IR Filters

Mitch Withers, Res. Assoc. Prof., Univ. of Memphis

See Aster and Borchers, Time Series Analysis, chapter 5

MEMPHIS




Consider an output y from an input x where y is based on weighted values of
previous x and weighted values of previous y. This is a recursive filter and can
be of the form,
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Consider an output y from an input x where y is based on weighted values of
previous x and weighted values of previous y. This is a recursive filter and can
be of the form,

K M

z A V-t = z b, %Xy These are weighted averages.
m
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Consider an output y from an input x where y is based on weighted values of
previous x and weighted values of previous y. This is a recursive filter and can
be of the form,

K

M
z A V-t = z b, %Xy These are weighted averages.
k=0 m=0

K M
The nt" output is at k = 0. AoYn T z A Yn-k = Z [ —
k=1 m=0
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Consider an output y from an input x where y is based on weighted values of
previous x and weighted values of previous y. This is a recursive filter and can
be of the form,

K

M
z A V-t = z b, %Xy These are weighted averages.
s

k=0 =0

K M
The nt" output is at k = 0. AoYn T z A Yn-k = Z bmXn-m
k=1 m=0

The filter coefficients are a and b, the input is
Mo DmXn—m — Yne1 Yn—r X SO we find the Z transform of both sides to
o determine the transfer function of the linear
system.

Yn =

MEMPHIS
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K 0 M 00
Z Ay Z Vs o2 Z bm Z e, 2
k=0 n=-—oo m=0 n=-—oo
K (0] M (0'e)
Zakz—k z W z—(n—k) — 2 b, z™™ Z X, 7 (n—m)
k=0 n=-—oo m=0 n=-—oo
K M
Y(z V@ She7 sl
Y(Z)Zakz k=X(Z)mez'm d(z) = (): "}{‘0 L
X(2) o alzm
k=0 m=0 k=0

We require 711_{130 ¢, = 0 for the filter to be stable.
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Y(Z) "5 %=0 me—m

@) = X(2) S

If we had the weights, a and b for our recursive filter along with the input x, we could
use the matlab filfer command to get the output, y.
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Y(Z) "5 %=0 me—m

@) = X(2) S

If we had the weights, a and b for our recursive filter along with the input x, we could
use the matlab filfer command to get the output, y.

Recall from the Laplace transform that if the poles lie in the left half of the s-plane,
then the filter will be stable. Likewise, transfer functions with poles in the z-plane
that lie within the unit circle will be stable (decay with time).

—rodile o < 0 is the left side of the s-plane, and |z| < 1.
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Y(Z) "5 %=0 me—m

@) = X(2) S

If we had the weights, a and b for our recursive filter along with the input x, we could
use the matlab filfer command to get the output, y.

Recall from the Laplace transform that if the poles lie in the left half of the s-plane,
then the filter will be stable. Likewise, transfer functions with poles in the z-plane
that lie within the unit circle will be stable (decay with time).

—rodile o < 0 is the left side of the s-plane, and |z| < 1.

There are numerous ways to design IIR filters and we will explore two. As we did
with FIR filters we’ll start with an ideal filter response then attempt to match that

continuous response to a discrete finite length approximation.
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Impulse Invariance Method of IIR filter design.

d
Consider a system described by, Td—}; +y=x tisreal
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Impulse Invariance Method of IIR filter design.

d
Consider a system described by, Td—}; +y=x tisreal

Llzy +y] = L[x] == zL[y]+ L[yl =X(s) == t{sLly] =y(0)} +Y(s) = X(s)
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Impulse Invariance Method of IIR filter design.

d
Consider a system described by, Td—}; +y=x tisreal

Llzy +y] = L[x] == zL[y]+ L[yl =X(s) == t{sLly] =y(0)} +Y(s) = X(s)

Assume y(0) =0 stY(s)+Y(s) =X(s) =» Y(s)(st+1)=X(s)
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Impulse Invariance Method of IIR filter design.

