.

5. Estimate x̂k and P̂k from the x̂ik.

Example 9.7

Continuing our previous example, we repeated the computations
using the ensemble Kalman figure with m = 1, 000 state vectors
in the ensemble. Figure 9.7 shows the resulting solution, which is
virtually identical to the solution obtained using the Kalman filter
shown in Figure 9.4.

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

x 1(t
)

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

t

x 2(t
)

xtrue
xpredk

Figure 9.7: Ensemble Kalman estimate versus the true values of x1(t) and x2(t).

Chapter 10

ARMA Modeling

Some notation

In the following, we will make use of forward and backward shifts in time. The
B operator is defined by

Bzn = zn−1 (10.1)

while the F operator is
Fzn = zn+1. (10.2)

Note that B and F are not numbers but rather operators that act on a time
series zn. We can extend this notation to include powers of B and F

Bkzn = zn−k (10.3)

and
F kzn = zn+k. (10.4)

Also, we can build polynomials from the B and F operators. For example,

(1−B + 0.5B2)zn = zn − zn−1 + 0.5zn−2. (10.5)

Gaussian White Noise

We will frequently make use of a Gaussian white noise. The white noise pro-
cess has An normally distributed with mean 0, variance σ2

A, and autocovariance
γk = 0, k = 1, 2, . . . and autocorrelation ρk = 0, k = 0, 1, White noise can
easily be generated in MATLAB using the randn command.

Using our formula for the spectrum of a stationary process from its autoco-
variance, it’s easy to show that the white noise process should have I(f) = 2σ2

A,
0 ≤ f ≤ 1/2. In the limit as n goes to infinity, the spectrum is constant for all
frequencies. However, for any actual realization of the white noise process, the
sample spectrum will contain considerable noise.

184

CHAPTER 10. ARMA MODELING 185

The ARMA process

An autoregressive moving average (ARMA) process is obtained by apply-
ing a recursive filter to Gaussian white noise. In terms of the elements of the
zn and an sequences,

zn = φ1zn−1 + φ2zn−2 + . . .+ φpzn−p + an − θ1an−1 − . . .− θqan−q. (10.6)

The terms φ1zn−1 through φpzn−p are the autoregressive portion of the filter.
The terms an through θqan−q are a moving average of the white noise input pro-
cess. Notice that this has the form of the recursive IIR filter that we previously
considered, except that the first coefficients have been normalized to 1.

In terms of our operator notation,

φ(B)zn = θ(B)an (10.7)

where
φ(B) = 1− φ1B − . . .− φpBp (10.8)

and
θ(B) = 1− θ1B − . . .− θqBq. (10.9)

Note the unusual notational convention of minus signs in front of each coefficient.
Let

ψ(B) =
θ(B)

φ(B)
. (10.10)

ψ(B) =
1− θ1B − θ2B

2 − . . .− θqBq

1− φ1B − φ2B2 − . . .− φpBp
. (10.11)

Then we can write
zn = ψ(B)an. (10.12)

Earlier, when we found the z-transform transfer function for a filter, we wrote
the transfer functions in powers of z−1. The z-transform transfer function for
our filter would be

Φ(z) =
1− θ1z

−1 − θ2z
−2 − . . .− θqz−q

1− φ1z−1 − φ2z−2 − . . .− φpz−p
(10.13)

It’s apparent that in our new notation, Ψ(B) = θ(B)/φ(B) is equivalent to Φ(z)
in the z-transform notation, with B = 1/z.

The power spectrum can be obtained by substituting B = e−2πif in the
transfer function

I(f) = 2σ2
a

∣∣∣∣ θ(e−2πif)

φ(e−2πif)

∣∣∣∣2 . (10.14)

Note that the minus sign in the exponent of B = e−2πif is again because of the
difference in notation between the Z transform and the B notation- B = 1/z.

CHAPTER 10. ARMA MODELING 186

We can expand ψ(B) as

ψ(B) = 1 + ψ1B + ψ2B
2 + . . . (10.15)

where the coefficients ψk can be obtained by Taylor series expansion. This
allows us to write zn in terms of the inputs at time n and previous times.

zn = an + ψ1an−1 + ψ2an−2 + (10.16)

Note that the constant coefficient is always 1 and that this time (only) we’ve
used positive signs in front of the coefficients. From time to time it will be
helpful to use the notation ψ0 = 1, so that we don’t have to treat the first term
in this power series as a special case.

Example 10.8

Consider the filter in which

φ(B) = 1− 0.5B (10.17)

and
θ(B) = 1. (10.18)

In terms of the filter equations,

zn − 0.5zn−1 = an (10.19)

or
zn = an + 0.5zn−1. (10.20)

We can recursively apply the equation to write this as

zn = an + 0.5(an−1 + 0.5zn−2). (10.21)

zn = an + 0.5(an−1 + 0.5(an−2 + 0.5zn−3). (10.22)

We end up with

zn = an + 0.5an−1 + 0.25an−2 + 0.125an−3 + (10.23)

Using the operator notation, it is much simpler to get the same result
by doing a Taylor series expansion.

Ψ(B) =
1

1− 0.5B
= 1 + 0.5B + 0.25B2 + 0.125B3 + (10.24)

An alternative is to let

π(B) =
1

ψ(B)
=
φ(B)

θ(B)
. (10.25)

CHAPTER 10. ARMA MODELING 187

In this case,
an = π(B)zn. (10.26)

Clearly,

π(B) =
1

ψ(B)
. (10.27)

We can expand π(B) in a Taylor’s series as

π(B) = 1− π1B − π2B
2 − . . . (10.28)

Example 10.9

Consider the ARMA process

Zn − 0.5Zn−1 = An − 0.3An−1 + 0.2An−2. (10.29)

Here φ(B) = 1 − 0.5B and θ(B) = 1 − 0.3B + 0.2B2. Using Maple
to compute the Taylor’s series, we obtain

ψ(B) =
θ(B)

φ(B)
= 1 + 0.2B + 0.3B2 + 0.15B3 + . . . (10.30)

Thus ψ1 = 0.2, ψ2 = 0.3, and ψ3 = 0.15. Similarly,

π(B) =
φ(B)

θ(B)
= 1− 0.2B − 0.26B2 − 0.038B3 − (10.31)

Thus π1 = 0.2, π2 = 0.26, and π3 = 0.038.

Stationarity and Invertibility

Unfortunately, it is easy to write down an ARMA process which is not covariance
stationary. For example, let

ψ(B) =
1

1−B
= 1 +B +B2 + . . . (10.32)

Then

Zn =

n∑
k=−∞

Ak (10.33)

and

V ar(Zn) =

n∑
k=−∞

V ar(Ak) =∞. (10.34)

CHAPTER 10. ARMA MODELING 188

It can be shown that if
∞∑
j=1

|ψj | <∞ (10.35)

then the ARMA process is stationary. This happens if the series ψ(B) converges
for every B with |B| ≤ 1. Since ψ(B) is a rational function, it can also be shown
that the series converges for every B with |B| ≤ 1 if the complex zeros of φ(B)
lie outside the unit circle.

Recall that when we worked with the z transform of a digital filter, the
stability condition was that the poles of the transfer function must lie within the
unit circle. Why is the stability condition for an ARMA process that the zeros
of φ(B) must lie outside the unit circle? The problem here is one of notation.
In the digital filtering case, the transfer function was a rational function of 1/z.
Here in the ARMA case, the transfer function is a rational function of B. Thus
B and 1/z are effectively playing the same role. When a pole lies inside the
unit circle in the z plane, the corresponding pole lies outside of the unit circle
in the B plane, where B = 1/z.

If we have a stationary ARMA process, then since Zn = ψ(B)An, and the
expected values of An are all 0, the expected value of Zn is also 0.

A related issue is that of invertibility. Recall that we can write zn in terms
of an and previous values of zn−k. That is,

π(B)zn = an (10.36)

or
zn = an + π1zn−1 + π2zn−2 + ... (10.37)

This inverted form of the process provides a very useful way of generating a
random sequence according to our ARMA process. However, this infinite sum
must be truncated in practice. If the πj coefficients do not decay to zero, then
it isn’t possible to approximate this infinite sum by truncating it.

We say that the process is invertible if

∞∑
j=1

|πj | <∞ (10.38)

Since π(B) is a rational function, the series is invertible if the complex zeros of
θ(B) lie outside of the unit circle.

Example 10.10

Recall the ARMA process of example 5. In this case, since φ(B) =
1− 0.5B, the only zero of φ(B) is at B = 2, which is outside of the
unit circle, so the process is stationary. The zeros of θ(B) are at
B = 0.75± 2.1i, so the process is also invertible.

