
IIR Filters

1

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 5

2

Consider an output 𝑦 from an input 𝑥 where 𝑦 is based on weighted values of
previous 𝑥 and weighted values of previous 𝑦. This is a recursive filter and can
be of the form,

3

Consider an output 𝑦 from an input 𝑥 where 𝑦 is based on weighted values of
previous 𝑥 and weighted values of previous 𝑦. This is a recursive filter and can
be of the form,

#
!"#

$

𝑎!𝑦%&! = #
'"#

(

𝑏'𝑥%&' These are weighted averages.

4

Consider an output 𝑦 from an input 𝑥 where 𝑦 is based on weighted values of
previous 𝑥 and weighted values of previous 𝑦. This is a recursive filter and can
be of the form,

#
!"#

$

𝑎!𝑦%&! = #
'"#

(

𝑏'𝑥%&' These are weighted averages.

The 𝑛)* output is at 𝑘 = 0. 𝑎#𝑦% +#
!"+

$

𝑎!𝑦%&! = #
'"#

(

𝑏'𝑥%&'

5

Consider an output 𝑦 from an input 𝑥 where 𝑦 is based on weighted values of
previous 𝑥 and weighted values of previous 𝑦. This is a recursive filter and can
be of the form,

#
!"#

$

𝑎!𝑦%&! = #
'"#

(

𝑏'𝑥%&' These are weighted averages.

The 𝑛)* output is at 𝑘 = 0. 𝑎#𝑦% +#
!"+

$

𝑎!𝑦%&! = #
'"#

(

𝑏'𝑥%&'

𝑦% =
∑'"#(𝑏'𝑥%&' − ∑!"+$ 𝑎!𝑦%&!

𝑎#

The filter coefficients are 𝑎 and 𝑏, the input is
𝑥 so we find the Z transform of both sides to
determine the transfer function of the linear
system.

6

#
%"&,

,

#
!"#

$

𝑎!𝑦%&! 𝑧&% = #
%"&,

,

#
'"#

(

𝑏'𝑥%&' 𝑧&%

7

#
%"&,

,

#
!"#

$

𝑎!𝑦%&! 𝑧&% = #
%"&,

,

#
'"#

(

𝑏'𝑥%&' 𝑧&%

#
!"#

$

𝑎! #
%"&,

,

𝑦%&!𝑧&% = #
'"#

(

𝑏' #
%"&,

,

𝑥%&'𝑧&%

8

#
%"&,

,

#
!"#

$

𝑎!𝑦%&! 𝑧&% = #
%"&,

,

#
'"#

(

𝑏'𝑥%&' 𝑧&%

#
!"#

$

𝑎! #
%"&,

,

𝑦%&!𝑧&% = #
'"#

(

𝑏' #
%"&,

,

𝑥%&'𝑧&%

#
!"#

$

𝑎!𝑧&! #
%"&,

,

𝑦%&!𝑧& %&! = #
'"#

(

𝑏'𝑧&' #
%"&,

,

𝑥%&'𝑧& %&'

9

#
%"&,

,

#
!"#

$

𝑎!𝑦%&! 𝑧&% = #
%"&,

,

#
'"#

(

𝑏'𝑥%&' 𝑧&%

#
!"#

$

𝑎! #
%"&,

,

𝑦%&!𝑧&% = #
'"#

(

𝑏' #
%"&,

,

𝑥%&'𝑧&%

#
!"#

$

𝑎!𝑧&! #
%"&,

,

𝑦%&!𝑧& %&! = #
'"#

(

𝑏'𝑧&' #
%"&,

,

𝑥%&'𝑧& %&'

𝑌 𝑧 #
!"#

$

𝑎!𝑧&! = 𝑋(𝑧) #
'"#

(

𝑏'𝑧&'

10

#
%"&,

,

#
!"#

$

𝑎!𝑦%&! 𝑧&% = #
%"&,

,

#
'"#

(

𝑏'𝑥%&' 𝑧&%

#
!"#

$

𝑎! #
%"&,

,

𝑦%&!𝑧&% = #
'"#

(

𝑏' #
%"&,

,

𝑥%&'𝑧&%

#
!"#

$

𝑎!𝑧&! #
%"&,

,

𝑦%&!𝑧& %&! = #
'"#

(

𝑏'𝑧&' #
%"&,

,

𝑥%&'𝑧& %&'

𝑌 𝑧 #
!"#

$

𝑎!𝑧&! = 𝑋(𝑧) #
'"#

(

𝑏'𝑧&' Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

∑'"#(𝑏'𝑧&'

∑!"#$ 𝑎!𝑧&!

We require lim%→,𝜙% = 0 for the filter to be stable.

11

Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

∑'"#(𝑏'𝑧&'

∑!"#$ 𝑎!𝑧&!

If we had the weights, 𝑎 and 𝑏 for our recursive filter along with the input 𝑥, we could
use the matlab filter command to get the output, 𝑦.

12

Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

∑'"#(𝑏'𝑧&'

∑!"#$ 𝑎!𝑧&!

If we had the weights, 𝑎 and 𝑏 for our recursive filter along with the input 𝑥, we could
use the matlab filter command to get the output, 𝑦.

Recall from the Laplace transform that if the poles lie in the left half of the s-plane,
then the filter will be stable. Likewise, transfer functions with poles in the z-plane
that lie within the unit circle will be stable (decay with time).