d
Consider a system described by, Td—}; +y=x tisreal

Llzy +y] = L[x] == zL[y]+ L[yl =X(s) == t{sLly] =y(0)} +Y(s) = X(s)

Assume y(0) =0 stY(s)+Y(s) =X(s) =» Y(s)(st+1)=X(s)

Ki(s) el

ue :X(s) 14718

Alow pass filter. 1 pole @ s = —% Stable fort > 0
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Impulse Invariance Method of IIR filter design.

d
Consider a system described by, Td—}; +y=x tisreal

Llzy +y] = L[x] == zL[y]+ L[yl =X(s) == t{sLly] =y(0)} +Y(s) = X(s)

Assume y(0) =0 stY(s)+Y(s) =X(s) =» Y(s)(st+1)=X(s)

Ki(s) el

ue :X(s) 14718

Alow pass filter. 1 pole @ s = —% Stable fort > 0

We can find the more familiar frequency response by setting s = 2mif

MEMPHIS

1
d(f) = 1T 2mef — 1@f=0 and <1 for >0




19
1

a-+s

Recall, L_ll ] =e %

1
6(® = 1) = 17 =]
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Recall L‘1[ 1 ]=e““
et a+s
1 1 1
= =gl Y il !
6@ = 0] = 1 [——] ==L T
T
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1
Recall, L [a_I_S]:e‘“t
A L5 [ e
o) =L Ho(s)] =L 1[1+ST] _TL 4 %+s —TH(t)e o
N
t
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1
Recall, L* [a 17 S] =e %

1 ]:1_1

— = lH(t)e"t/T
1+ st T

T

6(®) = I o)) = 17|

=S
T

Here t is the characteristic decay time. ¢(t) has non-zero output for all ¢t > 0 which
means the length of the time domain response is infinite. Thus it's not easy to
model with a FIR filter so instead we use an IIR filter. This is true of the recursive

class of filters of which ours is a simple example.
MEMPHIS
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1
Recall, L* [a 17 S] =e %

1 ]:1_1

— = lH(t)e"t/T
1+ st T

T

6(®) = I o)) = 17|

=S
T

Here t is the characteristic decay time. ¢(t) has non-zero output for all ¢t > 0 which
means the length of the time domain response is infinite. Thus it's not easy to
model with a FIR filter so instead we use an IIR filter. This is true of the recursive
class of filters of which ours is a simple example.

In the impulse invariance method of IIR filter design we select the discrete
recursive filter with impulse response that best matches the desired

continuous response. MEMPHIS
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Consider, Vn, — ayp_1 = x,(1 — a)
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Consider, Vn, — ayp_1 = x,(1 — a)

Requireforn <0, x, =y, =0
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Consider, Vn, — ayp_1 = x,(1 — a)

Requireforn <0, x, =y, =0

atn=0,letx,=1,theny, =1—«a
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Consider, Vn, — ayp_1 = x,(1 — a)
Requireforn <0, x, =y, =0
atn=0,letx,=1,theny, =1—«a

n > 0, x, = 0 (an impulse input), and y,, = ay,,_;
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Consider, Vn, — ayp_1 = x,(1 — a)
Requireforn <0, x, =y, =0
atn=0,letx,=1,theny, =1—«a
n > 0, x, = 0 (an impulse input), and y,, = ay,,_;
Y1 = QYo

y, = ay, = alayy)
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Consider, Vn, — ayp_1 = x,(1 — a)
Requireforn <0, x, =y, =0
atn=0,letx,=1,theny, =1—«a
n > 0, x, = 0 (an impulse input), and y,, = ay,,_;
Y1 = QYo

Y2 = ay; = a(ayo)
Yn=ay, = a(1 — a) a<l1

This decays exponentially like we want, in order to model ¢(t).
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Consider, Vn, — ayp_1 = x,(1 — a)
Requireforn <0, x, =y, =0
atn=0,letx,=1,theny, =1—«a
n > 0, x, = 0 (an impulse input), and y,, = ay,,_;
Y1 = QYo

Y2 = ay; = a(ayo)
Yn=ay, = a(1 — a) a<l1

This decays exponentially like we want, in order to model ¢(t).