CHAPTER 10. ARMA MODELING 189

Finding the autocovariance and autocorrelation
of an ARMA process

The ψ() form of the ARMA model can be used to find V ar(Zn). Since

Zn =

∞∑
k=0

ψkAn−k (10.39)

and the Ai are independent with mean 0 and variance σ2
A, we can compute

V ar(Zn) =

∞∑
k=0

ψ2
kV ar(An−k) = σ2

A

∞∑
k=0

ψ2
k. (10.40)

If we know the value of this infinite sum, then we’re all set. If we don’t know the
infinite sum, but the ψk coefficients decay quickly to 0, then we can truncate
the infinite series and get a good approximation to V ar(Zn).

Similarly, we can use the ψ() form of the ARMA process to find covariances
between Zn and An−k for k = 0,

Cov(Zn, An−k) = Cov

(∞∑
k=0

ψkAn−k, An−k

)
. (10.41)

Since the Ai are independent of each other,

Cov(Zn, An−k) = Cov(ψkAn−k, An−k) = ψkσ
2
A. (10.42)

In order to find the autocovariance of an ARMA process, we start with the
model in the recursive filter form.

Zn = φ1Zn−1 +φ2Zn−2 + . . .+φpZn−p +An− θ1An−1− . . .− θqAn−q. (10.43)

Next, we multiply both sides by Zn−k and take expected values. Since E[Zn] =
E[zn−k] = E[A] = 0, Cov(Zn, Zn−k) = E[ZnZn−k]. Thus

Cov(Zn, Zn−k) = φ1Cov(Zn−1, Zn−k) + . . .+ φpCov(Zn−p, Zn−k)

+Cov(Zn−k, An)− θ1Cov(Zn−k, An−1)− . . .− θqCov(Zn−k, An−q)

So,

γk = φ1γk−1 +. . .+φpγk−p+γZA(k)−θ1γZA(k−1)−. . .−θqγZA(k−q) (10.44)

where
γZA(k − j) = Cov(Zn−k, An−j) (10.45)

Since Zn−k is independent of the white noise at times after n− k, these covari-
ances are 0. Also, since Zn−k =

∑∞
j=0 ψjAn−k−j , the remaining covariances are

given by Cov(Zn−k, An−k−j) = ψjσ
2
A. Thus

γZA(j) =

{
0 j > 0
ψ−jσ

2
A j ≤ 0

(10.46)

CHAPTER 10. ARMA MODELING 190

So, we can express the autocovariance at lag k as

γk = φ1γk−1 + . . .+ φpγk−p + σ2
A(−θkψ0 − θk+1ψ1 − . . .− θqψq−k) (10.47)

When k ≥ q + 1, this simplifies to

γk = φ1γk−1 + . . .+ φpγk−p. (10.48)

Another important case is k = 0. The variance γ0 is given by

γ0 = φ1γ1 + . . .+ φpγp + σ2
A(1− θ1ψ1 − . . .− θqψq) (10.49)

These recurrence relations can be solved to obtain the autocovariance and au-
tocorrelation.

As an example, consider the second order autoregressive process

Zn = φ1Zn−1 + φ2Zn−2 +An (10.50)

It can be show that this process is stationary if φ1 + φ2 < 1, φ2 − φ1 < 1, and
−1 < φ2 < 1. Because θ(B) = 1 this process is always invertible.

To compute the autocovariance, we multiply the above formula by Zn−k and
take expected values.

Cov(Zn, Zn−k) = φ1Cov(Zn−1, Zn−k) + φ2Cov(Zn−2, Zn−k) + Cov(An, Zn−k)
(10.51)

When k = 0, we get

γ0 = φ1γ1 + φ2γ2 + Cov(An, Zn) (10.52)

But Zn = φ1Zn−1 +φ2Zn−2 +An, and An is independent of Zn−1 and Zn−2, so

γ0 = φ1γ1 + φ2γ2 + Cov(An, An) (10.53)

or
γ0 = φ1γ1 + φ2γ2 + σ2

A (10.54)

When k > 0, Cov(An, Zn−k) = 0, and we get

γk = φ1γk−1 + φ2γk−2 (10.55)

In terms of the autocorrelation function, we have

ρ0 = 1 (10.56)

and
ρ1 = φ1ρ0 + φ2ρ1. (10.57)

Solving this equation for ρ1, we get

ρ1 =
φ1

1− φ2
(10.58)

For k > 2, we get
ρk = φ1ρk−1 + φ2ρk−2 k > 2 (10.59)

Example 10.11

CHAPTER 10. ARMA MODELING 191

0 200 400 600 800 1000
−10

0

10

n

z n

0 5 10 15 20
0

0.5

1

n

ρ n

0 5 10 15 20
0

0.5

1

n

r n

Figure 10.1: An AR(2) process with φ1 = 0.5, φ2 = 0.3.

Consider an AR(2) process with φ1 = 0.5 and φ2 = 0.3. We gen-
erated a random sequence according to this process. Figure 10.1a
shows the first 1000 points of this random process. Figure 10.1b
shows the theoretical autocorrelation. Figure 10.1 shows the auto-
correlation as estimated from the 20,000 point sequence.

Next, consider the ARMA(1,1) process

Zn − φ1Zn−1 = An − θ1An−1 (10.60)

Here φ(B) = 1 − φ1B and θ(B) = 1 − θ1B. We need to make sure that the
roots of φ(B) and θ(B) are outside of the unit circle. This process is stationary
if −1 < φ1 < 1 and invertible when −1 < θ1 < 1. We can also compute
ψ(B) = 1 + (φ1 − θ1)B + The recurrence relations for the autocovariance
give

γ0 = φ1γ1 + σ2
A(1− θ1ψ1) (10.61)

γ1 = φ1γ0 − θ1σ
2
A (10.62)

γk = φ1γk−1 k ≥ 2 (10.63)

These equations can be solved for the autocovariance. We can then convert the
solution to an autocorrelation function. The result is

ρ1 =
(1− φ1θ1)(φ1 − θ1)

1 + θ2
1 − 2φ1θ1

(10.64)

CHAPTER 10. ARMA MODELING 192

Name p q ρ1 ρ2 ρk, k ≥ 3
AR(1) 1 0 ρ1 = φ1 ρ2 = φ2

1 ρk = φk1
AR(2) 2 0 ρ1 = φ1

1−φ2
ρ2 = φ1ρ1 + φ2 ρk = φ1ρk−1 + φ2ρk−2

ARMA(1,1) 1 1 ρ1 = (1−φ1θ1)(φ1−θ1)
1+θ21−2φ1θ1

ρ2 = φ1ρ1 ρk = φ1ρk−1

MA(1) 0 1 ρ1 = −θ1
1+θ21

ρ2 = 0 ρk = 0

MA(2) 0 2 ρ1 = −θ1(1−θ2)
1+θ21+θ22

ρ2 = −θ2
1+θ21+θ22

ρk = 0

Table 10.1: Autocorrelations for ARMA(p,q) processes. Based on formulas from
Chapter 3 of [5].

Name p q Stationarity Invertibility
AR(1) 1 0 |φ1| < 1 none
AR(2) 2 0 |φ2| < 1, φ1 + φ2 < 1, φ2 − φ1 < 1 none
ARMA(1,1) 1 1 |φ1| < 1 |θ1| < 1
MA(1) 0 1 none |θ1| < 1
MA(2) 0 2 none |θ2| < 1, θ1 + θ2 < 1, θ2 − θ1 < 1

Table 10.2: Stationarity and Invertibility Conditions ARMA(p,q) processes.
Based on formulas from Chapter 3 of Box, Jenkins, and Reinsel.

ρk = φ1ρk−1 k >= 2 (10.65)

These computations can all be performed for arbitrary ARMA(p,q) pro-
cesses. However, in practice, the most important processes have p and q quite
small, and general solutions for these particular ARMA(p,q) processes have
been developed. Box, Jenkins, and Reinsel contains specific solutions for the
autocorrelations of a variety of ARMA(p,q) processes with small values of p and
q [5]. Table 10.1 summarizes these formulas. Table 10.2 gives the stationarity
and invertibility conditions for these ARMA models.

The Partial Autocorrelation Function

Suppose that our ARMA process is purely autoregressive of order k. That is,

Zn = An + φk1Zn−1 + φk2Zn−2 + . . .+ φkkZn−k (10.66)

In this case, the equations for the autocorrelations ρj , j = 1, 2, . . . k are
particularly simple. They take the form

ρj = φk1ρj−1 + φk2ρj−2 + . . .+ φkkρj−k, j = 1, 2, . . . k (10.67)

Here we have used the notation φkj for the φj coefficient in an autoregressive
model of order k.

