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Sometimes also called the quadrature function.
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡

If we generalize to arbitrary phase, cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 cos 𝜃 − sin 𝜔#𝑡 sin 𝜃
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡

If we generalize to arbitrary phase, cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 cos 𝜃 − sin 𝜔#𝑡 sin 𝜃

𝐻 cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 − 90° cos 𝜃 − sin 𝜔#𝑡 − 90° sin 𝜃
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡

If we generalize to arbitrary phase, cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 cos 𝜃 − sin 𝜔#𝑡 sin 𝜃

𝐻 cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 − 90° cos 𝜃 − sin 𝜔#𝑡 − 90° sin 𝜃

= sin 𝜔#𝑡 cos 𝜃 + cos 𝜔#𝑡 sin 𝜃
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡

If we generalize to arbitrary phase, cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 cos 𝜃 − sin 𝜔#𝑡 sin 𝜃

𝐻 cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 − 90° cos 𝜃 − sin 𝜔#𝑡 − 90° sin 𝜃

= sin 𝜔#𝑡 cos 𝜃 + cos 𝜔#𝑡 sin 𝜃 = sin 𝜔#𝑡 + 𝜃
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡

If we generalize to arbitrary phase, cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 cos 𝜃 − sin 𝜔#𝑡 sin 𝜃

𝐻 cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 − 90° cos 𝜃 − sin 𝜔#𝑡 − 90° sin 𝜃

= sin 𝜔#𝑡 cos 𝜃 + cos 𝜔#𝑡 sin 𝜃 = sin 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 + 𝜃 − 90°
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We wish to design an ideal 90° phase shifter.  That is, we want a transform that will 
convert a sinusoid to another sinusoid with the same amplitude and frequency but shift 
the phase by 90° !

"
. 

Recall that cos 𝜔#𝑡 − 90° = sin 𝜔#𝑡 and sin 𝜔#𝑡 − 90° = − cos 𝜔#𝑡 .

So we want a transform that does, 𝐻 cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐻 sin 𝜔#𝑡 = − cos 𝜔#𝑡

If we generalize to arbitrary phase, cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 cos 𝜃 − sin 𝜔#𝑡 sin 𝜃

𝐻 cos 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 − 90° cos 𝜃 − sin 𝜔#𝑡 − 90° sin 𝜃

= sin 𝜔#𝑡 cos 𝜃 + cos 𝜔#𝑡 sin 𝜃 = sin 𝜔#𝑡 + 𝜃 = cos 𝜔#𝑡 + 𝜃 − 90°

A 90° phase shift regardless of the original.
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Recall

𝐹 cos 𝜔#𝑡 =
1
2
𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔#

𝐹 sin 𝜔#𝑡 =
1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

𝜔#−𝜔#

𝜔#

−𝜔#
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡

𝐻 𝜔
1
2 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# =

1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡

𝐻 𝜔
1
2 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# =

1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

𝐻 𝜔 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# = 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡

𝐻 𝜔
1
2 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# =

1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

𝐻 𝜔 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# = 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

For 𝜔 = 𝜔# > 0, 𝐻 𝜔 0 + 𝛿(0) = 𝑖 0 − 𝛿(0) , H 𝜔# > 0 = −𝑖
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡

𝐻 𝜔
1
2 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# =

1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

𝐻 𝜔 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# = 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

For 𝜔 = 𝜔# > 0, 𝐻 𝜔 0 + 𝛿(0) = 𝑖 0 − 𝛿(0) , H 𝜔# > 0 = −𝑖

For 𝜔 = 𝜔# < 0, 𝐻 𝜔 𝛿(0) + 0 = 𝑖 𝛿(0) − 0 , H 𝜔# < 0 = 𝑖
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡

𝐻 𝜔
1
2 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# =

1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

𝐻 𝜔 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# = 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

For 𝜔 = 𝜔# > 0, 𝐻 𝜔 0 + 𝛿(0) = 𝑖 0 − 𝛿(0) , H 𝜔# > 0 = −𝑖

For 𝜔 = 𝜔# < 0, 𝐻 𝜔 𝛿(0) + 0 = 𝑖 𝛿(0) − 0 , H 𝜔# < 0 = 𝑖

For 𝜔 = 𝜔# = 0, 𝐻 𝜔 𝛿(0) + 𝛿(0) = 𝑖 𝛿(0) − 𝛿(0) = 0, H 𝜔# = 0 = 0
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We can express this operator 𝐻[ ] as a convolution with its transfer function,