We also want ¢(0) = % =
MEMPHIS

1

Set%=1—a—>a=1—— See A&B figure 5.12

T




0.1

4 1 1 1] I 1 I 1 1 I
\ Desired Impulse Response
'u O IR Filter Response
0.09 [ i
lI
||
0.08 |4
II
@l.
0.07 \
3
0.06

hi(n
o
o
(&)

|

0.03

0.02 |-

0.01

70
n

90 100
Figure 5.12: Impulse invariance discrete realization compared to a target con-
tinuous response in the time domain.
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

Find the Z transform to get the transfer function for the filter.
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

Find the Z transform to get the transfer function for the filter.

Zlyn — ayn-1l = Z|x, (1 — )]
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

Find the Z transform to get the transfer function for the filter.

Zlyn — ayn-1l = Z|x, (1 — )]

Z YnZ ' —a Z Yn-1Z2 " =1 —a) 2 Xz ™"

n=—~oo n=—oo n=—oo

34
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

Find the Z transform to get the transfer function for the filter.

Zlyn — ayn-1l = Z|x, (1 — )]

Z YnZ ' —a Z Yn-1Z2 " =1 —a) 2 Xz ™"

n=—~oo n=—oo n=—oo

Y(z) —az™t z Yn-1Z2 P = (1 — @)X (2)

n=—0oo
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

Find the Z transform to get the transfer function for the filter.

Zlyn — ayn-1l = Z|x, (1 — )]

Z Yzt -« Z Yn-1Z2 " =(1-a) 2 XnZ "

n=—0oo n=—0oo n=—0oo

Y(z) —az™t z Yn-1Z2 P = (1 — @)X (2)

n=-—oo

YA —az™) =0 -a)X(2)

36
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

37

Find the Z transform to get the transfer function for the filter.

Zlyn — ayn_1l = Z[x,(1 — a)]

Zyn _azyn 1Zn:(1_“)zxnz_n

n=—~oo n=—0oo n=—~oo

Y(z) —az™ z y,_1z" @D = (1 — a)X(2)

n=—0oo

Y(2)

(1-a)

V(@1 -az) = A -XE)  —p o= @

" (A—az b
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)

Find the Z transform to get the transfer function for the filter.

Zlyn — ayn-1l = Z|x, (1 — )]

Z ynZ " —a Z Yn-1Zz "= (1 —a) 2 XnZ "

n=—~oo n=—oo n=—oo

Y(z) —az™t z Yn-1Z2 P = (1 — @)X (2)

n=—0oo

Y(z) _

38

(1-a)

Y(Z)(1—az™") = (1 —a)X(2)  =mp S S D)=

Let ¢ = 0 and normalize by f; so that z = e$ = e?2™//Js

X(z) (1A-az?)
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Our discrete approximation: vy, — ay,_1 = x,(1 — a)
Find the Z transform to get the transfer function for the filter.

Zlyn — ayn-1l = Z|x, (1 — )]

Z ynZ " —a Z Yn-1Zz "= (1 —a) 2 XnZ "

n=—~oo n=—oo n=—oo

Y(z) —az™t z Yn-1Z2 P = (1 — @)X (2)

n=—0oo

YAZ)F o St
X(z) (1A-az?)

YDA -az)=1-a)X(2) ==mp B(2)=
Let 0 = 0 and normalize by f; so that z = e$ = e2™//Js

l1—a 1
d(f) = a=1—- T is the characteristic decay time.

1 — qe~27f/fs T
MEMPHIS

See A&B figure 5.13
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Figure 5.13: Impulse invariance discrete realization compared to a target con-

tinuous response in the frequency domain.

i | b



41

So we essentially made an educated guess at the discrete equation that best fits
the continuous time domain response. We then examined the frequency domain
response of that discrete filter.

MEMPHIS



42

So we essentially made an educated guess at the discrete equation that best fits
the continuous time domain response. We then examined the frequency domain

response of that discrete filter.