𝑧 = 𝑒. = 𝑒/012 𝜎 < 0 is the left side of the s-plane, and 𝑧 < 1.

13

Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

∑'"#(𝑏'𝑧&'

∑!"#$ 𝑎!𝑧&!

If we had the weights, 𝑎 and 𝑏 for our recursive filter along with the input 𝑥, we could
use the matlab filter command to get the output, 𝑦.

Recall from the Laplace transform that if the poles lie in the left half of the s-plane,
then the filter will be stable. Likewise, transfer functions with poles in the z-plane
that lie within the unit circle will be stable (decay with time).

There are numerous ways to design IIR filters and we will explore two. As we did
with FIR filters we’ll start with an ideal filter response then attempt to match that
continuous response to a discrete finite length approximation.

𝑧 = 𝑒. = 𝑒/012 𝜎 < 0 is the left side of the s-plane, and 𝑧 < 1.

14

Impulse Invariance Method of IIR filter design.

Consider a system described by, 𝜏
𝑑𝑦
𝑑𝑡 + 𝑦 = 𝑥 𝜏 is real

15

Impulse Invariance Method of IIR filter design.

Consider a system described by, 𝜏
𝑑𝑦
𝑑𝑡 + 𝑦 = 𝑥 𝜏 is real

𝐿 𝜏𝑦̇ + 𝑦 = 𝐿[𝑥] 𝜏𝐿 𝑦̇ + 𝐿 𝑦 = 𝑋(𝑠) 𝜏 𝑠𝐿 𝑦 − 𝑦(0) + 𝑌 𝑠 = 𝑋(𝑠)

16

Impulse Invariance Method of IIR filter design.

Consider a system described by, 𝜏
𝑑𝑦
𝑑𝑡 + 𝑦 = 𝑥 𝜏 is real

𝐿 𝜏𝑦̇ + 𝑦 = 𝐿[𝑥] 𝜏𝐿 𝑦̇ + 𝐿 𝑦 = 𝑋(𝑠) 𝜏 𝑠𝐿 𝑦 − 𝑦(0) + 𝑌 𝑠 = 𝑋(𝑠)

Assume 𝑦 0 = 0 𝑠𝜏𝑌 𝑠 + 𝑌 𝑠 = 𝑋(𝑠) 𝑌 𝑠 𝑠𝜏 + 1 = 𝑋(𝑠)

17

Impulse Invariance Method of IIR filter design.

Consider a system described by, 𝜏
𝑑𝑦
𝑑𝑡 + 𝑦 = 𝑥 𝜏 is real

𝐿 𝜏𝑦̇ + 𝑦 = 𝐿[𝑥] 𝜏𝐿 𝑦̇ + 𝐿 𝑦 = 𝑋(𝑠) 𝜏 𝑠𝐿 𝑦 − 𝑦(0) + 𝑌 𝑠 = 𝑋(𝑠)

Assume 𝑦 0 = 0 𝑠𝜏𝑌 𝑠 + 𝑌 𝑠 = 𝑋(𝑠) 𝑌 𝑠 𝑠𝜏 + 1 = 𝑋(𝑠)

Φ 𝑠 =
𝑌(𝑠)
𝑋(𝑠) =

1
1 + 𝜏𝑠

A low pass filter. 1 pole @ 𝑠 = − +
3

Stable for 𝜏 > 0

18

Impulse Invariance Method of IIR filter design.

Consider a system described by, 𝜏
𝑑𝑦
𝑑𝑡 + 𝑦 = 𝑥 𝜏 is real

𝐿 𝜏𝑦̇ + 𝑦 = 𝐿[𝑥] 𝜏𝐿 𝑦̇ + 𝐿 𝑦 = 𝑋(𝑠) 𝜏 𝑠𝐿 𝑦 − 𝑦(0) + 𝑌 𝑠 = 𝑋(𝑠)

Assume 𝑦 0 = 0 𝑠𝜏𝑌 𝑠 + 𝑌 𝑠 = 𝑋(𝑠) 𝑌 𝑠 𝑠𝜏 + 1 = 𝑋(𝑠)

Φ 𝑠 =
𝑌(𝑠)
𝑋(𝑠) =

1
1 + 𝜏𝑠

A low pass filter. 1 pole @ 𝑠 = − +
3

Stable for 𝜏 > 0

We can find the more familiar frequency response by setting 𝑠 = 2𝜋𝑖𝑓

Φ 𝑓 =
1

1 + 𝑖2𝜋𝜏𝑓 1@f=0 and <1 for f>0

19

Recall, 𝐿&+
1

𝑎 + 𝑠 = 𝑒&4)

𝜙 𝑡 = 𝐿&+ Φ(𝑠) = 𝐿&+
1

1 + 𝑠𝜏

20

Recall, 𝐿&+
1

𝑎 + 𝑠 = 𝑒&4)

𝜙 𝑡 = 𝐿&+ Φ(𝑠) = 𝐿&+
1

1 + 𝑠𝜏 =
1
𝜏 𝐿

&+ 1
1
𝜏 + 𝑠

21

Recall, 𝐿&+
1

𝑎 + 𝑠 = 𝑒&4)