CHAPTER 10. ARMA MODELING 193

These Yule-Walker equations can be written in matrix form as
1 ρ1 ρ2 . . . ρk−1

ρ1 1 ρ1 . . . ρk−2

.
ρk−1 ρk−2 . . . ρ1 1

φk1

φk2

. . .
φkk

 =

ρ1

ρ2

. . .
ρk

 (10.68)

or
Pkφk = ρk. (10.69)

In general, there will be nonzero autocorrelations at lags greater than k, and
this system of equations doesn’t help us determining those autocorrelations.

Example 10.12

Recall the AR(2) process

Zn = An + φ1Zn−1 + φ2Zn−2 (10.70)

The Yule-Walker equations are[
1 ρ1

ρ1 1

] [
φ1

φ2

]
=

[
ρ1

ρ2

]
(10.71)

Solving these equations, we obtain

ρ1 =
φ1

1− φ2
(10.72)

and

ρ2 =
φ2

1

1− φ2
+ φ2 (10.73)

which matches our earlier calculation.

The Yule-Walker equations can be used in two important ways. If we know
the coefficients φk1 through φkk, then we can use the equations to compute the
autocorrelations ρ1 through ρk. Conversely, if we know (or can estimate) the au-
tocorrelations, we can solve the equations to obtain estimates of the coefficients
φk1, . . ., φkk.

The partial autocorrelation function (PACF) associated with a se-

quence zn consists of the sequence φ̂11, φ̂22, φ̂33, . . . of partial autocorrelations
estimated from the sequence zn. This sequence can be obtained by estimating
the autocorrelations, inserting the autocorrelations into the Yule-Walker equa-
tions (10.68), and then solving the Yule-Walker equations for k = 1, k = 2,
. . ..

In practice, a recursive formula due to Durbin is more efficient. The Durbin
formula is

φ̂p+1,j = φ̂p,j − φ̂p+1,p+1φ̂p,p−j+1 (10.74)

CHAPTER 10. ARMA MODELING 194

φ̂p+1,p+1 =
rp+1 −

∑p
j=1 φ̂p,jrp+1−j

1−
∑p
j=1 φ̂p,jrj

(10.75)

where
φ̂1,1 = r1 (10.76)

The PACF is very useful in identifying an autoregressive process. If our
original process is autoregressive of order p, then for k > p, we should have
φ̂kk = 0. This provides a very useful test for whether or not a process is
autoregressive. Of course, we need to know when the φ̂kk are effectively zero.
It can be shown that the variance of φ̂kk is approximately 1/n when we have n
points from an AR(p) process and k ≥ p+ 1.

The PACF also turns out to be important in forecasting. It can be shown
that the best (least squares) predictor of zn using the k−1 previous values zn−1,
zn−2, . . ., zn−k+1 is

zn = φk−1,1zn−1 + φk−1,2zn−2 + . . .+ φk−1,k−1zn−k+1 (10.77)

ARMA Modeling in Practice

Now that we understand the theoretical behavior of ARMA processes, we will
consider how to take an actual observed time series, fit an ARMA model to the
data, and forecast future values of the time series.

The stages in our process for ARMA modeling a time series beginning with
observed values z1, z2, . . ., zn are:

1. Remove any nonzero mean from the time series.

2. Estimate the autocorrelation and PACF of the time series. Use these to
determine the autoregressive order p and the moving average order q.

3. Estimate the coefficients φ1, . . ., φp, θ1, . . ., θq.

4. Estimate a1, a2, . . ., an.

5. Use the fitted model to forecast zn+1, zn+2,

The first step in our process is removing any nonzero mean from the time
series z. This is a very straight forward computation- just compute the mean
of the time series, and subtract it from each element of the time series.

The next step in the process is determining the autoregressive order p and
the moving average order q. Table 1 (taken from BJR) summarizes the behavior
of ARMA(p,q) processes for p = 0, 1, 2 and q = 0, 1, 2. If the observed auto-
correlation and PACF match up with one of the lines in this table, then it’s
reasonable to fit a model of that type.

Example 10.13

CHAPTER 10. ARMA MODELING 195

Order ρk φkk
(1,0) exp decay only φ11 nonzero
(0,1) only ρ1 nonzero exp decay
(2,0) exp or damped sine wave only φ11, φ22 nonzero
(0,2) only ρ1,2 nonzero exp or damped sine wave
(1,1) exp decay exp decay

Table 10.3: Rules for selecting p and q.

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

lag k

r k

Figure 10.2: Autocorrelations for the batch data.

Recall the time series of yields from a batch chemical process that we
previously analyzed. Figure 10.2 shows the autocorrelations for this
data. The autocorrelations seem to follow an exponentially damped
sine wave, but they quickly hit a noise level beyond a lag of four or
five.

We can also estimate the PACF for this data. We get φ̂1,1 =

−0.3889, φ̂2,2 = 0.1797, φ̂3,3 = 0.0023, φ̂4,4 = −0.0443, In
this case, since n = 70, we’d expect the standard deviation of the
estimates to be about 1/

√
70 = 0.12 once we get out past a lag of p.

Thus it appears that only the first two coefficients φ̂1,1 and φ̂2,2 are
definitely nonzero.

The autocorrelation and PACF suggests an AR(2) model for this
data set.

CHAPTER 10. ARMA MODELING 196

ARMA(p,q) ρ1 ρ2

(1,0) ρ1 = φ1

(0,1) ρ1 = −θ1/(1 + θ2
1)

(2,0) ρ1 = φ1/(1− φ2) ρ2 = (φ2
1)/(1− φ2) + φ2

(0,2) ρ1 = −θ1(1− θ2)/(1 + θ2
1 + θ2

2) ρ2 = −θ2/(+θ
2
1 + θ2

2)
(1,1) ρ1 = (1− θ1φ1)(φ1 − θ1)/(1 + θ2

1 − 2φ1θ1) ρ2 = ρ1φ1

Table 10.4: Equations to be solved for φ and θ.

Once we’ve determined p and q, the next step is to estimate the actual
parameters φ1, . . ., φp, θ1, . . ., θq. One very simple approach can be used if we
have formulas for the autocorrelations in terms of the parameters. For example,
for an AR(2) process, we know that

ρ1 =
φ1

1− φ2
(10.78)

and

ρ2 =
φ2

1

1− φ2
+ φ2. (10.79)

These equations can be solved for φ1 and φ2 to get

φ1 =
ρ1(ρ2 − 1)

ρ2
1 − 1

(10.80)

and

φ2 =
ρ2

1 − ρ2

ρ2
1 − 1

. (10.81)

If we use our estimates r1 and r2, we can obtain estimates of φ1 and φ2.
A similar approach can be used to estimate the parameters of other low

order ARMA models. Table 2 summarizes the equations to be solved for the
(1,0), (0,1), (2,0), (0,2) and (1,1) cases.

A more sophisticated approach is to use maximum likelihood estimation to
obtain the parameters. Unfortunately, there aren’t any functions for this in the
MATLAB toolboxes available at NMT. However, this can be done with more
sophisticated statistical packages such as Minitab and R.

Example 10.14

Continuing with the batch process data, using (10.80) and (10.81),
we estimate that

φ1 = −0.3198 (10.82)

and
φ2 = 0.1797. (10.83)

CHAPTER 10. ARMA MODELING 197

Suppose that we are now at time n, we’ve found p and q, and fitted the
parameters φ1, . . ., φp, θ1, . . ., θq. Now we want to predict the observations
at times n + 1, n + 2, . . ., n + l. We will use the notation zn−k for the known
observations up to time n. As before, we will use Zn+k for unknown (random)
future values of the time series. We will use ẑn(l) for the predicted observation
at time n+ l based on observations through time n.

In making a forecast ẑn(l), we want to minimize the expected value of the
square of the error in the forecast.

minE[(Zn+l − ẑn(l))2] (10.84)

where this expected value is conditioned on all of the observations through time
n. It can be shown that picking ẑn(l) = E[Zn+l] minimizes the expected value
of the squared error. Using the ψ() function, we know that

Zn+l =

∞∑
j=0

ψjAn+l−j = An+l + ψ1An+l−1 + . . . (10.85)

This infinite sum contains some terms which correspond to times up to time n
and other terms which lie in the future and are still random. To get the expected
value of Zn+l, we take the expected value of each term on the right hand side.
For An+l and other future inputs from the white noise, this expected value is
0. For An and other past white noise inputs, the expected value of An−k is the
actual value an−k that was observed. Thus our prediction is given by

ẑ(l) =

∞∑
j=l

ψjan+l−j . (10.86)

The random error associated with our forecast is

en(l) = An+l + ψ1An+l−1 + . . .+ ψl−1An+1. (10.87)

Clearly, the expected value of en(l) is 0. Furthermore, we can work out the
variance associated with our prediction.