The discrete response must maintain periodicity while the continuous continues
to decay at about 6db per octave (1 pole and no zeros).
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So we essentially made an educated guess at the discrete equation that best fits
the continuous time domain response. We then examined the frequency domain

response of that discrete filter.

The discrete response must maintain periodicity while the continuous continues

to decay at about 6db per octave (1 pole and no zeros).

Not a particularly formulaic design method.

Let’s try the Bilinear Transform.
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The bilinear transform "pre-warps” the s-domain into the z-domain (i.e. from
infinite frequency to periodic) using the tangent.

1
Our low pass filter from before, ty+y=x ®(s) = IO ;H(t)e‘t/f

1+ 1s
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The bilinear transform "pre-warps” the s-domain into the z-domain (i.e. from
infinite frequency to periodic) using the tangent.

1
Our low pass filter from before, ty+y=x ®(s) = IO ;H(t)e‘t/f

1+ 1s

The bilinear transform sets s = A is the sample rate.
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The bilinear transform "pre-warps” the s-domain into the z-domain (i.e. from
infinite frequency to periodic) using the tangent.

1
Our low pass filter from before, ty+y=x ®(s) = IO ;H(t)e‘t/f

1 s
1 2 1—z71 _
The bilinear transform sets s = N LoD A is the sample rate.
1 1

So that, d(z) = R

20y o (2
treprre ()i (F)

See A&B Figures 5.14 and 5.15
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So that’s nice, but where does it come from and why does it work?
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So that’s nice, but where does it come from and why does it work?

b
The fundamental theorem of calculus says, j f'(x)dx = f(b) — f(a)
a
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So that’s nice, but where does it come from and why does it work?
b
The fundamental theorem of calculus says, j f'(x)dx = f(b) — f(a)
a

We can write discrete y and sample interval A as an integral of the change in y.
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So that’s nice, but where does it come from and why does it work?
b
The fundamental theorem of calculus says, j f'(x)dx = f(b) — f(a)
a

We can write discrete y and sample interval A as an integral of the change in y.

nA
j )l =8 R R
(n—-1)A
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So that’s nice, but where does it come from and why does it work?
b
The fundamental theorem of calculus says, j f'(x)dx = f(b) — f(a)
a

We can write discrete y and sample interval A as an integral of the change in y.

nA
j y()du =y (nA)—y G2 DA g ol T
(n—-1)A

nA

y(nd) = j( a1

MEMPHIS
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The trapezoid rule

1 £ (xp)

f(x)

MEMPHIS
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The trapezoid rule Area of triangle

1
= S[f () — fGx)lAx

V'

o f(xp) — f(xa)
f(x) : FEr
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The trapezoid rule Area of triangle

1
= S[f () — Flxa)lAx

V'

f(x, f(xp) — f(xq)
f(x) : ST

Area of rectangle = f(x,)Ax

MEMPHIS
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The trapezoid rule Area of triangle

1
= S[f () — fGx)lAx

V'

f(xg fCxp) = f(xa)
f6) : S5

Area of rectangle = f(x,)Ax

A
Total area = % [f (xp) — f(xa)]Ax + f(x5)Ax = 7x [f (xq) + f(xp)]

MEMPHIS
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The trapezoid rule Area of triangle

1
= S [fG) — F(xa)1x

V'

fx, fOp) = f(xa)
f(x) ) Vi i

Area of rectangle = f(x,)Ax

A
Total area = % [f (xp) — f(xa)]Ax + f(x5)Ax = 7x [f (xq) + f(xp)]

So that /\4
nA

yon) = [ ydu+yltn— 1] = ZGIAR - 1)+ y(@n)] + y[an - 1)

(n—-1)A V\
MEMPHIS
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, 1

Yn = ; (Xn — Yn)
Our original differential equation is 1
Yn-1 = o (Xn-1 = Yn-1)
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, 1

Yn = ; (Xn — Yn)
Our original differential equation is 1
Yn-1 = o (Xn-1 = Yn-1)