ℎ 𝑡 ∗ cos 𝜔#𝑡 = sin 𝜔#𝑡

𝐹 ℎ 𝑡 ∗ cos 𝜔#𝑡 = 𝐹 sin 𝜔#𝑡

𝐻 𝜔
1
2 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# =

1
2 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

𝐻 𝜔 𝛿 𝜔 + 𝜔# + 𝛿 𝜔 − 𝜔# = 𝑖 𝛿 𝜔 + 𝜔# − 𝛿 𝜔 − 𝜔#

For 𝜔 = 𝜔# > 0, 𝐻 𝜔 0 + 𝛿(0) = 𝑖 0 − 𝛿(0) , H 𝜔# > 0 = −𝑖

For 𝜔 = 𝜔# < 0, 𝐻 𝜔 𝛿(0) + 0 = 𝑖 𝛿(0) − 0 , H 𝜔# < 0 = 𝑖

For 𝜔 = 𝜔# = 0, 𝐻 𝜔 𝛿(0) + 𝛿(0) = 𝑖 𝛿(0) − 𝛿(0) = 0, H 𝜔# = 0 = 0

𝐻 𝜔 = −𝑖𝑠𝑔𝑛(𝜔)
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sgn(𝜔)

𝜔 = 0

1

−1Signum function,
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𝐻 𝜔 = −𝑖𝑠𝑔𝑛(𝜔)

sgn(𝜔)

𝜔 = 0

1

−1Signum function,

𝜔 = 0

−𝑖

𝑖
Frequency domain transfer 
function for our 90° phase 
shifter,
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𝐻 𝜔 = −𝑖𝑠𝑔𝑛(𝜔)

sgn(𝜔)

𝜔 = 0

1

−1Signum function,

𝜔 = 0

−𝑖

𝑖
Frequency domain transfer 
function for our 90° phase 
shifter,

ℎ 𝑡 = 𝐹$% 𝐻(𝜔) = 𝐹$% −𝑖𝑠𝑔𝑛(𝜔) = −𝑖𝐹$% sgn(𝜔)
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𝐻 𝜔 = −𝑖𝑠𝑔𝑛(𝜔)

sgn(𝜔)

𝜔 = 0

1

−1Signum function,

𝜔 = 0

−𝑖

𝑖
Frequency domain transfer 
function for our 90° phase 
shifter,

ℎ 𝑡 = 𝐹$% 𝐻(𝜔) = 𝐹$% −𝑖𝑠𝑔𝑛(𝜔) = −𝑖𝐹$% sgn(𝜔) =
1
𝜋𝑡 From tables.
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𝐻 𝜔 = −𝑖𝑠𝑔𝑛(𝜔)

sgn(𝜔)

𝜔 = 0

1

−1Signum function,

𝜔 = 0

−𝑖

𝑖
Frequency domain transfer 
function for our 90° phase 
shifter,

ℎ 𝑡 = 𝐹$% 𝐻(𝜔) = 𝐹$% −𝑖𝑠𝑔𝑛(𝜔) = −𝑖𝐹$% sgn(𝜔) =
1
𝜋𝑡 From tables.

So we can phase shift an arbitrary function (where the FT exists) by 
convolving with ℎ(𝑡).
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𝐻 𝜔 = −𝑖𝑠𝑔𝑛(𝜔)

sgn(𝜔)

𝜔 = 0

1

−1Signum function,

𝜔 = 0

−𝑖

𝑖
Frequency domain transfer 
function for our 90° phase 
shifter,

ℎ 𝑡 = 𝐹$% 𝐻(𝜔) = 𝐹$% −𝑖𝑠𝑔𝑛(𝜔) = −𝑖𝐹$% sgn(𝜔) =
1
𝜋𝑡 From tables.

So we can phase shift an arbitrary function (where the FT exists) by 
convolving with ℎ(𝑡).

ℎ 𝑡 ∗ 𝑓 𝑡 = ∫$&
& ' ($)

!)
𝑑𝜏 = ∫$&

& ' )
! ($)

𝑑𝜏 ≡ Hilbert transform.
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Because of the pole in the transform, and depending on 𝑓(𝑡), a technique such as 
Cauchy Principal Value may be needed to solve the integral.
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Because of the pole in the transform, and depending on 𝑓(𝑡), a technique such as 
Cauchy Principal Value may be needed to solve the integral.

If the pole is at 𝛾 on the interval 𝛼, 𝛽

𝑃𝑉N
*

+
𝑓 𝜏 𝑑𝜏 = lim

,→#
N
*

.$,
𝑓 𝜏 𝑑𝜏 + N

./,

+
𝑓 𝜏 𝑑𝜏
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Because of the pole in the transform, and depending on 𝑓(𝑡), a technique such as 
Cauchy Principal Value may be needed to solve the integral.

If the pole is at 𝛾 on the interval 𝛼, 𝛽

𝑃𝑉N
*

+
𝑓 𝜏 𝑑𝜏 = lim

,→#
N
*

.$,
𝑓 𝜏 𝑑𝜏 + N

./,

+
𝑓 𝜏 𝑑𝜏

Or one could use tables or the matlab hilbert function.