V ar(en(l)) = V ar(An+l) + ψ2
1V ar(An+l−1) + . . .+ ψ2

l−1V ar(An+1) (10.88)

V ar(en(l)) = σ2
A(1 + ψ2

1 + . . .+ ψ2
l−1). (10.89)

There are three important practical issues that we need to resolve before
we can actually start computing forecasts. The first problem is that we have a
time series zk, but not the corresponding ak series. To compute the a sequence,
notice that

en(1) = An+1 (10.90)

Thus
zn − ẑn−1(1) = an. (10.91)

CHAPTER 10. ARMA MODELING 198

We can use this to compute the values ak for k ≤ n. Just compute the lag 1
predictions, and subtract them from the actual values. In doing this, we may
have to refer to zk and ak values from before the start of our observations. Set
these to 0. In practice, the 0 initial conditions will have little effect on the
forecasts.

The second issue is that we may not know σ2
A. In this case, we use the sample

variance of the a values that we have computed as an estimate for σ2
A.

The third issue is that evaluating the infinite sum

ẑ(l) =

∞∑
j=l

ψjan+l−j . (10.92)

may be impractical. If the ψj weights decay rapidly, we can safely truncate the
series, but if the ψj weights decay slowly this may be impractical. Fortunately,
it is also possible to use the two other main forms of the model

Zn = An + π1Zn−1 + π2Zn−2 + . . . (10.93)

or
φ(B)Zn = θ(B)An (10.94)

for forecasting. If the model is purely autoregressive, then the π weights are the
way to go. If the model is purely moving average, then it’s best to use the ψ
weights. For mixed models, the form φ(B)Zn = θ(B)An is usually the easiest
to work with.

In making a forecast using any of the three forms of the model, we use the
same basic idea. We start by computing the previous ak values. Next, we
substitute observed or expected values for all terms in the model to get ẑn(l).
The expected values of all future an+k values are 0. The expected values of
future zn+k values are given by our predictions ẑn(k), k = 1, 2, We com-
pute ẑn(1), ẑn(2), . . . , ẑn(l), and then use the variance formula to get confidence
intervals for our predictions.

Example 10.15

Figure 10.3 shows next five points predicted from the batch data.
The general pattern of alternating high and low values is predicted
to continue, but the error bars on these predictions are quite broad.
The problem is that the original data is quite noisy. The estimated
value of σA is 10.7 which is about 20% of the typical data points of
around 50.

ARMA modeling and a slightly more sophisticated variation called ARIMA
modeling are very widely used in time series forecasting. The technique is also
known as Box-Jenkins forecasting after its inventors. When a model can be
found that fits the data well and σA is relatively small, it can provide very good

CHAPTER 10. ARMA MODELING 199

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

sample

ou
tp

ut

Figure 10.3: Predicted data points for the batch data.

predications. A huge advantage of this approach is that it produces error bars-
many other simple forecasting schemes do not provide any indication of the un-
certainty of the predictions. However, in some cases ARIMA modeling can fail,
either because the underlying dynamics of the time series are too complicated to
be captured by a simple ARIMA model, or because the noise level σA is simply
too large.

Appendix A

Discrete Approximation of
a Convolution

This note discusses how to approximate a continuous convolution with a discrete
convolution, and how MATLAB can easily be used to compute this approxima-
tion. MATLAB works with vectors and arrays of numbers, not continuous
functions, so it is essential to develop a familiarity for moving between contin-
uous and discrete methods to apply MATLAB to simulating physical systems
and solving problems.

We start by selecting a sampling interval- a period of time which is short
relative to the phenomenon that we’re interested in (we will make this concept
much more quantitative once we discuss Fourier theory and the Nyquist theorem
in Chapter 4). For example, if we’re working with a function that varies over
a period of several seconds, then a sampling interval of ∆t = 0.01 seconds will
probably provide adequately dense sampling.

For each sampling interval, we select an “average” value to assign to the asso-
ciated sample. This might be the true average over the interval, or the function
value at the midpoint of the interval, or the value at some other reasonable
point in the interval. In the following we’ll we’ll use times

tj = t0 + j∆t j = −∞ . . .∞ (A.1)

as the midpoints of the intervals, and evaluate or “sample” the function at these
times.

xj = x(tj) j = −∞ . . .∞. (A.2)

Here we have adopted the convention of using x(t) for the function and xj for
the discrete approximation of the function. This dual use of x should not cause
problems as long as we remember that xj = x(tj). See Figure A.1.

200

APPENDIX A. DISCRETE APPROXIMATION OF A CONVOLUTION 201

t−1 t0 t1 t2 t3

x(t)

t

Figure A.1: Discretization of x(t).

APPENDIX A. DISCRETE APPROXIMATION OF A CONVOLUTION 202

Notice that since we cannot store vectors of infinite length in a computer,
we cannot approximate functions which are nonzero everywhere. Typically, it is
possible to use enough sampling intervals to cover the portion of x(t) that we’re
interested in. Also note that although it is convenient in writing our equations
to use zero or negative indices on x for times before t1, MATLAB does not allow
for array indices that are less than one. Thus we may need to shift our indices.

For example, the following MATLAB code represents the function x(t) =
sin(2πft), between t = −1 and t = 1 seconds using 100 sampling intervals of
width ∆t = 0.02 seconds and stores the result in the vector x. The factor of 2π
in this function converts the frequency f in cycles per second into radians per
second. Note that the MATLAB sin function does not work with arguments in
degrees! For our example, we’ll use a frequency of f = 5 cycles per second. The
function x(t) is evaluated at the midpoint of each sampling interval, at times
-0.99, -0.97, ..., 0.99. For convenience, we also store the mid points of the time
intervals in the vector t.

deltat=0.02;

f=5;

for j=1:100,

t(j)=-1.01+j*deltat;

x(j)=sin(2*pi*f*t(j));

end;

MATLAB’s colon notation and vectorized evaluation of functions can be used
to simplify and greatly speed up the above code. The following code produces
exactly the same results without the use of a for loop.

deltat=0.02;

f=5;

t=-0.99:deltat:0.99;

x=sin(2*pi*f*t);

Once we’ve generated x, we can plot x(t) with

figure(1);

plot(t,x,’k’);

xlabel(’t’);

ylabel(’x(t)’);

print -deps signal.eps

The signal is shown in Figure A.2. Notice that MATLAB has interpolated
between the points with straight lines. Since ∆t is 0.02 seconds, this piecewise
linear interpolation is not perfectly smooth, and there are places where you can
see this in the plot.

Integrating a function represented in sampled fashion is straightforward by
using rectangular strips to approximate the area under the function during each
sampling interval. We then integrate x(t) by adding up the area under x(t)
across all sampling intervals. The following bit of MATLAB code integrates
x(t) from -1 to 1 using the x vector that we just generated.

APPENDIX A. DISCRETE APPROXIMATION OF A CONVOLUTION 203

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x(
t)

Figure A.2: x(t).

deltat=0.02;

s=0.0;

for j=1:100,

s=s+x(j)*deltat;

end;

Again, it’s possible to greatly simplify this code to

deltat=0.02;

s=sum(x)*deltat;

Notice that the length of the sampling interval ∆t plays an important part in
this formula.

Infinite sequences can be convolved in a fashion very similar to convolution
of functions in time. The convolution of the sequence xi with the sequence yj
is defined as

zk =

∞∑
j=−∞

xjyk−j . (A.3)

In practice, we don’t store vectors of infinite length, but rather treat all of the
entries outside of our finite length vectors as if they were 0.

The MATLAB command conv implements a discrete convolution of two
finite length vectors. Given a vector x of length r, and a vector y of length s,

APPENDIX A. DISCRETE APPROXIMATION OF A CONVOLUTION 204

the convolution operation produces a vector z of length r + s − 1. Since x has
entries 1 through r, and y has entries 1 through s, the nonzero entries in the
convolution should be in positions 2 through r + s. However, since MATLAB
arrays always start with index 1 (sorry, c programmers), the entries are shifted
one place to the left.

For example, suppose that x1 = 1 and x2 = 2 and all other entries of x are
zero. Also suppose that y1 = 3, and y2 = 4, and all other entries of y are 0.
In the convolution, using (A.3), we get that z2 = 3, z3 = 10, z4 = 8, and all
other entries in z are 0. In MATLAB, we would have x = [1 2], y = [3 4], and
z = [3 10 8].