. . 1
e VI ;(xn +Xpn_1—Yn— yn—l)
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. 1
Yn = ;(xn w Yn)

Our original differential equation is 1

Vn-1 = ; o L)

. . 1
e VI ;(xn +Xpn_1—Yn— yn—l)

Rewriting the trapezoid rule,

A\
%{y[A(Tl — 1) +y(An)] + y[A(n — 1)]} — Y, = E(Yn—l )l
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, 1

Yn = ; (xn w Yn)
Our original differential equation is 1
Yn-1 = o (Xn-1 = Yn-1)

. . 1
e VI ;(xn +Xpn_1—Yn— yn—l)

=
\

Rewriting the trapezoid rule, !

\
\

62

| A\
%{y[A(n — 1) +y(An)] + y[A(n — 1)]} 11_> Yn = E(Yn—l A,

/
/

ATl g
Substituting Yn = 5[; (Xn + Xn-1 = Yn — Yn-1)| + Yn-1
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, 1

Yn = ; (xn w Yn)
Our original differential equation is 1
Yn-1 = o (Xn-1 = Yn-1)

. . 1
e VI ;(xn +Xpn_1—Yn— yn—l)
X

\

Rewriting the trapezoid rule, !

\
\

| A\
%{y[A(n — 1) +y(An)] + y[A(n — 1)]} 11_> Yn = E(Yn—l A,

/
/

ATl g
Substituting Yn = 5[; (Xn + Xn-1 = Yn — Yn-1)| + Yn-1
A A A A
- an + an—l . Zyn A Z_Tyn_l + Yn-1
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A A A A

From previous slide Yn = 5 %Xn n o7 -1 7 5 Vn T 5 Yn-1 + Yn-1
A A A
Collect terms Yn T Zyn 2y Z_Tyn—l i, Z_T(xn a xn—l)
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A A A A

From previous slide Yn = 5 %Xn n o7 -1 7 5 Vn T 5 Yn-1 + Yn-1
A A A

Collect terms Yn T Zyn 2y Z_Tyn—l i, Z_T(xn a xn—l)
A A A
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A A A A

From previous slide Yn E 57 Xn n e + Yn-1
A A A

Collect terms Yn T Zyn 2y Z_Tyn—l P il Z_T(xn a xn—l)
A A A

Now find the z transform of both sides

AN © 4 A\ © AUNES ey .
(”z) ). W ‘(1‘27) D, e = =l DG

n=—oo n=—oo Nn=—oo Nn=—oo
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A A A A

From previous slide Yn E 57 Xn n e + Yn-1
A A A

Collect terms Yn T Zyn 2y Z_Tyn—l P il Z_T(xn a xn—l)
A A A

Now find the z transform of both sides

AN © 4 A\ © AUNES ey .
(”z) ). W ‘(1‘27) D, e = =l DG

n=—oo n=—oo Nn=—oo Nn=—oo

(1 " ZA_T> Y(z) - (1 e ZA_T) z7'Y(z) = ZA_TX(Z)(l +2z71)
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: s A A A
From previous slide, (1 + Z) Y(z) — (1 — —) z Y (2) = ZX(Z)(l +z™h

Vit
Y(z) _ ZAT (1+2z71)
"0 (i ) S
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: s A A A
From previous slide, (1 + Z) Y(z) — (1 — —) z Y (2) = ZX(Z)(l +z™h

2T
Y(2) y: ZAT(l e L 1+z71
O d)-(-D -G

MEMPHIS



70

: s A A A
From previous slide, (1 + Z) Y(z) — (1 — —) z Y (2) = ZX(Z)(l +z™h

2T
A X
() >r(1+z D L 1+z71
X(Z)_ A 3. _A —1 _Z_T - 2_ — il
(1 7 S e e S
T [ f: 1421
- 2T

——t 1 ==z et R G +%(1 — 7 )

A A
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: s A A A
From previous slide, (1 + Z) Y(z) — (1 — —) z Y (2) = ZX(Z)(l +z™h