𝜙 𝑡 = 𝐿&+ Φ(𝑠) = 𝐿&+
1

1 + 𝑠𝜏 =
1
𝜏 𝐿

&+ 1
1
𝜏 + 𝑠

=
1
𝜏 𝐻(𝑡)𝑒

&)/3

I1 𝜏

𝑡

𝑡 = 0

22

Recall, 𝐿&+
1

𝑎 + 𝑠 = 𝑒&4)

𝜙 𝑡 = 𝐿&+ Φ(𝑠) = 𝐿&+
1

1 + 𝑠𝜏 =
1
𝜏 𝐿

&+ 1
1
𝜏 + 𝑠

=
1
𝜏 𝐻(𝑡)𝑒

&)/3

I1 𝜏

𝑡

𝑡 = 0

Here 𝜏 is the characteristic decay time. 𝜙(𝑡) has non-zero output for all 𝑡 > 0 which
means the length of the time domain response is infinite. Thus it’s not easy to
model with a FIR filter so instead we use an IIR filter. This is true of the recursive
class of filters of which ours is a simple example.

23

Recall, 𝐿&+
1

𝑎 + 𝑠 = 𝑒&4)

𝜙 𝑡 = 𝐿&+ Φ(𝑠) = 𝐿&+
1

1 + 𝑠𝜏 =
1
𝜏 𝐿

&+ 1
1
𝜏 + 𝑠

=
1
𝜏 𝐻(𝑡)𝑒

&)/3

I1 𝜏

𝑡

𝑡 = 0

Here 𝜏 is the characteristic decay time. 𝜙(𝑡) has non-zero output for all 𝑡 > 0 which
means the length of the time domain response is infinite. Thus it’s not easy to
model with a FIR filter so instead we use an IIR filter. This is true of the recursive
class of filters of which ours is a simple example.

In the impulse invariance method of IIR filter design we select the discrete
recursive filter with impulse response that best matches the desired
continuous response.

24

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

25

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

Require for 𝑛 < 0, 𝑥% = 𝑦% = 0

26

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

Require for 𝑛 < 0, 𝑥% = 𝑦% = 0

at 𝑛 = 0, let 𝑥# = 1, then 𝑦# = 1 − 𝛼

27

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

Require for 𝑛 < 0, 𝑥% = 𝑦% = 0

at 𝑛 = 0, let 𝑥# = 1, then 𝑦# = 1 − 𝛼

𝑛 > 0, 𝑥% = 0 (an impulse input), and 𝑦% = 𝛼𝑦%&+

28

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

Require for 𝑛 < 0, 𝑥% = 𝑦% = 0

at 𝑛 = 0, let 𝑥# = 1, then 𝑦# = 1 − 𝛼

𝑛 > 0, 𝑥% = 0 (an impulse input), and 𝑦% = 𝛼𝑦%&+

𝑦+ = 𝛼𝑦#

𝑦6 = 𝛼𝑦+ = 𝛼 𝛼𝑦#

29

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

Require for 𝑛 < 0, 𝑥% = 𝑦% = 0

at 𝑛 = 0, let 𝑥# = 1, then 𝑦# = 1 − 𝛼

𝑛 > 0, 𝑥% = 0 (an impulse input), and 𝑦% = 𝛼𝑦%&+

𝑦+ = 𝛼𝑦#

𝑦6 = 𝛼𝑦+ = 𝛼 𝛼𝑦#

𝑦% = 𝛼%𝑦# = 𝛼% 1 − 𝛼
⋮

𝛼 < 1

This decays exponentially like we want, in order to model 𝜙(𝑡).

30

Consider, 𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼

Require for 𝑛 < 0, 𝑥% = 𝑦% = 0

at 𝑛 = 0, let 𝑥# = 1, then 𝑦# = 1 − 𝛼

𝑛 > 0, 𝑥% = 0 (an impulse input), and 𝑦% = 𝛼𝑦%&+

𝑦+ = 𝛼𝑦#

𝑦6 = 𝛼𝑦+ = 𝛼 𝛼𝑦#

𝑦% = 𝛼%𝑦# = 𝛼% 1 − 𝛼
⋮

𝛼 < 1

This decays exponentially like we want, in order to model 𝜙(𝑡).
We also want 𝜙 0 = +

3
= 𝑦#.

Set +
3
= 1 − 𝛼 → 𝛼 = 1 − +

3 See A&B figure 5.12

31

32

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

33

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

34

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

#
%"&,

,

𝑦%𝑧&% − 𝛼 #
%"&,

,

𝑦%&+𝑧&% = 1 − 𝛼 #
%"&,

,

𝑥%𝑧&%

35

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

#
%"&,

,

𝑦%𝑧&% − 𝛼 #
%"&,

,

𝑦%&+𝑧&% = 1 − 𝛼 #
%"&,

,

𝑥%𝑧&%

𝑌 𝑧 − 𝛼𝑧&+ #
%"&,

,

𝑦%&+𝑧& %&+ = 1 − 𝛼 𝑋(𝑧)

36

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

#
%"&,

,

𝑦%𝑧&% − 𝛼 #
%"&,

,

𝑦%&+𝑧&% = 1 − 𝛼 #
%"&,

,

𝑥%𝑧&%

𝑌 𝑧 − 𝛼𝑧&+ #
%"&,

,

𝑦%&+𝑧& %&+ = 1 − 𝛼 𝑋(𝑧)