Now, how can we compute the discrete approximation to a continuous con-
volution? Recall that we can find z(t) = x(t) ∗ y(t) by evaluating the integral

z(t) =

∫ ∞
−∞

x(τ)y(t− τ)dτ. (A.4)

We will approximate this integral by setting up intervals of length ∆τ , and
evaluating the functions at times τj that are the mid points of each interval.
For convenience, we will use the same discretization for t and τ , so that tj = τj .

z(tk) =

∫ ∞
−∞

x(τ)y(tk − τ)dτ. (A.5)

Approximating the integral by the rectangle rule, we get

zk =

∞∑
j=−∞

x(τj)y(tk − τj)∆τ. (A.6)

Because the τj ’s are evenly spaced, tk−τj = (k−j)∆τ and y(tk−τj) = y(tk−j).
Thus

zk =

∞∑
j=−∞

xjyk−j∆τ. (A.7)

This is just the discrete convolution of x and y defined in (A.3) multiplied
by a scaling factor of ∆τ . So, to approximate z(t) = x(t) ∗ y(t), start by
representing the nonzero parts of x(t) and y(t) by vectors x and y. Next,
compute z = conv(x, y). Finally, scale z by ∆τ . It’s unfortunate that MATLAB
doesn’t multiply by ∆τ inside the conv function. However, the sampling interval
∆τ is not stored with the vectors x and y so it simply isn’t available to the conv
function.

Continuing our example, let’s convolve x(t) with an impulse response y(t) =
H(t)e−5t. Note that this function is nonzero for all t > 0. However, by t = 1
second, y(t) is nearly 0. So, we’ll truncate y at one second. We compute the
discrete convolution of x and y and then scale by ∆t to get an approximation
to z(t).

APPENDIX A. DISCRETE APPROXIMATION OF A CONVOLUTION 205

%

% First, setup y, using 50 points.

%

deltat=0.02;

ty=0.01:deltat:0.99;

y=exp(-5*ty);

%

% Do the convolution.

%

z=conv(x,y)*deltat;

%

% Figure out the time points for z.

%

for j=1:length(x)+length(y)-1

tz(j)=-1.01+j*deltat;

end;

%

% Now, plot the result.

%

plot(tz,z,’k’);

The result is shown in Figure A.3.
We can also compute discrete approximations to the cross correlation of two

functions or the autocorrelation of a function. For discrete sequences xj and yj ,
the cross correlation is defined by

zk =

∞∑
j=−∞

xjyj−k. (A.8)

The MATALB function xcorr(x, y) takes input vectors x and y and computes
the discrete cross correlation. Again, if x and y were sampled at an interval of
∆t, then the discrete cross correlation must be scaled by ∆t. The xcorr function
can also be used compute the autocorrelation of a sequence x.

APPENDIX A. DISCRETE APPROXIMATION OF A CONVOLUTION 206

−1 −0.5 0 0.5 1 1.5 2
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t

z(
t)

Figure A.3: Convolution of x and y.

Appendix B

Primer on Complex
Numbers and Arithmetic

These notes summarize some important facts about complex numbers and their
arithmetic.

Rectangular Form

If we define i =
√
−1, then we can construct a system of complex numbers of

the form z = a+ bi. In this system,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (B.1)

(a+ bi)− (c+ di) = (a− c) + (b− d)i (B.2)

(a+ bi)(c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (bc+ ad)i (B.3)

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + (bc− ad)i

c2 + d2
(B.4)

The complex conjugate of a complex number is given by

(a+ bi)∗ = a+ bi = a− bi. (B.5)

Euler’s Formula

Using the power series

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . (B.6)

we can derive a formula for e raised to an imaginary power.

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+ . . .

207

APPENDIX B. PRIMERON COMPLEX NUMBERS ANDARITHMETIC208

Using the facts that i2 = −1, i3 = −i, and i4 = 1, we find that

eix = 1 + ix− x2

2!
− ix

3

3!
+
x4

4!
+ . . .

Rearranging the terms, we get

eix = (1− x2

2!
+
x4

4!
+ . . .) + i(x− x3

3!
+
x5

5!
− . . .)

Finally, using the Taylor’s series for sin and cos, we get

eix = cos(x) + i sin(x) (B.7)

For general complex numbers a+ bi, we find that

ea+bi = ea(cos(b) + i sin(b)) (B.8)

Polar Form

Using Euler’s formula, we can take any complex number

z = a+ bi

and rewrite it as
z = Reiθ (B.9)

where
R = |z| =

√
z∗z =

√
a2 + b2 (B.10)

is variously called the amplitude, modulus, or complex norm and

θ = 6 z = tan−1 b

a
. (B.11)

is variously called the complex angle, phase or argument of z. Because sin and
cos are 2π periodic, we can add any multiple of 2π to the phase of a complex
number without changing its value.

We can also go the other way. If

z = Reiθ

then z = a+ bi, where
a = R cos(θ) (B.12)

and
b = R sin(θ). (B.13)

Polar form is very useful for multiplication, division, and exponentiation,
but hopeless for addition and subtraction.

AeiθBeiφ = ABeθ+φ (B.14)

APPENDIX B. PRIMERON COMPLEX NUMBERS ANDARITHMETIC209

Aeiθ

Beiφ
=
A

B
eθ−φ (B.15)

(Aeiθ)x = (Ax)eixθ. (B.16)

It’s also easy to find the complex conjugate of a number in polar form.

(Aeiθ)∗ = Ae−iθ. (B.17)

Cosine and Sine in terms of complex exponentials

Using Euler’s formula, it’s easy to derive formulas for sin and cos in terms of
complex exponentials.

cos(θ) =
eiθ + e−iθ

2
. (B.18)

sin(θ) =
eiθ − e−iθ

2i
. (B.19)

MATLAB and Complex Numbers

When you first start MATLAB, The variable i is set equal to
√
−1. However, if

you change the value of i (for example by using it as the index in a for loop!),
then it will no longer have this value. Thus it is a good idea to avoid using i as
a loop index.

Nearly all of the functions that are built into MATLAB operate correctly
on complex numbers. Thus you can add, subtract, multiply, and divide com-
plex numbers. You can also compute exponentials, logs, sines, cosines, and
other functions of complex numbers. MATLAB has several useful functions for
manipulating complex numbers. The conj function computes the complex con-
jugate of a number. The abs function computes the absolute value of a complex
number. The angle function computes the phase angle of a complex number.

How LTI’s operate on complex exponentials, sines,
and cosines

A linear time invariant (LTI) system operates in a simple fashion when a complex
exponential, sine, or cosine is input to the system. Recall that if φ(t) is the
impulse response of the system (that is, the response of the system when the
input δ(t)), then response to an input function, x(t), is given by the convolution
of x(t) with the impulse response.

y(t) = φ(t) ∗ x(t) (B.20)

or

y(t) =

∫ ∞
−∞

φ(τ)x(t− τ)dτ. (B.21)

APPENDIX B. PRIMERON COMPLEX NUMBERS ANDARITHMETIC210

Consider the special case where

x(t) = ei2πft. (B.22)

In this case,

y(t) =

∫ ∞
−∞

φ(τ)ei2πf(t−τ)dτ. (B.23)

y(t) = ei2πft
∫ ∞
−∞

φ(τ)e−i2πfτdτ. (B.24)

Notice that this integral depends only on f , and not t. We can define

Φ(f) =

∫ ∞
−∞

φ(τ)e−i2πfτdτ. (B.25)

Where Φ(f) is the Fourier Transform of φ(t). Then

y(t) = ei2πftΦ(f). (B.26)

Since Φ(f) is just a complex number, we can write it in exponential form as
Φ(f) = A(f)eiθ(f), where A(f) and θ(f) are real numbers. Now, we can write
y(t) as

y(t) = ei2πftA(f)eiθ(f). (B.27)

This says that if we use a complex exponential signal as the input to our LTI
system, we’ll get a complex exponential signal as the output. The factor A(f)
amplifies or attenuates the signal, and the factor eiθ(f) shifts the phase of the
signal.

What if x(t) = cos(2πft) where f and t are a real frequency and time? We
can use (B.18) to write the cosine in terms of complex exponentials.

x(t) =
ei2πft + e−i2πft

2
. (B.28)

Then using the principles of scaling and superposition and (B.26), we get that

y(t) =
ei2πftΦ(f)

2
+
e−i2πftΦ(−f)

2
. (B.29)

It can be shown that if φ(t) is real, then

Φ(−f) = Φ(f)
∗

(B.30)

To see this, simply take the complex conjugate of Φ(f).