2T
7 +27) -
Y(Z) e 2T < L. =7
X(2) 3 A 3. - A —1 Z_T - 2 l — il
(1 7 S e e S
T [ f: 1421
- 2T = 2T
~ T 1—7z -z S el
1
D) = 27 (1 —2z71
Lo (14-z-1)
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: s A A A
From previous slide, (1 + Z) Y(z) — (1 — —) z Y (2) = ZX(Z)(l +z™h

2T
A -1
() > (1+z77) L 1+z71
X(Z)_ A 3. _A —1_2_T - 2_ —1
(1+ 7)1 S C
c gl g 1+2z1
%+1—2A—TZ_1+Z_1 (1+Z_1)+%(1—Z_1)
. The di t imati f .
d(2) = ¥ 4% (1 il Z_l) — e discrete approximation of T——
A\l+2z1
i , 2.0 =z 1
Where, we used the bilinear transform method of replacing, s = =
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We can approximate the frequency
response in f by substituting

73

o 5 AT
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N 2T (1 S
1+2z71

)

We can approximate the frequency
response in f by substituting

1

O(z = 2115 =
1+

2T

A

(

1 — e—i2nf/fs
1+ e‘iznf/f5>
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d(z) = - We can approximate the frequency 7 = pi2nf/fs
1 + 21 (1 =k ) response in f by substituting jud
A\l1+2z1
N =T
q)(z = eian/fs) % 1 5 = cos 6
— p—i21f/f
1+ ZAT (1 " e_ian/fD Recall,
Z el — =16 5
T = SIn
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d(z) = L - We can approximate the frequency 7 = pi2nf/fs
1 + 21 (1 =k ) response in f by substituting jud
A\l1+2z1
N =T
q)(z = eian/fs) % 1 5 = cos 6
_ p—i2nf/f
1+ ZAT (1 " e_ian/fD Recall,
Z el — =16 5
T = SIn

X H_SinH_ eld — 10 ( 2 )
T cosf 2i eld 4 g—i0
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d(z) = L - We can approximate the frequency 7 = pi2nf/fs
1 + 21 (1 =k ) response in f by substituting jud
A\l1+2z1
N =T
q)(z = eian/fs) % 1 5 = cos 6
_ p—i2nf/f
1+ ZAT (1 " e_ian/fD Recall,
Z el — =16 5
T = SIn

X H_SinH_ eld — 10 ( 2 )
T cosf 2i eld 4 g—i0

ei9 o e—iG eie(l i e—i29)

ei@ 4= e—i9 ol ei@(l + e—i29)

[tan @ =
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d(z) = : — We can approximate the frequency g = oi2nf/fs
1 + ZAT G s 1) response in f by substituting jud
=3z
N =T
CI)(Z = eizﬂf/fs) — 1 > = cos 6
1420 (1 ¥ e_iznf/fs> Recall,

A\1+ e-i2nf/fs fio it o "

= SIn

. . 20
. H_SinH_ el — =10 ( 2 )
A o6 2i et 4 g~i0
io _ ,—if i0(1 _ p—i26 _ ,—i20 _af
itan@ze e e e )_1 e Let 6 = /fs

ei@ 4= e—i9 ol ei@(l + e—i29) A 18 e—i29
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d(z) = : — We can approximate the frequency g = oi2nf/fs
1 + ZAT G s 1) response in f by substituting jud
=3z
N =T
CI)(Z = eizﬂf/fs) — 1 > = cos 6
1420 (1 ¥ e_iznf/fs> Recall,

A\1+ e-i2nf/fs fio it o "