𝑌 𝑧 1 − 𝛼𝑧&+ = 1 − 𝛼 𝑋(𝑧)

37

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

#
%"&,

,

𝑦%𝑧&% − 𝛼 #
%"&,

,

𝑦%&+𝑧&% = 1 − 𝛼 #
%"&,

,

𝑥%𝑧&%

𝑌 𝑧 − 𝛼𝑧&+ #
%"&,

,

𝑦%&+𝑧& %&+ = 1 − 𝛼 𝑋(𝑧)

𝑌 𝑧 1 − 𝛼𝑧&+ = 1 − 𝛼 𝑋(𝑧) Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

1 − 𝛼
1 − 𝛼𝑧&+

38

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

#
%"&,

,

𝑦%𝑧&% − 𝛼 #
%"&,

,

𝑦%&+𝑧&% = 1 − 𝛼 #
%"&,

,

𝑥%𝑧&%

𝑌 𝑧 − 𝛼𝑧&+ #
%"&,

,

𝑦%&+𝑧& %&+ = 1 − 𝛼 𝑋(𝑧)

𝑌 𝑧 1 − 𝛼𝑧&+ = 1 − 𝛼 𝑋(𝑧) Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

1 − 𝛼
1 − 𝛼𝑧&+

Let 𝜎 = 0 and normalize by 𝑓. so that 𝑧 = 𝑒. = 𝑒1678/8!

39

𝑦% − 𝛼𝑦%&+ = 𝑥% 1 − 𝛼Our discrete approximation:

Find the Z transform to get the transfer function for the filter.

𝑍 𝑦% − 𝛼𝑦%&+ = 𝑍 𝑥% 1 − 𝛼

#
%"&,

,

𝑦%𝑧&% − 𝛼 #
%"&,

,

𝑦%&+𝑧&% = 1 − 𝛼 #
%"&,

,

𝑥%𝑧&%

𝑌 𝑧 − 𝛼𝑧&+ #
%"&,

,

𝑦%&+𝑧& %&+ = 1 − 𝛼 𝑋(𝑧)

𝑌 𝑧 1 − 𝛼𝑧&+ = 1 − 𝛼 𝑋(𝑧) Φ 𝑧 =
𝑌(𝑧)
𝑋(𝑧) =

1 − 𝛼
1 − 𝛼𝑧&+

Let 𝜎 = 0 and normalize by 𝑓. so that 𝑧 = 𝑒. = 𝑒1678/8!

Φ 𝑓 =
1 − 𝛼

1 − 𝛼𝑒&1678/8!
𝛼 = 1 −

1
𝜏 𝜏 is the characteristic decay time.

See A&B figure 5.13

40

41

So we essentially made an educated guess at the discrete equation that best fits
the continuous time domain response. We then examined the frequency domain
response of that discrete filter.

42

So we essentially made an educated guess at the discrete equation that best fits
the continuous time domain response. We then examined the frequency domain
response of that discrete filter.

The discrete response must maintain periodicity while the continuous continues
to decay at about 6db per octave (1 pole and no zeros).

43

So we essentially made an educated guess at the discrete equation that best fits
the continuous time domain response. We then examined the frequency domain
response of that discrete filter.

Not a particularly formulaic design method.

Let’s try the Bilinear Transform.

The discrete response must maintain periodicity while the continuous continues
to decay at about 6db per octave (1 pole and no zeros).

44

The bilinear transform ”pre-warps” the s-domain into the z-domain (i.e. from
infinite frequency to periodic) using the tangent.

Our low pass filter from before, 𝜏𝑦̇ + 𝑦 = 𝑥 Φ 𝑠 =
1

1 + 𝜏𝑠 𝜙 𝑡 =
1
𝜏 𝐻(𝑡)𝑒

&)/3

45

The bilinear transform ”pre-warps” the s-domain into the z-domain (i.e. from
infinite frequency to periodic) using the tangent.

Our low pass filter from before, 𝜏𝑦̇ + 𝑦 = 𝑥 Φ 𝑠 =
1

1 + 𝜏𝑠 𝜙 𝑡 =
1
𝜏 𝐻(𝑡)𝑒

&)/3

The bilinear transform sets 𝑠 =
2
∆ O

1 − 𝑧&+

1 + 𝑧&+ ∆ is the sample rate.

46

The bilinear transform ”pre-warps” the s-domain into the z-domain (i.e. from
infinite frequency to periodic) using the tangent.

Our low pass filter from before, 𝜏𝑦̇ + 𝑦 = 𝑥 Φ 𝑠 =
1

1 + 𝜏𝑠 𝜙 𝑡 =
1
𝜏 𝐻(𝑡)𝑒

&)/3

The bilinear transform sets 𝑠 =
2
∆ O

1 − 𝑧&+

1 + 𝑧&+ ∆ is the sample rate.

Φ 𝑧 =
1

1 + 𝜏 2∆
1 − 𝑧&+
1 + 𝑧&+

=
1

1 + 2𝜏
∆ 𝑖 tan 𝜋𝑓

𝑓.

So that,

See A&B Figures 5.14 and 5.15

47

48

49

So that’s nice, but where does it come from and why does it work?