Φ(f)∗ =

(∫ ∞
−∞

φ(τ)e−i2πfτdτ.

)∗
(B.31)

Φ(f)∗ =

∫ ∞
−∞

(
φ(τ)e−i2πfτ

)∗
dτ. (B.32)

APPENDIX B. PRIMERON COMPLEX NUMBERS ANDARITHMETIC211

Φ(f)∗ =

∫ ∞
−∞

φ(τ)e+i2πfτdτ. (B.33)

Φ(f)∗ =

∫ ∞
−∞

φ(τ)e−i2π(−f)τdτ. (B.34)

Φ(f)∗ = Φ(−f). (B.35)

Equivalently, this says that Φ(f) for a real-valued impulse response φ(t)
has even symmetry for its real part, and odd symmetry for its imaginary part
(relative to f = 0.)

Since Φ(f) = A(f)eiθ(f), and Φ(−f) = Φ(f)∗, Φ(−f) = A(f)e−iθ(f). Thus

y(t) =
ei2πftA(f)eiθ(f)

2
+
e−i2πftA(f)e−iθ(f)

2
. (B.36)

y(t) =
ei(2πft+θ(f)) + e−i(2πft+θ(f))

2
A(f). (B.37)

y(t) = cos(2πft+ θ(f))A(f). (B.38)

This shows that the output of the LTI system with a real-valued φ(t) and a
cosine input is also a cosine, but with its magnitude scaled by the amplitude,
A(f), and shifted in phase by the angle θ(f). Similarly, it’s easy to show that if
the input is a sine wave with frequency f , then the output will be a sine wave
scaled by the amplitude A(f) and shifted in phase by the angle θ(f).

Appendix C

Finding an Impulse
Response via Contour
Integration

In the Chapter 2 notes, we noted that the time domain displacement response
to an acceleration impulse input is

φ(t) = F−1

(
1

ω2 − 2ıζω − ω2
s

)
(C.1)

=
1

2π

∫ ∞
−∞

eıωt dω

ω2 − 2ıζω − ω2
s

=
1

2π

∫ ∞
−∞

eıωt dω

(ω − ω1 − ıζ)(ω + ω1 − ıζ)
(C.2)

where
ω1 =

√
ω2
s − ζ2 . (C.3)

To solve (C.2), we utilize a remarkable and useful theorem from complex anal-
ysis, the residue theorem. Succinctly stated, the residue theorem says that, for
a complex function in the complex plane that is defined and differentiable with
a region except at an isolated singularity at a finite point z0 (e.g., a pole in
a transfer function), then, for a closed path, or contour, C, encompassing the
singularity ∮

C

f(z)dz = 2πıa (C.4)

where a is called the residue of f(z) at z0, where, for a pole of order m,

a =
1

(m− 1)!

dm−1

dzm−1
[(z − z0)mf(z)]z=z0 . (C.5)

for a single pole at z0, the residue is simply

a = [(z − z0)f(z)]z=z0 . (C.6)

212

APPENDIX C. FINDING AN IMPULSE RESPONSE VIA CONTOUR INTEGRATION213

Figure C.1: Contour integration in the complex ω plane.

APPENDIX C. FINDING AN IMPULSE RESPONSE VIA CONTOUR INTEGRATION214

Evaluation of a contour integral in the complex plane thus involves evaluating
the integrand at z = z0 with the pole ”removed” by first multiplying by the
factor (z − z0) More generally, if more than one distinct pole is enclosed by the
integration path ∮

C

f(z)dz = 2πı
∑
i

ai (C.7)

where the ai are the residues at the encosed poles. If there are no poles enclosed
by C, the integral will be zero (this is the same as saying that the function is
conservative, or that the integral of f(z) between two complex points doesn’t
depend on the integration path).

We can now use the residue theorem to evaluate the inverse Fourier transform
(C.2). The poles of the integrand lie at (±ω1, ıζ). We conceptualize the inverse
Fourier transform as a contour integration by integrating in the complex ω plane
along the ω axis from−∞ to∞, and then closing the countour at |z =∞| (where
the value of the integrand is zero). For t < 0 the contour is clockwise because
of the eıωt factor and encompasses no poles (Figure C.1). Thus

φ(t) = 0 (t < 0) . (C.8)

For t > 0 the contour is clockwise and encompases poles, so that the residue
theorem gives

φ(t) =
ı

ω1

(
e−ıω1t

−2
+
eıω1t

2

)
e−ζt . (C.9)

For the underdamped case, where ω2 > ζ, ω1 is real, so that (setting the
function to be zero for t < 0 with a step function) we have the impulse response

φunderdamped = H(t)
−1

ω1
e−ζt sin(ω1t) . (C.10)

For the overdamped case, where ωs < ζ, ω1 = ı
√
ζ2 − ω2

s , and the poles lie

on the negative real axis at −ζ ±
√
ζ2 − ω2

s . The impulse response function in
this case can be written entirely with real exponentials as

φoverdamped(t) =
−H(t)

2(ζ2 − ω2
s)1/2

(
e−(ζ−(ζ2−ω2

s)1/2)t − e−(ζ+(ζ2+ω2
s)1/2)t

)
.

(C.11)
For the critically damped case, ω1 = 0, and we have a repeated (order 2)

pole at ω = ıζ. Application of (C.5) for t > 0 gives

φcritical(t) = ı
d

dω
H(t)eıωt|ω=ıζ = −H(t)te−ζt . (C.12)

Appendix D

Plotting Spectra Using
Decibels

Because the amplitudes describing the spectral responses of physical systems
in nature as well as filters and instruments, frequently span many orders of
magnitude, amplitude responses are frequently plotted as a function of frequency
using either as log-linear or log-log displays. The standard way to do this is
using a decibel (dB) scale. The ‘Bel’ was originally a unit of sound intensity,
after Alexander Graham Bell- a decibel is one tenth of a Bel.

The decibel relationship between two power levels is defined as

d = 10 log10

P1

P2
(D.1)

In examining system responses, P1/P2 in (D.1) is commonly the ratio of output
power level over input power level so that 0 dB corresponds to unit gain and
amplification by a factor greater than one corresponds to d > 0.

Note that the definition we have given is for power ratios. In practice it is
often necessary to consider voltage ratios as well. Assuming that the power is
dissipated by a load of constant resistance R, the power is P = V 2/R, so

d = 10 log10

P1

P2
= 10 log10

V 2
1 /R

V 2
2 /R

= 10 log10

V 2
1

V 2
2

= 10 log10

(
V1

V2

)2

= 20 log10

V1

V2
.

Similarly, in seismic work power is proportional to velocity squared, so the factor
of 20 is used. In general, the factor of 20 is used with amplitudes and the factor
of 10 is used with power. An amplitude change of a factor of two is equal to
about 6 dB, because log10 2 = 0.3010. An amplitude factor of

√
2 is equal to

about 3 dB, and so forth.
An obvious question is what voltage to use for a time varying signal? The

most common convention is to use the root mean square (RMS) average voltage.

VRMS =

√∫ T
0
V (t)2dt

T

215

APPENDIX D. PLOTTING SPECTRA USING DECIBELS 216

If not specified you can reasonably assume that RMS voltage was intended.
Decibels are also conveniently used to express rates of exponential falloff in

a system response. This is especially common in engineering specifications. For
example, a response that is proportional to 1/f (e.g., a single-pole system with
no zeros such as a simple RC low-pass analog filter) decays at (approximately)
6 ≈ 20 log10(2) dB per octave (per frequency doubling), or at 20 = 20 log10(10)
dB per decade (per 10-fold frequency increase.)

In a dB vs. log frequency plot, such asymptotic power law behavior is easy to
predict (and sketch), because a falloff of f−n is just a straight line with a slope
of 20n dB/decade. One can thus approximately sketch the amplitude response
of system as a set of simple lines with differing slopes (such plots are called Bode
plots).

Recall from the lecture notes on linear time invariant systems in the fre-
quency domain that the frequency response of an underdamped seismometer is
given by

|Φ(ω)| = ω2√
(ω2 − ω2

2)2 + 4ξ2ω2
. (D.2)

Expanding this in a Taylor series around ω = 0, we get that

|Φ(ω)| = ω2

ω2
s

+O(ω4). (D.3)

Since ω = 2πf ,
|Φ(f)| = O(f2) (D.4)

as f goes to 0. We would expect to see the frequency response drop off by 40
dB/decade or 12 dB/octave as f approaches 0.