The matlab hilbert command returns the analytic signal rather than the Hilbert 
transform.
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]

Recall 𝐻 𝜙 𝑡 = ℎ(𝑡) ∗ 𝜙(𝑡)
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]

Recall 𝐻 𝜙 𝑡 = ℎ(𝑡) ∗ 𝜙(𝑡)

𝐹 𝐻[𝜙 𝑡 ] = 𝐹 ℎ(𝑡) ∗ 𝜙(𝑡)

= 𝐻 𝑓 Φ(𝑓)
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]

𝑓 = 0

1

−1

sgn(𝑓)

Recall 𝐻 𝜙 𝑡 = ℎ(𝑡) ∗ 𝜙(𝑡)

𝐹 𝐻[𝜙 𝑡 ] = 𝐹 ℎ(𝑡) ∗ 𝜙(𝑡)

= 𝐻 𝑓 Φ(𝑓)

= −𝑖𝑠𝑔𝑛(𝑓)Φ(𝑓)
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]

= Φ 𝑓 − 𝑖 𝑖𝑠𝑔𝑛 𝑓 Φ(𝑓)

𝑓 = 0

1

−1

sgn(𝑓)

Recall 𝐻 𝜙 𝑡 = ℎ(𝑡) ∗ 𝜙(𝑡)

𝐹 𝐻[𝜙 𝑡 ] = 𝐹 ℎ(𝑡) ∗ 𝜙(𝑡)

= 𝐻 𝑓 Φ(𝑓)

= −𝑖𝑠𝑔𝑛(𝑓)Φ(𝑓)
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]

= Φ 𝑓 − 𝑖 𝑖𝑠𝑔𝑛 𝑓 Φ(𝑓)

= Φ 𝑓 + sgn 𝑓 Φ(𝑓)

𝑓 = 0

1

−1

sgn(𝑓)

Recall 𝐻 𝜙 𝑡 = ℎ(𝑡) ∗ 𝜙(𝑡)

𝐹 𝐻[𝜙 𝑡 ] = 𝐹 ℎ(𝑡) ∗ 𝜙(𝑡)

= 𝐻 𝑓 Φ(𝑓)

= −𝑖𝑠𝑔𝑛(𝑓)Φ(𝑓)
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The analytic signal is such that the real and imaginary parts are related by the 
Hilbert transform and has a one-sided spectrum.

𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ]

𝐹 𝑎 𝑡 = 𝐹 𝜙 𝑡 − 𝑖𝐹 𝐻[𝜙 𝑡 ]

= Φ 𝑓 − 𝑖 𝑖𝑠𝑔𝑛 𝑓 Φ(𝑓)

= Φ 𝑓 + sgn 𝑓 Φ(𝑓)

𝑓 = 0

1

−1

sgn(𝑓)= T
0, 𝑓 < 0

2Φ 𝑓 , 𝑓 > 0

Recall 𝐻 𝜙 𝑡 = ℎ(𝑡) ∗ 𝜙(𝑡)

𝐹 𝐻[𝜙 𝑡 ] = 𝐹 ℎ(𝑡) ∗ 𝜙(𝑡)

= 𝐻 𝑓 Φ(𝑓)

= −𝑖𝑠𝑔𝑛(𝑓)Φ(𝑓)
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Then for a real valued signal, the analytic function is the inverse fourier
transform of the one-sided spectrum of the real-valued signal.

That is, given 𝜙 𝑡 and it’s one sided spectrum, T
0, 𝑓 < 0

2Φ 𝑓 , 𝑓 > 0

The inverse FT of that one sided spectrum is the analytic signal.  And 
the real part of the analytic signal is the original real-valued function.

run matlab program hilber_examp.m
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𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ] = 𝑎(𝑡) 𝑒01(() 𝑎(𝑡) is the envelope function of 𝜙(𝑡)
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𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ] = 𝑎(𝑡) 𝑒01(() 𝑎(𝑡) is the envelope function of 𝜙(𝑡)

https://www.mathworks.com/help/signal/ug/envelope-extraction-using-the-analytic-signal.html (last accessed July 27, 2020)

t = 0:1e-4:0.1; 
x = (1+cos(2*pi*50*t)).*cos(2*pi*1000*t); 
plot(t,x) xlim([0 0.04])

https://www.mathworks.com/help/signal/ug/envelope-extraction-using-the-analytic-signal.html


40y = hilbert(x); 
env = abs(y); 
plot_param = {'Color', [0.6 0.1 0.2],'Linewidth',2}; 
plot(t,x) 
hold on 
plot(t,[-1;1]*env,plot_param{:}) 
hold off 
xlim([0 0.04]) 
title('Hilbert Envelope')

The magnitude of the analytic 
signal captures the slowly 
varying features of the signal, 
while the phase contains 
information about the higher 
frequencies.

Returns the analytic signal not the Hilbert transform.
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𝑎 𝑡 = 𝜙 𝑡 − 𝑖𝐻[𝜙 𝑡 ] = 𝑎(𝑡) 𝑒01(()

𝜃 𝑡 = tan$%
𝐻[𝜙(𝑡)
𝜙(𝑡)

The instantaneous frequency tells us how the frequency of a signal varies with time.  
This is more useful for tracking quasi-monochromatic signals, or monochromatic 
changes in time, e.g. FM signals superimposed on a carrier wave or chirp functions 
used in reflection seismology.

𝑤 𝑡 =
𝑑𝜃
𝑑𝑡

You will see the analytic function in several places including developing a causal 
transfer function for dispersive media and in exploration seismology.

Instantaneous phase

Instantaneous frequency