50

So that’s nice, but where does it come from and why does it work?

The fundamental theorem of calculus says, S
4

9
𝑓: 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓(𝑎)

51

So that’s nice, but where does it come from and why does it work?

The fundamental theorem of calculus says, S
4

9
𝑓: 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓(𝑎)

We can write discrete 𝑦 and sample interval ∆ as an integral of the change in 𝑦.

52

So that’s nice, but where does it come from and why does it work?

The fundamental theorem of calculus says, S
4

9
𝑓: 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓(𝑎)

We can write discrete 𝑦 and sample interval ∆ as an integral of the change in 𝑦.

S
%&+ ∆

%∆
𝑦̇ 𝑢 𝑑𝑢 = 𝑦 𝑛∆ − 𝑦 𝑛 − 1 ∆

53

So that’s nice, but where does it come from and why does it work?

The fundamental theorem of calculus says, S
4

9
𝑓: 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓(𝑎)

We can write discrete 𝑦 and sample interval ∆ as an integral of the change in 𝑦.

S
%&+ ∆

%∆
𝑦̇ 𝑢 𝑑𝑢 = 𝑦 𝑛∆ − 𝑦 𝑛 − 1 ∆ So that the 𝑛)* 𝑦 is

𝑦 𝑛∆ = S
(%&+)∆

%∆
𝑦̇ 𝑢 𝑑𝑢 + 𝑦 𝑛 − 1 ∆

54
The trapezoid rule

𝑓(𝑥4)

𝑓(𝑥9)

∆𝑥

𝑓 𝑥9 − 𝑓(𝑥4)

𝑥

𝑓(𝑥)

55
The trapezoid rule

𝑓(𝑥4)

𝑓(𝑥9)

∆𝑥

𝑓 𝑥9 − 𝑓(𝑥4)

𝑥

𝑓(𝑥)

Area of triangle

=
1
2 𝑓 𝑥9 − 𝑓 𝑥4 ∆𝑥

56
The trapezoid rule

𝑓(𝑥4)

𝑓(𝑥9)

∆𝑥

𝑓 𝑥9 − 𝑓(𝑥4)

𝑥

𝑓(𝑥)

Area of triangle

=
1
2 𝑓 𝑥9 − 𝑓 𝑥4 ∆𝑥

Area of rectangle = 𝑓 𝑥4 ∆𝑥

57
The trapezoid rule

𝑓(𝑥4)

𝑓(𝑥9)

∆𝑥

𝑓 𝑥9 − 𝑓(𝑥4)

𝑥

𝑓(𝑥)

Area of triangle

=
1
2 𝑓 𝑥9 − 𝑓 𝑥4 ∆𝑥

Area of rectangle = 𝑓 𝑥4 ∆𝑥

Total area =
1
2 𝑓 𝑥9 − 𝑓 𝑥4 ∆𝑥 + 𝑓 𝑥4 ∆𝑥 =

∆𝑥
2 𝑓 𝑥4 + 𝑓 𝑥9

58
The trapezoid rule

𝑓(𝑥4)

𝑓(𝑥9)

∆𝑥

𝑓 𝑥9 − 𝑓(𝑥4)

𝑥

𝑓(𝑥)