Figures D.1, D.2, and D.3 show the amplitude displacement-displacement
response of an underdamped seismometer with ζ = ωs/

√
2 in linear-linear, dB

(log)-linear, and dB-log plots, respectively. Note that the Figure D.3 plot is most
easily interpretable, shows the essential characteristics of |Φ(f)| most clearly,
and has the expected quadratic (O(f2)) response fall-off of 40 dB/decade at
low frequencies.

Note that we have looked the behavior of |Φ(f)| as f goes to 0. Some
other authors consider the behavior of the power spectral density, |Φ(f)|2, as
f goes to 0. Following that convention, the power spectral density is O(f4)
as f approaches 0. However, in either case we would still see a decrease of 40
dB/decade on the plot.

So far, we have only used dB’s as a measure of relative power. In situations
where we want to establish an absolute scale, we must first pick a reference level
for 0 dB. For example, in acoustics, a commonly used reference level for the
sound pressure level (SPL) is an amplitude of 20 µPa in air. In this system,
the unit is “dB(SPL)”. In electronics, a commonly used reference level is one
milliwatt. In this system the unit is “dBm”. A voltage based scheme that is
independent of the particular impedance uses a reference level of 0.775 V. This
voltage happens to produce 1 milliwatt of power in a 600 ohm resistor (600 ohms

APPENDIX D. PLOTTING SPECTRA USING DECIBELS 217

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

1.2

| Φ
 |

f/fs

linear−linear

Figure D.1: Linear-linear plot of the amplitude response of a seismometer, ζ =
ωs/
√

2.

10 20 30 40 50 60 70 80 90 100
−80

−70

−60

−50

−40

−30

−20

−10

0

20
 lo

g 1
0

| Φ
|

f/fs

log−linear

Figure D.2: Log-linear plot of the amplitude response of a seismometer, ζ =
ωs/
√

2.

APPENDIX D. PLOTTING SPECTRA USING DECIBELS 218

10
−2

10
−1

10
0

10
1

10
2

−80

−70

−60

−50

−40

−30

−20

−10

0

f/fs

log−log

20
 lo

g
10

 | Φ
 |

Figure D.3: Log-log plot of the amplitude response of a seismometer, ζ = ωs/
√

2.

is the standard impedance in audio work.) In this system, the unit is “dBu”
for “unloaded”. You’ll also see “dBV” for voltage relative to 1 volt, and “dBv”
which is an older name for “dBu”.

Appendix E

Plotting Spectra Using the
FFT

Plotting the spectrum of a signal from its FFT is a very common activity. In
this set of notes, we discuss how to produce such plots on both absolute and dB
scales.

Suppose that xn represents a voltage. Then the power of the signal at time
t = n∆t, assuming a constant load R is

Pn = x2
n/R. (E.1)

For convenience, we’ll take R = 1 ohm. The scaling factor of R can easily be
reinserted into the equations, but it has no important effects.

The average power of the signal is

Pavg =

∑N−1
n=0 |xn|2∆t

T
(E.2)

where the total length of the signal is T = N∆t. Thus

Pavg =

∑N−1
n=0 |xn|2

N
. (E.3)

Recall that by Parseval’s theorem for the DFT,

N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2. (E.4)

Thus

Pavg =

∑N−1
k=0 |Xk|2

N2
. (E.5)

Now, consider the power spectral density. We want to have

Pavg =

∫ r

0

PSD(f)df (E.6)

219

APPENDIX E. PLOTTING SPECTRA USING THE FFT 220

where r is the sampling frequency. In terms of the discrete Fourier transform,
we want

Pavg =

N−1∑
k=0

PSDk∆f (E.7)

where ∆f = r/N . Combining (E.5) and (E.7) we see that

PSDk =
|Xk|2

Nr
. (E.8)

The units of the PSD are x2/Hz, whatever the units of x are. If we want to
plot the spectrum with a dB scale, relative to to an amplitude of 1, then we
should plot

PSDdB
k = 10 log10

|Xk|2

Nr
. (E.9)

Note that a factor of 10 is used here because the amplitudes are already squared.
The frequency associated with point k of the DFT is

fk =
kr

N
.

We can also shift the range of frequencies to run from −r/2 to r/2 if desired.
Note that the PSD values will automatically adjust to changes in the length

N of the sampled signal and the sampling rate r. We should be able to recover
the total power of the signal by integrating the PSD from f = 0 to f = r.

A common problem with spectral estimation is that due to short term ran-
dom variations in the signal (noise), the spectral estimate can be noisy. By
computing the spectrum for each of many sections of the input signal and then
averaging the spectra, we can average out these variations to get at the long
term behavior of the signal. In computing the average, there are several options-
we could average the values of |Xk|, the values of |Xk|2, or even the dB values.
This produces subtle changes in the results. In Welch’s method, the method
most commonly used in practice, values of |Xk|2 are averaged.

In the following example, we consider the spectral analysis of a signal con-
taining what is known as “Gaussian white noise”. The signal consists of samples
that are independent and normally distributed with expected value 0 and stan-
dard deviation 1. We’ll assume a sampling frequency of r = 100 Hz. For such
a signal, the average value of x2

n is 1, so the average power of the signal should
be 1 Watt. It can be shown (later in the course) that the spectrum of such a
signal is flat, with equal energy at all frequencies from 0 to r. However, be-
cause we have only a random sample of finite length, the actual spectrum that
we obtain from our sample will have some sampling variability. We generate a
signal of 1,000,000 samples. Both approaches to computing the average power
give P = 1.0002 Watts.

Figure 1 shows the periodogram estimate of the spectrum. One problem
with this plot is that 1,000,000 different frequencies are represented and there
simply isn’t enough resolution on the paper to show all of these frequencies. In

APPENDIX E. PLOTTING SPECTRA USING THE FFT 221

Figure 2, we’ve plotted 1,000 of the frequencies. Notice that the average value
of the PSD is about 0.01. When this is multiplied by the frequency range of 100
Hz, we get an average power of 1 Watt, as expected. Figure 3 shows the same
figure, on a dB scale. The average is at -20 dB, corresponding to an average
x2/Hz of 0.01. Again, when multiplied by 100, this gives a total power of 1
Watt.

These spectra are somewhat noisy. We can improve upon them by breaking
the signal into sections of length M = 1000, computing spectra for each section,
and averaging the spectra. Figure 4 shows the averaged spectrum in x2/Hz
units. Figure 5 shows the same spectrum in dB units. These spectra are much
smoother than the first three spectra. Note that the vertical axes have changed
to cover a much smaller range.

Finally, Figure 6 shows the spectrum produced by MATLAB’s pwelch com-
mand. This closely matches Figure 5. A few small differences can be attributed
to the fact that pwelch uses a Hamming window before computing the FFT to
help reduce spectral leakage.

There are many other varieties of “colored noise” that have been identified
over the years. For example, in “red noise”, a white noise signal xn is integrated
to obtain a new signal yn. Since differentiation effectively multiplies the Fourier
transform of a signal by 2πif , one would expect integration to divide the Fourier
transform (and thus the spectrum) by the same factor of 2πif . Since |Φ(f)| falls
off proportionally to 1/f as f increases, we would expect the power spectrum
of red noise to fall off as 1/f2. Figure 7 shows the averaged spectrum of a red
noise signal plotted against a logarithmic frequency scale. Notice that the PSD
falls off at a rate of 20 dB per decade. Similarly, in pink noise or 1/f noise,
|Φ(f)| is proportional to 1/

√
f and the power spectral density is proportional

to 1/f as f increases. Here 1/f refers to the power spectral density, not |Φ(f)|.

APPENDIX E. PLOTTING SPECTRA USING THE FFT 222

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

f (Hz)

P
S

D
 (

x2 /H
z)

Figure E.1: Periodogram of the white noise signal, N = 1, 000, 000.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

f (Hz)

P
S

D
 (

x2 /H
z)

Figure E.2: Periodogram of the white noise signal, N = 1, 000, 000. This graph
shows only 1,000 equally spaced frequency values.

APPENDIX E. PLOTTING SPECTRA USING THE FFT 223

0 10 20 30 40 50 60 70 80 90 100
−50

−45

−40

−35

−30

−25

−20

−15

−10

f (Hz)

P
S

D
 (

dB
/H

z)

Figure E.3: Periodogram of the white noise signal, N = 1, 000, 000. This graph
shows only 1,000 equally spaced frequency values. This version of the plot has
dB/Hz units.

0 10 20 30 40 50 60 70 80 90 100
0.0092

0.0094

0.0096

0.0098

0.01

0.0102

0.0104

0.0106

0.0108

0.011

f (Hz)

P
S

D
 (

x2 /H
z)

Figure E.4: Averaged periodogram of the white noise signal, blocks of M =
1, 000.