= SIn

. . 20
. H_SinH_ el — =10 ( 2 )
A o6 2i et 4 g~i0
io _ ,—if i0(1 _ p—i26 _ ,—i20 _af
itan@ze e e e )_1 e Let 6 = /fs

ei@ 4= e—i9 ol ei@(l + e—i29) A 18 e—i29

| 1 — e—i2nf/fs
itan(mf/fs) = 1 4 e—i2nf/fs
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d(z) = : — We can approximate the f_requency 5 = oi2nf/fs
2T (1 —2z e
1 + - (1 = Z_1> response in f by substituting
N =T
: 1 N
S = = cos 6
Wiy i (1 ol /fs> Recall ;
A \1+ e-i2nf/fs S
, = sin@
sinf (e —et0 2 £l
tan @ = = . ( . . )
cos 0 21 et 4 g~i0
e Sl i Z eie(l r e—ize) - o =128 Loy nf/fs
> ei@ 4= e—i9 of ei@(l + e—i29) B 18 e—i29
1 — e 2f /fs i21f /f 1
itan(nf /f,) = . So that, 4 Dz
11Js 1+ e~i2nf/fs 1+ %itan (ﬂf/fs)
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1

1+%itan(ﬂf/fs)

This is the discrete approximation of the continuous system,

O(z = 2 /55) =

1 %3
S (S ey Where s =" tan (nf/f)
S

MEMPHIS



1
1+2A ltan( f/fs)

CI)(Z — eiznf/fs) =

This is the discrete approximation of the continuous system,

ety 1+71s Where = Ztan (nf/f)
s
2 .
And we map, 2T feontinuous = Ztan (nfdl;crete>
s
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1

1+2A ltan( f/fs)

This is the discrete approximation of the continuous system,

CI)(Z — eiznf/fs) —

ety 1+71s Where = Ztan (nf/f)
s
2 .
And we map, 2T feontinuous = Ztan (nfdl;crete>
s

This maps (or warps) the continuous frequency response into ( ];9 fs) so that for
some continuous @.(s) we can obtain the discrete version ®;(z) by setting,

_21—2_1
AN

Where A is the sample interval (100 sps has 0.01s interval).
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1

1+2A ltan( f/fs)

This is the discrete approximation of the continuous system,

CI)(Z — eiznf/fs) —

ety 1+71s Where = Ztan (nf/f)
s
2 .
And we map, 2T feontinuous = Ztan (nfdl;crete>
s

This maps (or warps) the continuous frequency response into ( ];9 fs) so that for
some continuous @.(s) we can obtain the discrete version ®;(z) by setting,

_21—2_1
AN

Where A is the sample interval (100 sps has 0.01s interval).

MEMPHIS

See A&B Figures 5.14 and 5.15
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Figure 5.14: Bilinear z transform discrete realization response compared to a PHIS
target continuous response in the time domain.
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Figure 5.15: Bilinear 2z transform discrete realization response compared to a

target continuous response in the frequency domain.
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Matlab has very useful tools for IIR filter design. There are several standard
filter types that attempt to approximate the ideal continuous response with

the band limited discrete response. Typically the choice of filter type
depends on whether you wish to minimize ripple in the passband, the

stopband, or some balance in between.
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Matlab has very useful tools for IIR filter design. There are several standard
filter types that attempt to approximate the ideal continuous response with
the band limited discrete response. Typically the choice of filter type
depends on whether you wish to minimize ripple in the passband, the
stopband, or some balance in between.

We first obtain the filter coefficients (the a’s and b’s in our differential equation
that characterizes the filter) using the specific filter type (e.g. butter()) and then
obtain the filter response with the command freqz().
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Matlab has very useful tools for IIR filter design. There are several standard
filter types that attempt to approximate the ideal continuous response with
the band limited discrete response. Typically the choice of filter type
depends on whether you wish to minimize ripple in the passband, the
stopband, or some balance in between.

We first obtain the filter coefficients (the a’s and b’s in our differential equation
that characterizes the filter) using the specific filter type (e.g. butter()) and then
obtain the filter response with the command freqz().

We can also eliminate phase distortion by filtering the data twice. The first
time as normal, then flip the resulting filtered time series end to end from
start to finish (as one does for the second time series in convolution) then
filter again and restore the correct time order. So that any frequency
dependent time shifts in the first application of the filter, are subtracted out in

the second. Matlab has a command to do this for us called filtfilt().
MEMPHIS

Run matlab program filter_examps.m