Area of triangle

=
1
2 𝑓 𝑥9 − 𝑓 𝑥4 ∆𝑥

Area of rectangle = 𝑓 𝑥4 ∆𝑥

Total area =
1
2 𝑓 𝑥9 − 𝑓 𝑥4 ∆𝑥 + 𝑓 𝑥4 ∆𝑥 =

∆𝑥
2 𝑓 𝑥4 + 𝑓 𝑥9

So that

𝑦 𝑛∆ ≅ S
(%&+)∆

%∆
𝑦̇ 𝑢 𝑑𝑢 + 𝑦 𝑛 − 1 ∆ =

∆
2
𝑦̇ ∆ 𝑛 − 1 + 𝑦̇ ∆𝑛 + 𝑦 ∆ 𝑛 − 1

59

Our original differential equation is
𝑦̇% =

1
𝜏 𝑥% − 𝑦%

𝑦̇%&+ =
1
𝜏
𝑥%&+ − 𝑦%&+

60

Our original differential equation is
𝑦̇% =

1
𝜏 𝑥% − 𝑦%

𝑦̇%&+ =
1
𝜏
𝑥%&+ − 𝑦%&+

∴ 𝑦̇% + 𝑦̇%&+ =
1
𝜏
𝑥% + 𝑥%&+ − 𝑦% − 𝑦%&+

61

Our original differential equation is
𝑦̇% =

1
𝜏 𝑥% − 𝑦%

𝑦̇%&+ =
1
𝜏
𝑥%&+ − 𝑦%&+

∴ 𝑦̇% + 𝑦̇%&+ =
1
𝜏
𝑥% + 𝑥%&+ − 𝑦% − 𝑦%&+

Rewriting the trapezoid rule,

∆
2 𝑦̇ ∆ 𝑛 − 1 + 𝑦̇ ∆𝑛 + 𝑦 ∆ 𝑛 − 1 𝑦% ≅

∆
2 𝑦̇%&+ + 𝑦̇% + 𝑦%&+

62

Our original differential equation is
𝑦̇% =

1
𝜏 𝑥% − 𝑦%

𝑦̇%&+ =
1
𝜏
𝑥%&+ − 𝑦%&+

∴ 𝑦̇% + 𝑦̇%&+ =
1
𝜏
𝑥% + 𝑥%&+ − 𝑦% − 𝑦%&+

Rewriting the trapezoid rule,

∆
2 𝑦̇ ∆ 𝑛 − 1 + 𝑦̇ ∆𝑛 + 𝑦 ∆ 𝑛 − 1 𝑦% ≅

∆
2 𝑦̇%&+ + 𝑦̇% + 𝑦%&+

Substituting 𝑦% ≅
∆
2
1
𝜏 𝑥% + 𝑥%&+ − 𝑦% − 𝑦%&+ + 𝑦%&+

63

Our original differential equation is
𝑦̇% =

1
𝜏 𝑥% − 𝑦%

𝑦̇%&+ =
1
𝜏
𝑥%&+ − 𝑦%&+

∴ 𝑦̇% + 𝑦̇%&+ =
1
𝜏
𝑥% + 𝑥%&+ − 𝑦% − 𝑦%&+

Rewriting the trapezoid rule,

∆
2 𝑦̇ ∆ 𝑛 − 1 + 𝑦̇ ∆𝑛 + 𝑦 ∆ 𝑛 − 1 𝑦% ≅

∆
2 𝑦̇%&+ + 𝑦̇% + 𝑦%&+

Substituting 𝑦% ≅
∆
2
1
𝜏 𝑥% + 𝑥%&+ − 𝑦% − 𝑦%&+ + 𝑦%&+

=
∆
2𝜏
𝑥% +

∆
2𝜏
𝑥%&+ −

∆
2𝜏
𝑦% −

∆
2𝜏
𝑦%&+ + 𝑦%&+

64

𝑦% ≅
∆
2𝜏 𝑥% +

∆
2𝜏 𝑥%&+ −

∆
2𝜏 𝑦% −

∆
2𝜏 𝑦%&+ + 𝑦%&+

𝑦% +
∆
2𝜏 𝑦% +

∆
2𝜏 𝑦%&+ − 𝑦%&+ =

∆
2𝜏 𝑥% + 𝑥%&+

From previous slide

Collect terms

65

𝑦% ≅
∆
2𝜏 𝑥% +

∆
2𝜏 𝑥%&+ −

∆
2𝜏 𝑦% −

∆
2𝜏 𝑦%&+ + 𝑦%&+

𝑦% +
∆
2𝜏 𝑦% +

∆
2𝜏 𝑦%&+ − 𝑦%&+ =

∆
2𝜏 𝑥% + 𝑥%&+

𝑦% 1 +
∆
2𝜏

− 𝑦%&+ 1 −
∆
2𝜏

=
∆
2𝜏

𝑥% + 𝑥%&+

From previous slide

Collect terms

Clean up

66

𝑦% ≅
∆
2𝜏 𝑥% +

∆
2𝜏 𝑥%&+ −

∆
2𝜏 𝑦% −

∆
2𝜏 𝑦%&+ + 𝑦%&+

𝑦% +
∆
2𝜏 𝑦% +

∆
2𝜏 𝑦%&+ − 𝑦%&+ =

∆
2𝜏 𝑥% + 𝑥%&+

𝑦% 1 +
∆
2𝜏

− 𝑦%&+ 1 −
∆
2𝜏

=
∆
2𝜏

𝑥% + 𝑥%&+

From previous slide

Collect terms

Clean up

Now find the z transform of both sides

1 +
∆
2𝜏 #

%"&,

,

𝑦%𝑧&% − 1 −
∆
2𝜏 #

%"&,

,

𝑦%&+𝑧&% =
∆
2𝜏 #

%"&,

,

𝑥%𝑧&% + #
%"&,

,

𝑥%&+𝑧&%

67

𝑦% ≅
∆
2𝜏 𝑥% +

∆
2𝜏 𝑥%&+ −

∆
2𝜏 𝑦% −

∆
2𝜏 𝑦%&+ + 𝑦%&+

𝑦% +
∆
2𝜏 𝑦% +

∆
2𝜏 𝑦%&+ − 𝑦%&+ =

∆
2𝜏 𝑥% + 𝑥%&+

𝑦% 1 +
∆
2𝜏

− 𝑦%&+ 1 −
∆
2𝜏

=
∆
2𝜏

𝑥% + 𝑥%&+

From previous slide

Collect terms

Clean up

Now find the z transform of both sides

1 +
∆
2𝜏 #

%"&,

,

𝑦%𝑧&% − 1 −
∆
2𝜏 #

%"&,

,

𝑦%&+𝑧&% =
∆
2𝜏 #

%"&,

,

𝑥%𝑧&% + #
%"&,

,

𝑥%&+𝑧&%

1 +
∆
2𝜏 𝑌 𝑧 − 1 −

∆
2𝜏 𝑧&+𝑌 𝑧 =

∆
2𝜏 𝑋(𝑧) 1 + 𝑧

&+

68

1 +
∆
2𝜏

𝑌 𝑧 − 1 −
∆
2𝜏

𝑧&+𝑌 𝑧 =
∆
2𝜏
𝑋(𝑧) 1 + 𝑧&+From previous slide,

𝑌(𝑧)
𝑋(𝑧)