APPENDIX E. PLOTTING SPECTRA USING THE FFT 224

0 10 20 30 40 50 60 70 80 90 100
−20.4

−20.3

−20.2

−20.1

−20

−19.9

−19.8

−19.7

−19.6

−19.5

f (Hz)

P
S

D
 (

dB
/H

z)

Figure E.5: Averaged periodogram of the white noise signal, blocks of M =
1, 000, dB/Hz units.

0 10 20 30 40 50 60 70 80 90
−20.5

−20.4

−20.3

−20.2

−20.1

−20

−19.9

−19.8

−19.7

−19.6

Frequency (Hz)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

Power Spectral Density Estimate via Welch

Figure E.6: PSD estimate produced by pwelch.

APPENDIX E. PLOTTING SPECTRA USING THE FFT 225

10
−1

10
0

10
1

10
2

−30

−20

−10

0

10

20

30

f (Hz)

P
S

D
 (

dB
/H

z)

Figure E.7: Spectrum of red noise.

Appendix F

Summary of Fourier
Transform Properties

This appendix summarizes some important facts about Fourier transforms and
convolutions. Note that there are several different definitions of the Fourier
transform in common use. If you refer to other books which use different def-
initions then of course the formulas will be different. This appendix has been
made consistent with the following definition of the Fourier transform and its
inverse.

F(φ(t)) = Φ(f) =

∫ ∞
−∞

f(t)e−2πiftdt

F−1(Φ(f)) = φ(t) =

∫ ∞
−∞

Φ(f)e2πiftdf

The notation φ(t) ⊃ Φ(f) is also used to indicate that Φ(f) is the Fourier
transform of φ(t). Another common notational convention is that capital letters
are used for the names of functions in the frequency domain, and corresponding
lower case letters are used for functions in the time domain.

Because these two definitions are very nearly symmetric (note the sign
change in the exponent of e), it is possible to use a Fourier transform pair
φ(t) ⊃ Φ(f) to construct a second Fourier transform pair Φ(t) ⊃ φ(−f). For
example, the transform

F(sgn t) =
1

πif

translates into

F
(

1

πit

)
= sgn− f = −sgn f

226

APPENDIX F. SUMMARY OF FOURIER TRANSFORM PROPERTIES227

General Properties

φ(t) Φ(f)

aφ(t) + bψ(t) aΦ(f) + bΨ(f)

φ(at) 1
|a|Φ(f/a)

φ′(t) 2πifΦ(f)

e2πiatφ(t) Φ(f − a)

φ(t− a) e−2πiafΦ(f)

φ(t) cos(2πf0t) (Φ(f − f0) + Φ(f + f0))/2

φ(t) ∗ ψ(t) Φ(f)Ψ(f)

φ(t)ψ(t) Φ(f) ∗Ψ(f)∫ t
−∞ φ(τ)dτ Φ(f)

2πif + δ(f)
2

∫∞
−∞ φ(τ)dτ

Parseval’s Theorem∫ ∞
−∞

φ(t)φ∗(t)dt =

∫ ∞
−∞

Φ(f)Φ∗(f)df.

APPENDIX F. SUMMARY OF FOURIER TRANSFORM PROPERTIES228

Symmetry Properties

φ(t) Φ(f)

even even

odd odd

real, even real, even

real, odd imaginary, odd

imaginary, even imaginary, even

imaginary, odd real, odd

complex, even complex, even

complex, odd complex, odd

real, asymmetrical complex, Hermitian

imaginary, asymmetrical complex, anti-Hermitian

Hermitian real

anti-Hermitian imaginary

APPENDIX F. SUMMARY OF FOURIER TRANSFORM PROPERTIES229

Specific Fourier Transform Pairs

φ(t) Φ(f)

δ(t) 1

1 δ(f)

e−aπt
2 1√

a
e−aπf

2/a a > 0

II(t) sinc f = sinπf
πf

III(t) III(f)

1
t −πisgn f

sgn t 1
πif

cos(2πf0t) (δ(f + f0) + δ(f − f0))/2

sin(2πf0t) i(δ(f + f0)− δ(f − f0))/2

H(t) 1
2πif + δ(f)

2

H(t)e−at 1
a+2πif a > 0

H(t)e−at sin(bt) b
(2πif+a)2+b2 a > 0

H(t)e−at cos(bt) 2πif+a
(2πif+a)2+b2 a > 0

H(t)te−at 1
(2πif+a)2 a > 0

APPENDIX F. SUMMARY OF FOURIER TRANSFORM PROPERTIES230

Other Definitions of the Fourier Transform

Much more extensive tables of Fourier transforms are available in various ref-
erence books. These tables are often based on slightly different definitions of
the Fourier transform. One typical variation is using +2πift in the exponent
in the Fourier transform formula instead of −2πift. Another common varia-
tion involves pulling the 2π out of the exponential and putting a factor of 2π
in front of the integral in either the forward or inverse transform or putting a
factor of

√
2π in both the forward and inverse transforms. Transforms based on

these alternative definitions can be converted to our system without too much
difficulty.

For example one common definition of the Fourier transform is

Φalt(ω) =
1√
2π

∫ ∞
−∞

φ(t)e−iωtdt

Here Φalt denotes the Fourier transform under the alternate definition. Under
this definition,

Φalt(2πf) =
1√
2π

∫ ∞
−∞

φ(t)e−i2πftdt.

Thus

Φalt(2πf) =
1√
2π

Φ(f)

where Φ(f) is the transform under our definition. Solving for Φ(f), we get

Φ(f) =
√

2πΦalt(2πf).

Maple’s inttrans package has fourier() and invfourier() functions that use
angular frequency ω = 2πf (in units of radians per time) instead of circular
frequency f (in units of cycles per time.) The definitions of the transform pair
are:

ΦMaple(w) =

∫ ∞
−∞

φ(t)e−iωtdt

and

φ(t) =
1

2π

∫ ∞
−∞

ΦMaple(ω)eiωtdω.

To use Maple’s functions with our definitions, you can substitute ω = 2πf into
the result obtained by Maple.

Φ(f) = ΦMaple(2πf).

In using Maple’s Fourier transform functions, note that that the Dirac δ()
function has the unusual scaling property

δ(ω) = δ(2πf) = δ(f)/(2π).

This must be taken into account in converting from Maple’s definition into our
definition. For example, Maple’s fourier() function returns ΦMaple(ω) = 2πδ(ω)

for the Fourier transform of φ(t) = 1. We have Φ(f) = δ(f) where the factors
of 2π cancel out.

Bibliography

[1] Keiiti Aki and Paul G Richards. Quantitative Seismology. University Sci-
ence Books, 2002.

[2] R. C. Aster, C. H. Thurber, and B. Borchers. Parameter Estimation and
Inverse Problems. Elsevier, 3rd edition, 2018.

[3] Sh A Azimi, A. V. Kalinin, Kalinin V. V., and B. I. Piyovaryoy. Impulse
and transient characteristics of media with linear and quadratic absorption
laws, izvestiya. Physics of the Solid Earth, pages 88–93, 1968.

[4] R. J. Banks, R. L. Parker, and S. P. Huestis. Isostatic compensation on a
continental scale: local versus regional mechanisms. Geophysical Journal
International, 51(2):431–452, 1977.

[5] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time Series Analysis: Forecasting and Control. John Wiley &
Sons, 5th edition, 2015.

[6] James W Cooley and John W Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of computation, 19(90):297–301,
1965.

[7] Richard S Gross. The excitation of the Chandler wobble. Geophysical
Research Letters, 27(15):2329–2332, 2000.

[8] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82, March 1960.

[9] Ernest R Kanasewich. Time Sequence Analysis in Geophysics. University
of Alberta, 1981.

[10] Bateman manuscript project, Arthur Erdélyi, and Harry Bateman. Tables
of integral transforms: Based in part on notes left by Harry Bateman and
compiled by the staff of the Bateman manuscript project. McGraw-Hill,
1954.

[11] Lawrence R Rabiner, Bernard Gold, and CK Yuen. Theory and Application
of Digital Signal Processing. Prentice-Hall, 2016.

231

BIBLIOGRAPHY 232

[12] Masanobu Shinozuka and C-M Jan. Digital simulation of random processes
and its applications. Journal of sound and vibration, 25(1):111–128, 1972.

[13] David J Thomson. Spectrum estimation and harmonic analysis. Proceedings
of the IEEE, 70(9):1055–1096, 1982.

[14] Donald L Turcotte and Gerald Schubert. Geodynamics. Cambridge uni-
versity press, second edition, 2002.

