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In general, the 2-d FT of 𝑓(𝑥, 𝑦) is 𝐹(𝑢, 𝑣),

𝐹 𝑢, 𝑣 = +
!"

"
+
!"

"
𝑓 𝑥, 𝑦 𝑒!#$% &'()* 𝑑𝑥𝑑𝑦 and,

𝑓 𝑥, 𝑦 = +
!"

"
+
!"

"
𝐹(𝑢, 𝑣)𝑒#$% &'()* 𝑑𝑢𝑑𝑣
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𝜃
𝑟

𝑦

𝑥

𝑑𝑟

𝑟𝑑𝜃

Transform to polar coordinates.

𝑟$ = 𝑥$ + 𝑦$

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃
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Transform to polar coordinates.

𝑟$ = 𝑥$ + 𝑦$

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃

𝜌$ = 𝑢$ + 𝑣$ 𝑑𝑢𝑑𝑣 = 𝜌𝑑𝜌𝑑𝜙

𝑢 = 𝜌 cos𝜙 𝑣 = 𝜌 sin𝜙
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𝐹(𝑢, 𝑣) 𝐹 𝜌, 𝜙 = +
+,-

$%
+
.,-

"
𝑓(𝑟, 𝜃)𝑒!#$%/(1,+)𝑟𝑑𝑟𝑑𝜃
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𝐹(𝑢, 𝑣) 𝐹 𝜌, 𝜙 = +
+,-

$%
+
.,-

"
𝑓(𝑟, 𝜃)𝑒!#$%/(1,+)𝑟𝑑𝑟𝑑𝜃

If there is circular symmetry (and if there isn’t then the Hankel transform is not a 
good choice), then

𝑓 𝑟, 𝜃 = 𝑓(𝑟) and from 𝑥𝑢 + 𝑦𝑣, 𝑔 𝜙, 𝜃 = 𝑟 cos 𝜃 𝜌 cos 𝜙 + 𝑟 sin 𝜃 𝜌 sin(𝜙)

= 𝑟𝜌 cos(𝜃 − 𝜙)
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$%
+
-
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This is a job for Bessel functions.
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Bessel functions are solutions to the 2nd order differential equation, 

𝑥$𝑦88 + 𝑥𝑦8 + 𝑥$ − 𝑛$ 𝑦 = 0

𝐽9(𝑥) is a Bessel function of the first kind of order 𝑛. They are sometimes also called 
cylinder functions or cylindrical harmonics.
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𝐽9 𝑥 =
1

2𝜋𝑖9+-

$%
𝑒!#& 567 :𝑒#9:𝑑𝛽

One solution to the above differential equation is of the form,
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Figure source: 
https://mathworld.wolfram.com/Bes
selFunctionoftheFirstKind.html
Last accessed July 16, 2020

https://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
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𝐹 𝜌, 𝜙 = +
-

$;#
+
-

"
𝑟𝑓(𝑟)𝑒!#$%.4 567(+!1)𝑑𝑟𝑑𝜃 𝐽9 𝑥 =

1
2𝜋𝑖9

+
-

$%
𝑒!#& 567 :𝑒#9:𝑑𝛽

From before,
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1
2𝜋𝑖9

+
-

$%
𝑒!#& 567 :𝑒#9:𝑑𝛽

If we let 𝑛 = 0 (a Bessel function of the first kind of order 0), 𝛽 = 𝜃 − 𝜙 and 𝑑𝛽 =
𝑑𝜃 (𝜙 is constant in the integral over 𝜃), then

From before,
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So that, 𝐹 𝜌 = 2𝜋+
-

"
𝑟𝑓(𝑟)𝐽- 2𝜋𝑟𝜌 𝑑𝑟

Similarly, 𝑓 𝑟 = 2𝜋+
-

"
𝜌𝐹(𝜌)𝐽- 2𝜋𝑟𝜌 𝑑𝜌

Hankel Transform Pair

From before,
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Let 𝑓 𝑟 = Π 𝑟 = C1, 𝑟 < 1
0, 𝑟 > 1 A cylinder.
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Let 𝑓 𝑟 = Π 𝑟 = C1, 𝑟 < 1
0, 𝑟 > 1 A cylinder.

𝐹 𝜌 = 2𝜋+
-

"
𝑟𝑓(𝑟)𝐽- 2𝜋𝑟𝜌 𝑑𝑟 = 2𝜋+

-

<
𝑟𝐽- 2𝜋𝑟𝜌 𝑑𝑟
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𝑟𝐽- 2𝜋𝑟𝜌 𝑑𝑟

Let 𝑟8 = 2𝜋𝑟𝜌 𝑟 =
𝑟′
2𝜋𝜌 𝑑𝑟 =

𝑑𝑟′
2𝜋𝜌

𝑟𝑑𝑟 =
𝑟8𝑑𝑟′
2𝜋𝜌 $
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2𝜋𝜌$+-

$%4
𝑟′𝐽- 𝑟8 𝑑𝑟′ From tables, +

-

&
𝜖𝐽- 𝜖 𝑑𝜖 = 𝑥𝐽<(𝑥)
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𝜖𝐽- 𝜖 𝑑𝜖 = 𝑥𝐽<(𝑥)
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2𝜋𝜌$ 2𝜋𝜌𝐽< 2𝜋𝜌 =
𝐽< 2𝜋𝜌

𝜌
A Jinc function.  The 2-d polar 
coordinate analog of the sinc
function.
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x=2*pi*(0.01:0.01:10);
y=besselj(1,x)./x;
plot(x,y)