=
∆
2𝜏 1 + 𝑧&+

1 + ∆
2𝜏 − 1 − ∆

2𝜏 𝑧&+

69

1 +
∆
2𝜏

𝑌 𝑧 − 1 −
∆
2𝜏

𝑧&+𝑌 𝑧 =
∆
2𝜏
𝑋(𝑧) 1 + 𝑧&+From previous slide,

𝑌(𝑧)
𝑋(𝑧)

=
∆
2𝜏 1 + 𝑧&+

1 + ∆
2𝜏 − 1 − ∆

2𝜏 𝑧&+
=

1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏

Δ − 1 𝑧&+

70

1 +
∆
2𝜏

𝑌 𝑧 − 1 −
∆
2𝜏

𝑧&+𝑌 𝑧 =
∆
2𝜏
𝑋(𝑧) 1 + 𝑧&+From previous slide,

𝑌(𝑧)
𝑋(𝑧)

=
∆
2𝜏 1 + 𝑧&+

1 + ∆
2𝜏 − 1 − ∆

2𝜏 𝑧&+
=

1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏

Δ − 1 𝑧&+

=
1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏Δ 𝑧

&+ + 𝑧&+
=

1 + 𝑧&+

1 + 𝑧&+ + 2𝜏Δ 1 − 𝑧&+

71

1 +
∆
2𝜏

𝑌 𝑧 − 1 −
∆
2𝜏

𝑧&+𝑌 𝑧 =
∆
2𝜏
𝑋(𝑧) 1 + 𝑧&+From previous slide,

𝑌(𝑧)
𝑋(𝑧)

=
∆
2𝜏 1 + 𝑧&+

1 + ∆
2𝜏 − 1 − ∆

2𝜏 𝑧&+
=

1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏

Δ − 1 𝑧&+

=
1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏Δ 𝑧

&+ + 𝑧&+
=

1 + 𝑧&+

1 + 𝑧&+ + 2𝜏Δ 1 − 𝑧&+

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

72

1 +
∆
2𝜏

𝑌 𝑧 − 1 −
∆
2𝜏

𝑧&+𝑌 𝑧 =
∆
2𝜏
𝑋(𝑧) 1 + 𝑧&+From previous slide,

𝑌(𝑧)
𝑋(𝑧)

=
∆
2𝜏 1 + 𝑧&+

1 + ∆
2𝜏 − 1 − ∆

2𝜏 𝑧&+
=

1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏

Δ − 1 𝑧&+

=
1 + 𝑧&+

2𝜏
Δ + 1 − 2𝜏Δ 𝑧

&+ + 𝑧&+
=

1 + 𝑧&+

1 + 𝑧&+ + 2𝜏Δ 1 − 𝑧&+

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

The discrete approximation of
1

1 + 𝜏𝑠

𝑠 =
2
∆ O

1 − 𝑧&+

1 + 𝑧&+Where, we used the bilinear transform method of replacing,

73

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

74

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

75

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

Recall,

𝑒1> + 𝑒&1>

2 = cos 𝜃

𝑒1> − 𝑒&1>

2𝑖 = sin 𝜃

76

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

Recall,

𝑒1> + 𝑒&1>

2 = cos 𝜃

𝑒1> − 𝑒&1>

2𝑖 = sin 𝜃

tan 𝜃 =
sin 𝜃
cos 𝜃 =

𝑒1> − 𝑒&1>

2𝑖
2

𝑒1> + 𝑒&1>

77

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

Recall,

𝑒1> + 𝑒&1>

2 = cos 𝜃

𝑒1> − 𝑒&1>

2𝑖 = sin 𝜃

tan 𝜃 =
sin 𝜃
cos 𝜃 =

𝑒1> − 𝑒&1>

2𝑖
2

𝑒1> + 𝑒&1>

𝑖 tan 𝜃 =
𝑒1> − 𝑒&1>

𝑒1> + 𝑒&1>
=
𝑒1> 1 − 𝑒&16>

𝑒1> 1 + 𝑒&16>

78

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

Recall,

𝑒1> + 𝑒&1>

2 = cos 𝜃

𝑒1> − 𝑒&1>

2𝑖 = sin 𝜃

tan 𝜃 =
sin 𝜃
cos 𝜃 =

𝑒1> − 𝑒&1>

2𝑖
2

𝑒1> + 𝑒&1>

𝑖 tan 𝜃 =
𝑒1> − 𝑒&1>

𝑒1> + 𝑒&1>
=
𝑒1> 1 − 𝑒&16>

𝑒1> 1 + 𝑒&16>
Let 𝜃 = I78

8!=
1 − 𝑒&16>

1 + 𝑒&16>

79

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

Recall,

𝑒1> + 𝑒&1>

2 = cos 𝜃

𝑒1> − 𝑒&1>

2𝑖 = sin 𝜃

tan 𝜃 =
sin 𝜃
cos 𝜃 =

𝑒1> − 𝑒&1>

2𝑖
2

𝑒1> + 𝑒&1>

𝑖 tan 𝜃 =
𝑒1> − 𝑒&1>

𝑒1> + 𝑒&1>
=
𝑒1> 1 − 𝑒&16>

𝑒1> 1 + 𝑒&16>
Let 𝜃 = I78

8!

𝑖 tan 𝜋𝑓/𝑓. =
1 − 𝑒 ⁄&1678 8!

1 + 𝑒 ⁄&1678 8!

=
1 − 𝑒&16>

1 + 𝑒&16>

80

Φ 𝑧 =
1

1 + 2𝜏Δ
1 − 𝑧&+
1 + 𝑧&+

We can approximate the frequency
response in 𝑓 by substituting 𝑧 = 𝑒1678/8!

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ
1 − 𝑒&1678/8!
1 + 𝑒&1678/8!

Recall,

𝑒1> + 𝑒&1>

2 = cos 𝜃

𝑒1> − 𝑒&1>

2𝑖 = sin 𝜃

tan 𝜃 =
sin 𝜃
cos 𝜃 =

𝑒1> − 𝑒&1>

2𝑖
2

𝑒1> + 𝑒&1>

𝑖 tan 𝜃 =
𝑒1> − 𝑒&1>

𝑒1> + 𝑒&1>
=
𝑒1> 1 − 𝑒&16>

𝑒1> 1 + 𝑒&16>
Let 𝜃 = I78

8!

𝑖 tan 𝜋𝑓/𝑓. =
1 − 𝑒 ⁄&1678 8!

1 + 𝑒 ⁄&1678 8!

=
1 − 𝑒&16>

1 + 𝑒&16>

So that, Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ 𝑖 tan I𝜋𝑓
𝑓.

81

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ 𝑖 tan I𝜋𝑓
𝑓.

This is the discrete approximation of the continuous system,

Φ 𝑠 =
1

1 + 𝜏𝑠 Where 𝑠 ≅
2𝑖
Δ tan I𝜋𝑓

𝑓.

82

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ 𝑖 tan I𝜋𝑓
𝑓.

This is the discrete approximation of the continuous system,

Φ 𝑠 =
1

1 + 𝜏𝑠 Where 𝑠 ≅
2𝑖
Δ tan I𝜋𝑓

𝑓.

And we map, 2𝜋𝑓@A%)1%BAB. =
2
Δ tan

𝜋𝑓C1.@DE)E
𝑓.

83

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ 𝑖 tan I𝜋𝑓
𝑓.

This is the discrete approximation of the continuous system,

Φ 𝑠 =
1

1 + 𝜏𝑠 Where 𝑠 ≅
2𝑖
Δ tan I𝜋𝑓

𝑓.

And we map, 2𝜋𝑓@A%)1%BAB. =
2
Δ tan

𝜋𝑓C1.@DE)E
𝑓.

This maps (or warps) the continuous frequency response into − 8!
6
, 8!
6

so that for
some continuous Φ@ 𝑠 we can obtain the discrete version ΦC(𝑧) by setting,

𝑠 =
2
Δ
1 − 𝑧&+

1 + 𝑧&+
Where Δ is the sample interval (100 sps has 0.01s interval).

84

Φ 𝑧 = 𝑒1678/8! =
1

1 + 2𝜏Δ 𝑖 tan I𝜋𝑓
𝑓.

This is the discrete approximation of the continuous system,

Φ 𝑠 =
1

1 + 𝜏𝑠 Where 𝑠 ≅
2𝑖
Δ tan I𝜋𝑓

𝑓.

And we map, 2𝜋𝑓@A%)1%BAB. =
2
Δ tan

𝜋𝑓C1.@DE)E
𝑓.

This maps (or warps) the continuous frequency response into − 8!
6
, 8!
6

so that for
some continuous Φ@ 𝑠 we can obtain the discrete version ΦC(𝑧) by setting,

𝑠 =
2
Δ
1 − 𝑧&+

1 + 𝑧&+
Where Δ is the sample interval (100 sps has 0.01s interval).

See A&B Figures 5.14 and 5.15

85

86

87

Matlab has very useful tools for IIR filter design. There are several standard
filter types that attempt to approximate the ideal continuous response with
the band limited discrete response. Typically the choice of filter type
depends on whether you wish to minimize ripple in the passband, the
stopband, or some balance in between.

88

Matlab has very useful tools for IIR filter design. There are several standard
filter types that attempt to approximate the ideal continuous response with
the band limited discrete response. Typically the choice of filter type
depends on whether you wish to minimize ripple in the passband, the
stopband, or some balance in between.

We first obtain the filter coefficients (the a’s and b’s in our differential equation
that characterizes the filter) using the specific filter type (e.g. butter()) and then
obtain the filter response with the command freqz().

89

Matlab has very useful tools for IIR filter design. There are several standard
filter types that attempt to approximate the ideal continuous response with
the band limited discrete response. Typically the choice of filter type
depends on whether you wish to minimize ripple in the passband, the
stopband, or some balance in between.

We first obtain the filter coefficients (the a’s and b’s in our differential equation
that characterizes the filter) using the specific filter type (e.g. butter()) and then
obtain the filter response with the command freqz().

Run matlab program filter_examps.m

We can also eliminate phase distortion by filtering the data twice. The first
time as normal, then flip the resulting filtered time series end to end from
start to finish (as one does for the second time series in convolution) then
filter again and restore the correct time order. So that any frequency
dependent time shifts in the first application of the filter, are subtracted out in
the second. Matlab has a command to do this for us called filtfilt().

